28.12.2014 Views

Medium voltage switchgear application guide

Medium voltage switchgear application guide

Medium voltage switchgear application guide

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Electrical installations<br />

contain receivers, the<br />

power supply to which<br />

must be controlled by<br />

<strong>switchgear</strong>.<br />

<strong>Medium</strong> <strong>voltage</strong> <strong>switchgear</strong><br />

<strong>application</strong><br />

T<br />

<strong>guide</strong><br />

his behaviour <strong>guide</strong> is of based electrical on the equipment analysis of (transformers, phenomena arising motors, from etc.), the<br />

type and during characteristics normal or of faulty the device running.Its best adapted aim is to to help your you needs. choose the<br />

Switchgear provides<br />

circuit electrical<br />

protection,<br />

disconnection and<br />

control.<br />

date<br />

11/94<br />

- B•3•2 -<br />

revised<br />

05/2004<br />

■ Merlin Gerin<br />

■ Square D ■ Telemecanique


<strong>Medium</strong> <strong>voltage</strong> <strong>switchgear</strong> <strong>application</strong> <strong>guide</strong><br />

CONTENTS<br />

1<br />

- Transformer 3<br />

1 - 1 Switchgear to be used 3<br />

1 - 2 Device characteristics 3<br />

2 - Motor 7<br />

2 - 1 Switchgear to be used 7<br />

2 - 2 Device characteristics 7<br />

3 - Capacitor 10<br />

3 - 1 Switchgear to be used 10<br />

3 - 2 Device characteristics 11<br />

12 Switchgear Device characteristics to be used 4 - 3 Determination of a generator circuit breaker 13 15<br />

4 - Generator 13<br />

5 - Lines and cables 16<br />

5 - 1 Switchgear to be used 16<br />

5 - 2 Device characteristics 16<br />

6 - Arc furnace 18<br />

6 - 1 Switchgear to be used 18<br />

6 - 2 Device characteristics 18<br />

date<br />

11/94<br />

- B•3•2 -<br />

revised<br />

12/95<br />

1: 2: motor transformer<br />

3: 4: capacitor<br />

5: lines generator<br />

6: arc furnace and cables<br />

Appendix 7: 8: diode fused switch-disconnector and thyristor <strong>application</strong>s and fused contactor association<br />

7 - Appendices 20<br />

page 2


<strong>Medium</strong> <strong>voltage</strong> <strong>switchgear</strong> <strong>application</strong> <strong>guide</strong><br />

1 - TRANSFORMER 1 - 1 Switchgear to be used<br />

A fused switch-disconnector, fused contactor and circuit breaker are<br />

usually used for operating and protecting high power transformers.<br />

type power transformer controlled by<br />

MV/LV P ≤ 2 MVA dry or immersed type fused switch-disconnector<br />

transformer<br />

or circuit breaker<br />

or fused contactor<br />

2 MVA < P ≤ 4 MVA dry or immersed type fused switch-disconnector<br />

or circuit breaker<br />

or fused contactor<br />

MV/MV P ≤ 4 MVA dry type circuit breaker<br />

transformer immersed type circuit breaker<br />

P > 4 MVA immersed type circuit breaker<br />

The switch and contactor make sure the transformer is switched on and off<br />

during normal and overload running.<br />

network The fuse short-circuit limits and breaks power. short-circuit currents generated by the upstream<br />

The as short-circuit breaker currents. can make, withstand and break operating currents as well<br />

The protection system (CT, VT, relay, release…) automatically causes tripping<br />

when a fault is detected.<br />

1 - 2 Device characteristics<br />

The device must be able to:<br />

■ withstand and operate the continuous operating current and<br />

eventual overloads,<br />

■ break the fault current at the connection point; on the transformer’s<br />

secondary terminals,<br />

■ withstand short-circuit switching and no-load transformer<br />

switching peaks,<br />

■ break the no-load currents without excessive over<strong>voltage</strong><br />

(downstream open).<br />

The control and/or protection device must be located upstream of the<br />

transformer.<br />

Transformer faults cannot be picked up by downstream protection alone.<br />

A downstream control mechanism cannot isolate the fault transformer.<br />

date<br />

11/94<br />

- B•3•2 -<br />

revised<br />

12/95<br />

page 3


@@@@@@@@e<br />

@@@@@@@@<br />

@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e<br />

@@@@@@@@<br />

@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e<br />

@@@@@@@@e<br />

@@h<br />

@@h<br />

@@h<br />

@@h<br />

@@h<br />

@@h<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@g<br />

@@g<br />

@@g<br />

@@g<br />

@@g<br />

@@g<br />

@@@@@@@@<br />

@@@@@@@@<br />

@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@<br />

@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@@@@@@@<br />

@@@@@@@@<br />

<strong>Medium</strong> <strong>voltage</strong> <strong>switchgear</strong> <strong>application</strong> <strong>guide</strong><br />

