06.02.2013 Views

Graphene Synthesis & Graphene/Polymer Nanocomposites - CEMS ...

Graphene Synthesis & Graphene/Polymer Nanocomposites - CEMS ...

Graphene Synthesis & Graphene/Polymer Nanocomposites - CEMS ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Graphene</strong> <strong>Synthesis</strong> & <strong>Graphene</strong>/<strong>Polymer</strong> <strong>Nanocomposites</strong><br />

Ken-Hsuan (Kirby) Liao<br />

Advisors: Dr. Chris Macosko<br />

Dr. Andre Mkhoyan<br />

Department of Chemical Engineering & Materials Science<br />

University of Minnesota<br />

Ph.D. Defense<br />

Minneapolis MN<br />

September 19th, 2012<br />

1


• University of Minnesota<br />

- Ph.D. Materials Science, 2008~Present<br />

<strong>Graphene</strong> <strong>Synthesis</strong> & <strong>Graphene</strong>/<strong>Polymer</strong> <strong>Nanocomposites</strong><br />

• Double Bond Chemical Co<br />

- Research & Development Engineering, 2008<br />

<strong>Polymer</strong>ic Materials<br />

• Taiwan Army, 2007~2008<br />

Biography<br />

• National Taiwan University<br />

- M.S. <strong>Polymer</strong> Science & Engineering, 2005~2007<br />

MS Thesis: Thermoplastic polyurethane composites for dental materials<br />

- B.S. Chemical Engineering, 2001~2005<br />

BS Thesis: Mechanical & thermal properties of thermoplastic polyurethane<br />

2


<strong>Graphene</strong>: monolayer of carbon<br />

atoms packed in 2D hexagonal<br />

manner<br />

<strong>Graphene</strong> Properties<br />

Modulus 1 TPa<br />

Strength 130 GPa<br />

Electrical Conductivity 6000 S/cm<br />

Surface Area 2600 m 2 /g<br />

<strong>Graphene</strong><br />

0-D: Bucky Ball,<br />

1986<br />

2-D: <strong>Graphene</strong>,<br />

2004<br />

1-D: Carbon<br />

Nanotube, 1991<br />

3-D: Graphite,<br />

1500<br />

3


Why <strong>Graphene</strong>/<strong>Polymer</strong> <strong>Nanocomposites</strong>?<br />

Light-weight stiff materials<br />

Boeing 787, contains 70,000 lb<br />

composites.<br />

From Boeing<br />

Food packaging<br />

From Brown Machine LLC<br />

BMW i8, a car made with<br />

composites.<br />

Conductive coating<br />

Picture From Mission Impossible 4<br />

From Thermal Spray Technology Inc<br />

4


Challenge of <strong>Graphene</strong>/<strong>Polymer</strong> <strong>Nanocomposites</strong>: Dispersion<br />

aspect<br />

ratio<br />

Bicerano, <strong>Polymer</strong>, 2002, 43, 369<br />

material<br />

needed<br />

>>


Motivation of Novel <strong>Graphene</strong> <strong>Synthesis</strong><br />

Criteria of <strong>Graphene</strong> <strong>Synthesis</strong> Process for <strong>Nanocomposites</strong>:<br />

