27.12.2014 Views

Quantitative Local Analysis of Nonlinear Systems - University of ...

Quantitative Local Analysis of Nonlinear Systems - University of ...

Quantitative Local Analysis of Nonlinear Systems - University of ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

The Positivstellensatz, a central theorem from real algebraic geometry, provides generalizations<br />

<strong>of</strong> Lemma 2.3.2. For its statement, a few definitions are needed.<br />

Definition 2.3.1. Given {g 1 , . . . , g t } ∈ R[x], the multiplicative monoid generated by g j ’s is<br />

the set <strong>of</strong> all finite products <strong>of</strong> g j ’s, including 1 (i.e. the empty product). It is denoted as<br />

M(g 1 , . . . , g t ). For completeness define M(∅) := 1.<br />

⊳<br />

Definition 2.3.2. Given {f 1 , . . . , f r } ∈ R[x], the cone generated by f i ’s is<br />

{<br />

}<br />

m∑<br />

P(f 1 , . . . , f r ) := s 0 + s i b i : m ∈ Z + , s i ∈ Σ[x], b i ∈ M(f 1 , . . . , f r ) .<br />

i=1<br />

⊳<br />

Definition 2.3.3. Given {h 1 , . . . , h u } ∈ R[x], the ideal generated by h k ’s is<br />

{∑ }<br />

I(h 1 , . . . , h u ) := hk p k : p k ∈ R[x] .<br />

⊳<br />

With these definitions, we can state the following theorem from [12, Theorem 4.2.2]:<br />

Theorem 2.3.1 (Positivstellensatz). Given polynomials {f 1 , . . . , f r }, {g 1 , . . . , g t }, and<br />

{h 1 , . . . , h u } in R[x], the following are equivalent:<br />

i. The set below is empty:<br />

⎧<br />

⎪⎨<br />

x ∈ R n :<br />

⎪⎩<br />

f 1 (x) ≥ 0, . . . , f r (x) ≥ 0,<br />

g 1 (x) ≠ 0, . . . , g t (x) ≠ 0,<br />

h 1 (x) = 0, . . . , h u (x) = 0<br />

⎫<br />

⎪⎬<br />

⎪⎭<br />

ii. There exist polynomials f ∈ P(f 1 , . . . , f r ), g ∈ M(g 1 , . . . , g t ), h ∈ I(h 1 , . . . , h u ) such<br />

that<br />

f + g 2 + h = 0.<br />

17

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!