1 - TRANSFORMER<br />

(cont’d)<br />

fig. 1: transformers feeder<br />

MV/LV transformers<br />

MV upstream busbars<br />

date<br />

11/94<br />

MV busbars<br />

fig. 2: transformers incomer<br />

MV downstream busbars<br />

- B•3•2 -<br />

revised<br />

05/2004<br />

MV/MV transformer<br />

THE DEVICE MUST BE ABLE TO:<br />

■<br />

EVENTUAL<br />

WITHSTAND<br />

OVERLOADS<br />

AND OPERATE THE CONTINUOUS OPERATING CURRENT AND<br />

rated The device current must and be eventual dimensioned overloads. to be able to withstand the transformer’s<br />

The rated current Inis given<br />

U:<br />

in the<br />

operating<br />

following<br />

<strong>voltage</strong><br />

equation:<br />

Ir =<br />

In specific 3<br />

S (in kVA)<br />

• U (in<br />

transformer cases kV)<br />

manufacturer where the must transformer supply overloads must operate likely in to overload, be applied the<br />

device depending on the ambient temperature. to the<br />

This The current overload value is expressed that should in be time taken and into as a account percentage is the of following: the rated power.<br />

Ir overload= Ir •Xoverload<br />

Examples:<br />

630 ■MV/LV kVA MV/LV transformer transformer; tee-off (fig.<br />

Unprimary:<br />

1) 20 kV<br />

Ir au primaire : control device 3 S<br />

•<br />

rating U = must<br />

3630<br />

• 20 = 18.18 A<br />

The be higher than or equal to 18.18 A.<br />

400 standardised values used by Merlin Gerin are:<br />

If - 630 - 1250 - 2500 - 3150 A.<br />

■a the control device is:<br />

200 fused A and switch-disconnector: the real rating of the assembly the fuse association becomes the limits same this as current the fuse. to<br />

■<br />

device a fused contactor: it is impossible to use a fused contactor as an control<br />

■a circuit since breaker: the contactor the rating has which a maximum we approve rated is <strong>voltage</strong> 400 A. of 12 kV.<br />

3150 ■MV/MV transformer incomer (fig. 2)<br />

temporary kVA MV/MV load of transformer; 20% one hour.<br />

Un secondary= 5.5 kV operating with a<br />

Ir secondary: 3150<br />

Ir overload= 331<br />

3 •<br />

x<br />

5.5 = 331 A<br />

We shall choose a<br />

1.2<br />

circuit<br />

= 397<br />

breaker<br />

A.<br />

with a rated current of 630 A.<br />

■<br />

The<br />

BREAK<br />

breaking<br />

THE<br />

capacity<br />

INSTALLATION’S<br />

must be higher<br />

FAULT<br />

than<br />

CURRENT<br />

circuit current at the point of installation. or equal to the maximum short-<br />

When must be a fused higher contactor than the current is used limited as a control by the device, fuse. the breaking capacity<br />

The short-circuit current limited<br />

Uk: transformer<br />

by the transformer<br />

short-circuit<br />

is equal<br />

<strong>voltage</strong><br />

to:<br />

Ik = Ir transfo. x 100<br />

Uk transfo.<br />

You will find in appendix 1 some values of Uk<br />

page 4


@@@@@@@@e<br />

@@@@@@@@<br />

@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e<br />

@@@@@@@@<br />

@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e<br />

@@@@@@@@e<br />

@@h<br />

@@h<br />

@@h<br />

@@h<br />

@@h<br />

@@h<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@g<br />

@@g<br />

@@g<br />

@@g<br />

@@g<br />

@@g<br />

@@@@@@@@<br />

@@@@@@@@<br />

@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@<br />

@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@@@@@@@<br />

@@@@@@@@<br />

<strong>Medium</strong> <strong>voltage</strong> <strong>switchgear</strong> <strong>application</strong> <strong>guide</strong><br />

1 - TRANSFORMER<br />

(cont’d)<br />

date<br />

11/94<br />

0<br />

- B•3•2 -<br />

revised<br />

I 1 = current giving maximum<br />

breaking capacity<br />

I 2 = current giving the matching<br />

arc energy conditions<br />

I 3 = minimum breaking<br />

current<br />

05/2004<br />

I r = rated current<br />

definition of fuse operating areas<br />

(see fuse technical leaflet)<br />

Example:<br />

Transformer: Secondary <strong>voltage</strong>: 10 MVA10 kV; primary <strong>voltage</strong>: 20 kV<br />

Short-circuit<br />

Insecondary: 577 <strong>voltage</strong>: A 9%<br />

a) the device is upstream of the transformer<br />

The standardised breaking capacity values must are: be 8 - equal 12.5 - to 16 or - higher 20 - 25 than - 31.5 the - network 40 - 50 kA.<br />

Ik<br />

b) the device is downstream of the transformer<br />

The current breaking limited capacity by the transformer must be equal as in to the or following higher than equation: the short-circuit<br />

Ik = In x 100<br />

We shall<br />

Uk<br />

= 577 •<br />

choose a device<br />

9<br />

100 = 6411 A<br />

with a breaking capacity equal to 8 kA.<br />

The Fuse fuse protection<br />

network as makes a result sure of that a downstream short-circuit fault currents are broken. generated by the upstream<br />

protection, In order to determine you must know: the required fuse rating to ensure transformer<br />