1. Massive production<br />

2. Low cost<br />

3. Environmental friendly process<br />

4. Easy to transport<br />

6


<strong>Graphene</strong> Precursor: Graphite Oxide<br />

• Hydrophilic (Carbon/Oxygen=2/1)<br />

• Electrical insulator<br />

GO/water<br />

hydrophilic<br />

<strong>Graphene</strong>/water<br />

hydrophobic<br />

Gao, W. et al, Nature Nanotechnology 2011, 6, 496<br />

7


Scotch tape surfactant<br />

Novoselov et al,<br />

Science 2004, 306, 666<br />

Approaches to Produce <strong>Graphene</strong><br />

Lotya et al,<br />

JACS 2009 131, 3611<br />

Graphite Scotch Tape Nobel Prize<br />

• Advantages:<br />

Pristine graphene<br />

• Disadvantages:<br />

Low Production<br />

Oxidation<br />

H2SO4<br />

KMnO4<br />

2000 o C/s<br />

Schniepp et al,<br />

J. Phys. Chem. B 2006, 110, 8535<br />

• Advantages:<br />

High Production<br />

• Disadvantages:<br />

Slow process<br />

Low bulk density<br />

Hard to transport<br />

Safety issue<br />

4 weeks<br />

cleaning up<br />

hydrazine<br />

Li et al, Nature Nanotechnology<br />

2008, 3, 101<br />

• Advantages:<br />

High Production<br />

Higher bulk density<br />

• Disadvantages:<br />

Hazard chemicals<br />

Slow process 8


Process & Mechanism of Aqueous <strong>Graphene</strong><br />

0.34 nm<br />

0.95 nm<br />

Liao, K.-H. et al, ACS Nano, 2011, 5, 1253-1258<br />

XRD:<br />

9


Process & Mechanism of Aqueous <strong>Graphene</strong><br />

0.34 nm<br />

0.95 nm<br />

1. Liao, K.-H. et al, ACS Nano, 2011, 5, 1253-1258<br />

2. Liao, K.-H. et al, ACS Applied Materials & Interfaces, 2011, 3, 2607-2615<br />

AFM topography:<br />

10


Process & Mechanism of Aqueous <strong>Graphene</strong><br />

Liao, K.-H. et al, ACS Nano, 2011, 5, 1253-1258<br />

ARG Surface Area:<br />

~400m 2 /g by BET<br />

11


Elemental Composition of Aqueous <strong>Graphene</strong> (ARG)<br />

XPS:<br />

ARG<br />

C/O=2/1<br />

GO/water<br />

hydrophilic<br />

C/O=7/1<br />

ARG/water<br />

hydrophobic<br />

1. Liao, K.-H. et al, ACS Nano, 2011, 5, 1253-1258<br />

2. Liao, K.-H. et al, ACS Applied Materials & Interfaces, 2011, 3, 2607-2615<br />

FTIR:<br />

TEM: HR-TEM:<br />

Dispersion in water:<br />

12


Electrical Conductivity of Aqueous <strong>Graphene</strong><br />

<strong>Graphene</strong> Paper<br />

• Advantages:<br />

High production<br />

High bulk density<br />

• Disadvantages:<br />

Slow process<br />

Hazard chemicals<br />

Liao, K.-H. et al, ACS Nano, 2011, 5, 1253-1258<br />

C/O Electrical<br />

Conductivity(S/cm)<br />

GO Film 2/1 ~10 -5<br />

GS Film 7/1 ~10 1<br />

Single-layer graphene yield: 65%<br />

Single + double layer yield: > 90%<br />

Chemically Reduced <strong>Graphene</strong>: Aqueous Reduced <strong>Graphene</strong>:<br />

• Advantages:<br />

High production<br />

High bulk density<br />

Fast process<br />

No hazard chemicals involved<br />

13


Dispersion of ARG in TPU<br />

Single solvent blending process: Co-solvent blending process:<br />

Percolation concentration 1.75 wt% Percolation concentration 0.5 wt%<br />

Modulus improved by ~300% (3.0 wt%) Modulus improved by ~650% (3.0 wt%)<br />

Resistance Modulus<br />

14


<strong>Graphene</strong>/Poly-Urethane-Acrylate (PUA) Nanocomposite<br />

Idea: Disperse graphene in flowable oligomer instead of polymer for better dispersion<br />

<strong>Graphene</strong>: Vorbeck’s thermally reduced graphene (TRG)<br />

Liao, K.-H. et al, <strong>Polymer</strong>, 2012, 53, 3756<br />

ano2<br />

15


Electrical Percolation & Aspect Ratio<br />

Percolation concentration:<br />

0.15 wt%<br />

Af of dispersed TRG:<br />

~750<br />

reported Af of free standing<br />

TRG: 750<br />

Liao, K.-H. et al, <strong>Polymer</strong>, 2012, 53, 3756<br />

σ c = σ f (φ-φ perc) t<br />

Af : aspect ratio of dispersed filler<br />

σc : conductivity of nanocomposites<br />

σf : conductivity of filler<br />

r : particle radius<br />

t : particle thickness<br />

Φsphere : volume fraction of interpenetrating<br />

spheres (= 0.29)<br />

Φperc : percolation volume concentration<br />

16


Mechanical Properties of <strong>Graphene</strong>/PUA <strong>Nanocomposites</strong><br />

<strong>Polymer</strong>ized <strong>Graphene</strong>/Poly-urethane-acrylate <strong>Nanocomposites</strong>:<br />

DMA :<br />

Liao, K.-H. et al, <strong>Polymer</strong>, 2012, 53, 3756<br />

<strong>Polymer</strong>ization heat & Tg by DSC:<br />

Mori-Tanaka model simulated results<br />

(black dash lines) & real modulus (spots):<br />

TRG Load (wt%) H p (J/g) T g (°C)<br />

0 245±16<br />

0.10 244±13<br />

0.25 256±22<br />

0.50 243±15<br />

14±4<br />

17


Electrical Percolation Concentration : Literature Summary<br />

Liao, K.-H. et al, <strong>Polymer</strong>, 2012, 53, 3756<br />

18


Motivation: E graphene/E matrix literature summary<br />

0.05 wt% in<br />

PMMA<br />

Brinson et al<br />

Nature Nano 2008<br />

Theoretical<br />

Maximum<br />

Kim, Abdala, Macosko Macromolecules 2010<br />

19


Glass Transition Temperature of <strong>Graphene</strong>/PMMA <strong>Nanocomposites</strong><br />