■the ■power transformer’s (S in kVA), characteristics<br />

■short-circuit ■rated current <strong>voltage</strong> with eventual (Ukin%),<br />

■the characteristics of the fuse overload family (A).<br />

■time/current characteristics at 0.1 s), used<br />

■minimum ■the installation breaking and current operating (I3in conditions A).<br />

open a cubicle, air,<br />

■in<br />

In order<br />

fuse<br />

to<br />

chambers.<br />

■choose the determine rated current the fuse of the rating, you must:<br />

■in ■if the general: installation transfo. and Ir1.3 operating ≤fuseIr≤transfo. conditions are Ir1.5,<br />

a fuse current rating immediately higher than transfo. not fully Ir1.5. known, choose<br />

■check secondary that short-circuit transformer current switching does does melt not the melt fuse the with fuse the and equation: that the<br />

IkxI3


<strong>Medium</strong> <strong>voltage</strong> <strong>switchgear</strong> <strong>application</strong> <strong>guide</strong><br />

1 - TRANSFORMER<br />

(cont’d)<br />

Transformer Circuit breaker protection protection<br />

thresholds: is provided mainly by amperimetric relays with two<br />

■an low immediate threshold high acts threshold on downstream acts on upstream faults. or internal transformer faults.<br />

■must Different take threshold transformer settings:<br />

account. switching, load current and fault current peaks into<br />

■for and downstream the downstream protection protection is ensured. device so that selectivity between upstream<br />

The ■thermal following image devices relays: are protection also used:<br />

■over<strong>voltage</strong> relays: protection against against over<strong>voltage</strong>, overloads and overheating,<br />

■earth ■tank protection overcurrent relays, relays,<br />

■restricted ■differential earth relays. relays,<br />

■<br />

TRANSFORMER<br />

WITHSTAND THE<br />

SWITCHING<br />

SHORT-CIRCUIT<br />

PEAKS<br />

SWITCHING CURRENT AND THE NO-LOAD<br />

The of the device short-circuit making current capacity (Ik2.5 must according be higher to than IEC or standard). equal to the peak value<br />

■<br />

(DOWNSTREAM<br />

BREAK NO-LOAD<br />

OPEN)<br />

CURRENTS WITHOUT EXCESSIVE OVERVOLTAGE<br />

The No-load transformer transformer insulation breaking may is be like damaged small inductive by over<strong>voltage</strong>. current breaking.<br />

peak value must be limited. The linking circuit between the device The over<strong>voltage</strong><br />

transformer plays an important role. The presence of cables (thus of and the<br />

capacitances) be checked. greatly reduces over<strong>voltage</strong>. Insulation co-ordination must<br />

Such value over<strong>voltage</strong> accepted by must standards. not be higher than 3.5 pu (1 pu =Ur3 2 ) , general<br />

SF6 breaking devices are particularly well adapted to this utilization.<br />

date<br />

11/94<br />

- B•3•2 -<br />

revised<br />

05/2004<br />

page 6


@@@@@@@@e<br />

@@@@@@@@<br />

@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e<br />

@@@@@@@@<br />

@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e<br />

@@@@@@@@e<br />

@@h<br />

@@h<br />

@@h<br />

@@h<br />

@@h<br />

@@h<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@g<br />

@@g<br />

@@g<br />

@@g<br />

@@g<br />

@@g<br />

@@@@@@@@<br />

@@@@@@@@<br />

@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@<br />

@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@@@@@@@<br />

@@@@@@@@<br />

<strong>Medium</strong> <strong>voltage</strong> <strong>switchgear</strong> <strong>application</strong> <strong>guide</strong><br />

2 - MOTOR 2 - 1 Switchgear to be used<br />

A fused contactor, contactor and circuit breaker are usually used<br />

for operating and protecting motors.<br />

M M M<br />

type power or current controlled by<br />

asynchronous I < 200 A fused contactor<br />

I < 315 A<br />

contactor<br />

P < 2 MW<br />

circuit breaker<br />

synchronous P ≥ 2 MW circuit breaker<br />

The fused operating contactor rate is is high, used to operate the motor when:<br />

■the power operating is low <strong>voltage</strong> (P < 1,500 is lower kW), than or equal to 11 kV.<br />

The short-circuit fuse breaks power. short-circuit currents generated by the upstream network<br />

The circuit operate breaker rate is is low, used to operate the motor when:<br />

■the power operating is high <strong>voltage</strong> (I > 315 is higher A), than 12 kV.<br />

2 - 2 Device characteristics<br />

date<br />

11/94<br />

- B•3•2 -<br />

revised<br />

05/2004<br />

The control and/or protection device must be able to:<br />

■ withstand and operate continuous operating current,<br />

■ break the fault current,<br />

■ withstand the short-circuit fault current (I k ),<br />

■ break currents during starting without excessive over<strong>voltage</strong>.<br />

THE DEVICE MUST BE ABLE TO:<br />

■<br />

The<br />

WITHSTAND<br />

device must<br />

AND<br />

be dimensioned<br />

OPERATE THE<br />

to<br />

OPERATING<br />

be able to withstand<br />

CURRENT<br />

current.<br />

the motor load<br />

The rated current Ir is given in the following equation:<br />

Ir (A) = U cos = ϕ= phase motor phase power <strong>voltage</strong> factor in kV<br />

3<br />

P (in kW)<br />

• U • cos ϕ•η<br />

η= motor output<br />

Example:1160 kW motor under 6.6 kV; cos ϕ = 0.92; η = 0.94<br />

I (A) = 3<br />

P (in kW)<br />

• U • cos<br />

■fused We shall contactor: choose:<br />

= 3 1160<br />

ϕ•η • 6.6 • 0.92 • 0.94 = 117.35 A<br />

■circuit breaker: 400 200 A. A or 250 A<br />

page 7


<strong>Medium</strong> <strong>voltage</strong> <strong>switchgear</strong> <strong>application</strong> <strong>guide</strong><br />

2 - MOTOR(cont’d) ■ BREAK FAULT CURRENTS<br />

fuse time-current curve<br />

t<br />

125 150 200 250<br />

t d<br />

I<br />

I d I dm<br />

date<br />

11/94<br />

- B•3•2 -<br />

revised<br />

05/2004<br />

When capacity a fused must contactor be compatible is used with as the a control need arising device, from the co-ordination contactor breaking<br />

the fuse and the different protective mechanisms. with<br />

The short-circuit fuse breaking current capacity possible. must be higher than or equal to the maximum<br />

When breaking a circuit capacity breaker must or be a higher contactor than alone the maximum is used as short-circuit a control device, current its<br />

possible.<br />

The<br />

Fuse<br />

specific<br />

protection<br />

motor which<br />

type<br />

they must<br />

of stress<br />

protect<br />

that<br />

and<br />

the fuses<br />

the network<br />

must withstand<br />

on which<br />

comes<br />

it is located.<br />

from the<br />

■stress ■rated current due to (Ir) the motor<br />

■starting current time Id(Id= 6 to 7 Ir for direct starting)<br />

tddepends on the<br />

td<br />

■the number of consecutive motor (values startings. between 1 and 30 seconds)<br />

■stress ■rated <strong>voltage</strong> due to the (< 11 network<br />

■prospective short-circuit kV). Only current. fuses with Ur ≤12 kV are used<br />

■choice ■ideal starting of fuse current characteristics<br />

The ideal starting current calculation Idmis equal<br />

(Idm)<br />

2.4 Idif the ratio Id/ to:<br />

- 2 Idif the ratio Id/<br />

Ir given by the manufacturer is a design value<br />

This Idmvalue guarantees<br />

Ir given two by consecutive the manufacturer start-ups is or a measured six start-ups value.<br />

intervalsper hour.<br />

at regular<br />

■to record determine the Idmand the fuse starting rating<br />

shown in figure 1 time value on the fuse time-current curve as<br />

intersection - choose the value immediately higher than the Idmand tdright angle<br />

On When figure the 1, fused the fuse contactor rating is to installed be taken in is the 250 cubicle, A.<br />

by 20%.<br />

Idmmust be increased<br />

The Circuit motors breaker are protected protection<br />

■thermal image against overloads, by the following protection devices:<br />

■independent ■earth overcurrent time for overcurrent insulation for faults, short-circuits,<br />

inverse ■against component slow start-ups maximum and rotor-locking. for unbalance,<br />

The under<strong>voltage</strong> motors must relay. be Ingeneral, protected against a single <strong>voltage</strong> relay is drops installed by on a time-delay<br />

carries out load shedding to all the associated devices. the busbar and<br />

page 8


<strong>Medium</strong> <strong>voltage</strong> <strong>switchgear</strong> <strong>application</strong> <strong>guide</strong><br />

2 - MOTOR(cont’d) ■ WITHSTAND THE FAULT SWITCHING CURRENT (Ik)<br />

The equal contactor to the peak or circuit short-circuit breaker current making value. capacity It is equal must be to 2.5 higher Ikaccording than to the IEC.<br />

■<br />

The<br />

BREAK<br />

motors are<br />

CURRENTS<br />

sensitive<br />

DURING<br />

to over<strong>voltage</strong><br />

STARTING<br />

since,<br />

WITHOUT<br />

for technological<br />

EXCESSIVE<br />

reasons,<br />

OVERVOLTAGE<br />

are not as well insulated. The <strong>switchgear</strong> operation creates an over<strong>voltage</strong> they<br />

insulation for each start-up. which cause Repeated it to wear over<strong>voltage</strong> down prematurely, creates weak if not points destroy in the it. turn<br />

Devices and do not using need the motor SF6 technique protection do devices. not generate dangerous over<strong>voltage</strong><br />