0.05 wt% percolation concentration?<br />

Too low!<br />

30 o C of T g increase?<br />

Too high!<br />

Ramanathan et al, Nat. Nanotech. 2008 3, 327<br />

Control Groups:<br />

As Received PMMA (PMMA)<br />

As Precipitate PMMA (P-PMMA)<br />

20


Glass Transition Behavior of <strong>Graphene</strong>/PMMA <strong>Nanocomposites</strong><br />

• Glass transition temperature (Tg ) changed<br />

obviously even without incorporation of graphene!!<br />

• Coagulation process removed surfactant, which<br />

significantly decrease the Tg of PMMA.<br />

The authors did not operate coagulation process<br />

for control groups!!<br />

21


T g of <strong>Graphene</strong>/<strong>Polymer</strong> <strong>Nanocomposites</strong> – Physical Blending<br />

Solvent Blending<br />

Matrix<br />

Techn<br />

<strong>Polymer</strong> ∆Tg (°C) Filler ique Filler Load<br />

PVDF[98] 0 TRG DSC 4 wt%<br />

PBS[138] 0 CRG DMA 2 wt%<br />

LLDPE[139] 0 EG DMA 20 wt%<br />

PVDF[140] 3.5 TRG DMA 0.5 wt%<br />

TPU[122]<br />

PαMSAN/PM<br />

-2 TRG DSC 7 wt%<br />

MA[141] 0 TRG DMA 1 wt%<br />

Rubber[142] 0 GO DSC 10 wt%<br />

TPU[143] -5 EG DSC 10 vol%<br />

TPU[144] 0 TRG DMA 6 wt%<br />

PS[108] 0 CRG DMA 1.94 vol%<br />

PI[107] 2.6 γ-ABA-GO DMA 0.4 wt%<br />

PVA[132] -4.5<br />

1 wt%<br />

PMMA[132] 0.3 0.2 wt%<br />

PEI[132] 0 TRG DSC 0.1 wt%<br />

TPU[145] 0 TRG DMA 4.4 wt%<br />

Melt Blending<br />

PE[146] 0 CRG DMA 2 wt%<br />

PA12[147] 0 CRG DSC 2 wt%<br />

PET[148] < 2 TRG DMA 7 wt%<br />

PTT[149] 0 TRG DSC 7 wt%<br />

PC[111] 0 GO DMA 3 wt%<br />

PP[110] 0 GO DMA 5 wt%<br />

Solvent-Blending: Melt-Blending:<br />

GO: <strong>Graphene</strong> oxide<br />

CRG: chemically reduced graphene<br />

TRG: thermally reduced graphene<br />

EG: Expanded graphite 22


T g of <strong>Graphene</strong>/<strong>Polymer</strong> <strong>Nanocomposites</strong> – Chemical Blending<br />

In situ <strong>Polymer</strong>ize monomer in the presence of dispersed graphene<br />

23


T g of <strong>Graphene</strong>/<strong>Polymer</strong> <strong>Nanocomposites</strong> – Chemical Blending<br />

In situ <strong>Polymer</strong>ization<br />

Matrix <strong>Polymer</strong> ∆Tg (°C) Filler Technique Filler load<br />

PBI[133] 1.8 Pristine graphene DMA 0.2 wt%<br />

NIPAA[134] 0 Pristine graphene DSC 0.13 wt%<br />

Epoxy[152] 7 TRG DSC 0.05 wt%<br />

PMMA[77] 20 CRG DMA 4 wt%<br />

PMMA[128] 9 CRG DMA 1 wt%<br />

3 GO<br />

PMMA[129]<br />

8 CRG<br />

DMA 1 wt%<br />

14<br />

DSC<br />

19 GO<br />

DMA<br />

PMMA[76]<br />

7 AIBN-GO DSC & DMA<br />

6 wt%<br />

Vinyl Ester[155] 7 TRG -- 0.2 phr<br />

4 GO<br />

0.5 wt%<br />

PUA[156]<br />

3.4 Isocyanate-GO DSC<br />

1 wt%<br />

PUA[157] 0 TRG DSC & DMA 0.5 wt%<br />

PUA[158] 7 CRG DMA 1 wt%<br />

PS[159] 8 PS-modified CRG DSC 2.5 wt%<br />

Commonly T g change was reported for chemical blending process<br />

24


T g of <strong>Graphene</strong>/<strong>Polymer</strong> <strong>Nanocomposites</strong> – Aqueous Blending<br />