Rotating devices are arc likely techniques to provoke should higher be kept currents if they than work the well. rotating Puffer arc technique<br />

therefore more dangerous over<strong>voltage</strong> (see“selling points” folder, and<br />

over<strong>voltage</strong> file).<br />

date<br />

11/94<br />

- B•3•2 -<br />

revised<br />

05/2004<br />

page 9


<strong>Medium</strong> <strong>voltage</strong> <strong>switchgear</strong> <strong>application</strong> <strong>guide</strong><br />

3 - CAPACITOR 3 - 1 Switchgear to be used<br />

A fuse-switch combination, fused contactor, circuit-breaker-switch<br />

and circuit breaker are usually used for operating and protecting<br />

capacitor banks.<br />

type power I capacitance current<br />

(1) controlled by<br />

delta P ≤ 1050 kvar I ≤ 240 A fused contactor<br />

connection U ≤ 11 kV I ≤ 160 A ISF1circuit-breaker-switch<br />

bank<br />

I ≤ 60 A<br />

SM6 fixed fused<br />

switch-disconnector<br />

star 600 ≤ P ≤ 1050 kvar I ≤ 160 A ISF1 circuit-breaker-switch<br />

connection 11.7 ≤ U ≤ 21.8 kV<br />

bank 1050 ≤ P ≤ 4200 kvar I ≤ 240 A fused contactor<br />

U ≤ 11 kV<br />

1050 ≤ P ≤ 4800 kvar I ≤ 160 A ISF1 circuit-breaker-switch<br />

U ≤ 21.8 kV<br />

1050 ≤ P ≤ 21000 kvar 440 A 630 A circuit breaker<br />

U ≤ 21.8 kV 875 A 1250 A circuit breaker<br />

1750 A 2500 A circuit breaker<br />

2200 A 3150 A circuit breaker<br />

(1) capacitive current that the breaking device is capable of breaking<br />

The on and switch off during and the normal contactor running. make sure that the capacitor bank is switched<br />

The currents fuse-switch generated or fuse-contactor by the upstream combination network short-circuit make sure power that short-circuit<br />

General protection and breaking device with the required breaking are capacity broken.<br />

are The necessary circuit breaker even is if able capacitors make, are withstand designed and with break an operating internal fuse.<br />

well as short-circuit currents. Fault tripping is carried out automatically currents by theas<br />

protection The capacitor system banks (CT, are VT, either relay, mounted release, in etc.).<br />

bank (fig. 2). a single bank (fig. 1),or in multi steps<br />

The head<br />

multi<br />

circuit<br />

steps capacitor<br />

breaker ensuring<br />

bank with<br />

the<br />

the<br />

general<br />

following<br />

protection<br />

arrangement is often used:<br />

■a switch (ISF1)<br />

control each tap. or circuit breaker (if the number of operations is low)<br />

fig. 1: single bank<br />

fig. 2: automatic banks<br />

circuit breaker or<br />

fused contactor<br />

switch<br />

or<br />

circuit breaker<br />

date<br />

11/94<br />

- B•3•2 -<br />

revised<br />

05/2004<br />

banks with delta<br />

or double star connections<br />

banks with delta<br />

or double star connections<br />

page 10


@@@@@@@@e<br />

@@@@@@@@<br />

@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e<br />

@@@@@@@@<br />

@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e<br />

@@@@@@@@e<br />

@@h<br />

@@h<br />

@@h<br />

@@h<br />

@@h<br />

@@h<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@g<br />

@@g<br />

@@g<br />

@@g<br />

@@g<br />

@@g<br />

@@@@@@@@<br />

@@@@@@@@<br />

@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@<br />

@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@@@@@@@<br />

@@@@@@@@<br />

<strong>Medium</strong> <strong>voltage</strong> <strong>switchgear</strong> <strong>application</strong> <strong>guide</strong><br />

3 - CAPACITOR(cont’d) 3 - 2 Device characteristics<br />

date<br />

11/94<br />

- B•3•2 -<br />

revised<br />

05/2004<br />

The control and/or protection device must be able to:<br />

■ withstand the continuous operating current,<br />

■ break the fault current,<br />

■ withstand the network switching current and switching peaks<br />

generated when power to the capacitors is switched on,<br />

■ make and break without excessive over<strong>voltage</strong>.<br />

THE DEVICE MUST BE ABLE TO:<br />

■<br />

The<br />

WITHSTAND<br />

device must<br />

THE<br />

be dimensioned<br />

CONTINOUS OPERATING<br />

to be able to<br />

CURRENT<br />

capacitor bank rated current. withstand 1.43 times the<br />

The Irdevice rated = current Ircapacitor of the x device 1.1 x 1.3 is given = I capacitor by the following x 1.43 equation:<br />

1.3 currents. to take into account overheating due to the presence of harmonic<br />

1.1 The take rated into capacitive account current the tolerance must be over lower the than capacitance the capacitive value.<br />

the device is able to break (value given by the manufacturer). current that<br />

Irdevice Example:Ircapacitor = 100 A<br />

The = I capacitor x 1.43 = 100 •1.43 = 143 A<br />

than breaking 143 A. device must have a rated current value equal to or higher<br />

The following control devices are the ones we would choose:<br />

■for switch: ISF1 (Ibrokencapacitor =160 A)<br />

■a circuit a contactor: breaker Rollarc with a 630 (Ibrokencapacitor A rating (Ibrokencapacitor = 240 A) = 440 A).<br />

■<br />

The<br />

BREAK<br />

breaking<br />

THE<br />

capacity<br />

FAULT CURRENT<br />

maximum short-circuit current of the device possible. must be higher than or equal to the<br />

When be higher the device than the is current a fused limited contactor, by the the fuse. contactor breaking capacity must<br />

The<br />

Fuse<br />

fuse<br />

protection<br />

bank. This<br />

rating<br />

coefficient<br />

must be<br />

takes<br />

between<br />

into account<br />

1.7 and<br />

a<br />

1.9<br />

downgrading<br />

times the rated<br />

of 1.3<br />

current<br />

due to<br />

of<br />

the<br />

the<br />

Ircapacitor<br />

presence of<br />

x<br />

harmonic<br />

1.7 ≤Irfuse<br />

currents<br />

≤Ircapacitor<br />

and the derating<br />

x 1.9<br />

due to the inrush currents<br />

Protection against overloads must also be provided on each phase.<br />

Protection Circuit breaker against protection<br />

phase. short-circuits and overloads must be provided on each<br />

page 11


@@@@@@@@e<br />

@@@@@@@@<br />

@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e<br />

@@@@@@@@<br />

@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e<br />

@@@@@@@@e<br />

@@h<br />

@@h<br />

@@h<br />

@@h<br />

@@h<br />

@@h<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@g<br />

@@g<br />

@@g<br />

@@g<br />

@@g<br />

@@g<br />

@@@@@@@@<br />

@@@@@@@@<br />

@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@<br />

@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@@@@@@@<br />

@@@@@@@@<br />

<strong>Medium</strong> <strong>voltage</strong> <strong>switchgear</strong> <strong>application</strong> <strong>guide</strong><br />

3 - CAPACITOR(cont’d) ■<br />

The<br />

WITHSTAND<br />

making capacity<br />

THE SWITCHING<br />

of the device<br />

CURRENT<br />

greatest of the following values: must be equal to or higher than the<br />

■Ipnetwork ■bank switching (2.5 Ik<br />

current according Ie. to IEC)<br />

The bank switching current I e must always be less than I capacitor x 100.<br />

Otherwise arcing contact it must wear. be limited by installing dumpingreactors in order to reduce<br />

This current plays an important role in the mechanical endurance of the device.<br />

maximum<br />

Example:Rollarc<br />

number contactor, of operations<br />

Ir = : 400 300 A; 000 Ibrokencapacitor in mechanical latching. = 240 A;<br />

Imax.<br />

number<br />

switching<br />

of operations<br />

current: 8 kA at peak;<br />

The determination of switching<br />

Imax. switching<br />

current<br />

current=<br />

values 10,000. is given in appendix 3.<br />

■ MAKE AND BREAK WITHOUT EXCESSIVE OVERVOLTAGE<br />

If 1 pu =Ur<br />

the over<strong>voltage</strong> 3<br />

2<br />

single bank: must 2 not pu be higher than:<br />

■for a automaticbank (n identical taps):<br />

2 n 2 + n1 SF6 devices = pu<br />

are especially well adapted to this <strong>application</strong>.<br />

date<br />

11/94<br />

- B•3•2 -<br />

revised<br />

05/2004<br />

page 12


<strong>Medium</strong> <strong>voltage</strong> <strong>switchgear</strong> <strong>application</strong> <strong>guide</strong><br />

4 - GENERATOR 4 - 1 Switchgear to be used<br />

The control device usually used for operating and protecting<br />

generators is a circuit breaker.<br />

The ■low two power most station current generator uses for the protection generator circuit breaker are:<br />

In (generator/transformer practical cases, power set). station A VHV generators circuit breaker are built is used as self-contained to operate and units<br />

■protection them.<br />

circuits in the of event auxiliary of a generators distribution providing network failure. a power supply to priority<br />

In Its this characteristics case, the circuit are those breaker described used in as chapter a transformer 1 (transformer). protection incomer.<br />

power station generator<br />

G<br />

generator<br />

distributor power supply<br />

power<br />

generator<br />

G<br />

essential<br />

power supply<br />

MV circuit breaker<br />

LV<br />

transformer<br />

MV<br />

MV capacitors<br />

MV<br />

transformer<br />

VHV<br />

VHV circuit breaker<br />

VHV network<br />

4 - 2 Device characteristics<br />

date<br />

11/94<br />

- B•3•2 -<br />

revised<br />

05/2004<br />

When in use, the generator circuit breaker comes up against very<br />

different operating conditions. It must:<br />

■ withstand high load currents (overheating),<br />

■ break strong and highly asymmetrical fault currents which may<br />

be higher than 100% (generator terminal fault),<br />

■ close on very high currents generated by the asymmetry,<br />

■ withstand transient recovery <strong>voltage</strong> with highly increasing speeds,<br />