Aqueous Blending (solvent blending with water as solvent)<br />

Matrix <strong>Polymer</strong> ∆T g (°C) Filler Technique Filler load<br />

PVA[104] 12 CRG DSC 7.5 wt%<br />

PVA[170] 4 CRG DSC 0.5 wt%<br />

PVA[105] 14 CRG DSC 3.5 wt%<br />

PVA[171] 9 GO DSC 0.72 vol%<br />

PVA[172] 4 GO DSC 0.7 wt%<br />

Chitosan[135] 5 GO DSC 1 wt%<br />

Gelatin[173] 10 GO DSC 2 wt%<br />

PEO[174] 9 TRG DMA 4 wt%<br />

Commonly T g change was<br />

reported for aqueous blending<br />

process<br />

25


T g of <strong>Nanocomposites</strong> & <strong>Polymer</strong> Nano-confinement<br />

Nanoconfinement & nanocomposites<br />

Tacticity effect of nanoconfinement<br />

Mayes A, Nature Materials 2005, 4, 651<br />

Grohens Y et al. Langmuir 1998, 14, 2929<br />

26


Dispersion of TRG/PMMA <strong>Nanocomposites</strong><br />

Samples: TRG/syndiotactic-rich-PMMA (a-PMMA)<br />

TRG/isotactic-PMMA (i-PMMA)<br />

in situ TRG/PMMA<br />

Resistance: (by 11-Probe) Modulus:<br />

Dispersion levels of TRG are similar<br />

Af ~200<br />

27


Tacticity Effect on T g of TRG/PMMA <strong>Nanocomposites</strong><br />

Samples: TRG/a-PMMA<br />

TRG/i-PMMA<br />

tanδ [tan(E”/E’)] by DMA of:<br />

TRG/a-PMMA i-PMMA<br />

28


Tacticity Effect on T g of TRG/PMMA <strong>Nanocomposites</strong><br />

Interaction Density:<br />

i-PMMA > a-PMMA<br />

Interaction Intensity:<br />

i-PMMA > a-PMMA<br />

n(T): number of H-bonds per P2VP block<br />

Noro, Matsushita, Lodge Macromolecules<br />

2008, 41, 5839-5844<br />

29


Process Effect on T g of TRG/PMMA <strong>Nanocomposites</strong><br />

Samples: in situ TRG/PMMA<br />

TRG/a-PMMA<br />

tanδ [tan(E”/E’)] by DMA of:<br />

TRG/atactic-PMMA in situ TRG/PMMA<br />

30


Possible Reactions during in situ <strong>Polymer</strong>ization<br />

~1 % of PMMA covalently grafted on TRG<br />

31


Process of separating filler and matrix polymer for in situ system<br />

In situ TRG/PMMA<br />

nanocomposites film<br />

dissolve<br />

in THF filtration<br />

rinse<br />

T g by DSC:<br />

dry<br />

32


Process of separating filler and matrix polymer for in situ system<br />

33


inding holes perfectly covered by single-layer GO:<br />

TEM:<br />

AFM:<br />

Lee, C. et al Science 2008, 321, 385<br />

Oxygen Effect on <strong>Graphene</strong> Oxide<br />

TEM grid<br />

Hole size: 2.5µm in diameter<br />

Force = (TM Deflection) × (Cantilever Spring Constant)<br />

34


Lee, C. et al Science 2008, 321, 385<br />

Atomic structure of single-layer GO:<br />

Mkhoyan, K. A. et al, Nano Letters, 2011, 9, 1058<br />

Oxygen Effect on <strong>Graphene</strong> Oxide<br />

Bridge (C-O-C) bonds<br />

were removed after<br />

chemical reduction<br />

TEM grid<br />

Hole size: 2.5µm in diameter<br />

Force = (TM Deflection) × (Cantilever Spring Constant)<br />

35


Fast, scalable,<br />

green process with<br />

massive production<br />

Conclusion<br />

In situ <strong>Polymer</strong>ization<br />

Melt Blending<br />

Solvent Blending<br />

• Mechanical Properties: Elastic modulus increase 100% with 0.5 wt% of graphene<br />

• Thermal Properties: Glass transition temperatures affected by process and tacticity<br />

• Electrical Properties: Surface resistance decrease 10 10 times with 1 wt% of graphene<br />

• Techniques used: AFM, Rheometer, DMA, XRD, SAXS, TEM, SEM, XPS, FTIR,<br />

GPC, TGA, DSC, universal tensile testing instrument.<br />

36


Acknowledgement<br />

• Dr. Chris Macosko (<strong>CEMS</strong>)<br />

• Dr. Andre Mkhoyan (<strong>CEMS</strong>)<br />

• Dr. Greg Haugstad<br />

• Steven Maslo, Jerry Yeh<br />

• Group Members<br />

37

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!