■ withstand phase displacement.<br />

DIFFERENT IN OPERATION, CONDITIONS THE GENERATOR OF RUNNING. CIRCUIT IT MUST BREAKER BE ABLE MEETS TO: VERY<br />

■<br />

The<br />

WITHSTAND<br />

rated current<br />

HIGH<br />

is given<br />

LOAD<br />

by<br />

CURRENTS<br />

the following equation: I ≥<br />

3 S<br />

• U<br />

page 13


@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e<br />

@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e @@@@@@@@<br />

@@@@@@@@<br />

@@@@@@@@e<br />

@@h<br />

@@h<br />

@@h<br />

@@h<br />

@@h<br />

@@h<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@g<br />

@@g<br />

@@g<br />

@@g<br />

@@g<br />

@@g<br />

@@@@@@@@<br />

@@@@@@@@<br />

@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@<br />

@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@@@@@@@<br />

@@@@@@@@<br />

<strong>Medium</strong> <strong>voltage</strong> <strong>switchgear</strong> <strong>application</strong> <strong>guide</strong><br />

4 - GENERATOR(cont’d) ■<br />

fig. 1: evolution of a generator<br />

short-circuit current<br />

I (kA)<br />

I dc<br />

t o<br />

time<br />

to = circuit breaker switching time<br />

+ relay time<br />

Iac aperiodic component<br />

Idc = component<br />

date<br />

11/94<br />

- B•3•2 -<br />

revised<br />

05/2004<br />

I ac<br />

BREAK HIGHLY ASYMMETRICAL FAULT CURRENTS<br />

When current a speed short-circuit is the one occurs represented on a network in figure close 1. to a generator the fault<br />

It values is essential at the moment to know the the evolution circuit breaker of the arcing short-circuit contacts current separate: and the<br />

aperiodic Current asymmetry<br />

(Idc) and can periodic reach<br />

(Iac)<br />

very component high values, value.<br />

which delays the natural passages of the current sometimes through zero higher that than are100%,<br />

In necessary highly asymmetrical for breaking.<br />

asymmetry for a total asymmetrical breaking, the current SF6 technique equal to is 2 times limited the to peak 100%<br />

symmetrical short-circuit current.<br />

•<br />

Iasym. =Isym. 1 + 2A2 with A = % asymmetry =Idc 100<br />

The or equal breaking to the capacity maximum of short-circuit the generator current circuit possible. breaker<br />

Iac peak<br />

must be higher than<br />

The value short-circuit to be taken current into supplied account is by the the greatest network, of:<br />

■the asymmetrical current of the generator at the moment the contacts open.<br />

is<br />

Example:when<br />

29 kA with 80% the asymmetry contacts separate, at the periodic short-circuit current<br />

to<br />

Asymmetrical current = Isym.•<br />

29 •1.35<br />

1<br />

=<br />

+ 2A2<br />

39.15<br />

=<br />

kA<br />

29 • 1 + 2 80% 2<br />

We The short-circuit current supplied by the network is 25 kA.<br />

If shall choose a circuit breaker with a breaking capacity equal to 40 kA.<br />

the the breaking capacity required is higher than the breaking capacity of<br />

order device, one solution consists in delaying circuit breaker switching in<br />

open due to avoid to a an fault. overly high asymmetry when the circuit breaker has to<br />

■<br />

The<br />

SWITCHING<br />

making capacity<br />

WITH<br />

must<br />

VERY<br />

be<br />

HIGH<br />

higher<br />

CURRENTS<br />

short-circuit current made. than or equal to the peak value of the<br />

The ■2.5 value times to the be breaking taken into capacity account of is the the circuit greatest breaker, of the following:<br />

asymmetry ■the peak value of the of generator the short-circuit current (figure current, 1). taking into account the<br />

■<br />

The<br />

INVERSION<br />

short-circuit<br />

OPERATION<br />

breaking capacity current given value by the in manufacturer phase inversion of the must circuit be lower breaker. than the<br />

■<br />

The<br />

TRANSIENT<br />

TRV values<br />

RECOVERY<br />

as well as the<br />

VOLTAGE<br />

TRV increase<br />

VALUES<br />

time<br />

(TRV)<br />

the circuit breaker in all types of situations (see circuit must breaker be compatible technical with<br />

<strong>guide</strong> § 5.11).<br />

page 14


<strong>Medium</strong> <strong>voltage</strong> <strong>switchgear</strong> <strong>application</strong> <strong>guide</strong><br />

4 - GENERATOR(cont’d) 4 - 3 Characteristics required for the determination<br />

of a generator circuit breaker<br />

must To be be able satisfied: to select a generator circuit breaker, the following characteristics<br />

■the ■generator rated current power in in MVA continous or kVA, operation<br />

■operating ■generator <strong>voltage</strong> rated current. in kV,<br />

short-circuit asymmetrical symmetrical current and current the continuous rms kA<br />

closing current in peak kA component value<br />

rated peak value withstand of the current TRV (in (rms peak kA/1 kA) s)<br />

■the rated operating cycle (O- 3 mn - CO as - well 3 mn as - the CO increase advised). time in µs<br />

The following generator values circuit are breaker known: can operate in phase inversion which implies<br />

■the short-circuit peak value TRV current, and increase time.<br />

date<br />

11/94<br />

- B•3•2 -<br />

revised<br />

05/2004<br />

page 15


<strong>Medium</strong> <strong>voltage</strong> <strong>switchgear</strong> <strong>application</strong> <strong>guide</strong><br />

5 - CABLES OR<br />

CABLES/LINES<br />

5 -1 Switchgear to be used<br />

A switch, fused switch-disconnector and circuit breaker are usually<br />

used to operate and protect lines and cables.<br />

lines feeder<br />

MV busbars<br />

lines incomer<br />

MV upstream busbars<br />

MV downstream busbars<br />

type current controlled by<br />

cables I ≤ 630 A switch<br />

I ≤ 200 A<br />

I ≤ 3150 A<br />

5 - 2 Device characteristics<br />

fused switch-disconnector<br />

circuit breaker<br />

The operating and/or protection device must be able to:<br />

■ carry the load current,<br />

■ withstand the short-circuit current,<br />

■ break the fault current if the device is an incomer,<br />

■ operate weak currents (no-load cables or lines) without<br />

excessive over<strong>voltage</strong>.<br />

THE DEVICE MUST BE ABLE TO:<br />

■<br />

The<br />

CARRY<br />

rated current<br />

THE LOAD<br />

depends<br />

CURRENT<br />

receivers installed on the outlet directly feeder. on the supply power and <strong>voltage</strong> of the<br />

Installed power: S = U I3 ⇒ I = US3<br />

date<br />

11/94<br />

- B•3•2 -<br />

revised<br />

05/2004<br />

page 16


<strong>Medium</strong> <strong>voltage</strong> <strong>switchgear</strong> <strong>application</strong> <strong>guide</strong><br />

5 - CABLES OR<br />

CABLES/LINES(cont’d)<br />

■<br />

The<br />

BREAK<br />

breaking<br />

THE<br />

capacity<br />

INSTALLATION’S<br />

must be higher<br />

FAULT<br />

than<br />

CURRENTS<br />

circuit current possible at the installation point. or equal to the maximum short-<br />

If the device is used as an incomer<br />

The circuit breaking current capacity possible must at the be installation higher than point. or equal to the maximum short-<br />

The on the short-circuit type and current section limited of the conductors. by the overhead or underground link depends<br />

Ik = 3 U•Zk ■for X 0.4 an ohm/km overhead = U<br />

3 • R2 +X2<br />

link<br />

R = ρL<br />

Three-phase ■for an S with ρ= 3.310-6 ohm cm2<br />

underground cables: link<br />

for Almelec<br />

Single-phase R = ρL cables: X = 0.1 0.1 to to 0.15 0.20 ohm/km ohm/km<br />

S with ρ=2.810-6 ρ=1.810-6 ohm ohm cm2<br />

cm2<br />

for copper<br />

for aluminium<br />

If the device is used as an outlet<br />

The protection switch device does not located have upstream a short-circuit which current provides breaking protection capacity. against It is shortcircuits.<br />

the<br />

the It must time however needed be to eliminate able to withstand it. the short-circuit current induced for<br />

If or protection the fuse-switch against combination short-circuits must is required be used. the fused switch-disconnector<br />

the The short-circuit breaker current must at have the connection a breaking capacity point. higher than or equal to<br />

■<br />

Applying<br />

OPERATE<br />

<strong>voltage</strong><br />

WEAK<br />

to a<br />

CURRENTS<br />

no-load line<br />

WITHOUT<br />

can be<br />

EXCESSIVE<br />

compared<br />

OVERVOLTAGE<br />

to capacitor switching.<br />

date<br />

11/94<br />

- B•3•2 -<br />

revised<br />

05/2004<br />

page 17


@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e<br />

@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e @@@@@@@@<br />

@@@@@@@@<br />

@@@@@@@@e<br />

@@h<br />

@@h<br />

@@h<br />

@@h<br />

@@h<br />

@@h<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@g<br />

@@g<br />

@@g<br />

@@g<br />

@@g<br />

@@g<br />

@@@@@@@@<br />

@@@@@@@@<br />

@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@<br />

@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@@@@@@@<br />

@@@@@@@@<br />

<strong>Medium</strong> <strong>voltage</strong> <strong>switchgear</strong> <strong>application</strong> <strong>guide</strong><br />

6 - ARC FURNACES 6 - 1 Switchgear to be used<br />

The ISF2 switch-circuit breaker was designed for arc furnace <strong>application</strong>.<br />

The maximum characteristics of the ISF2 are given in the table below.<br />

max. <strong>voltage</strong> max. load breaking no. of daily<br />

power current capacity operations<br />

180 MVA 40.5 kV<br />

156 MVA 36 kV 2500 A 20 kA 200<br />

104 MVA 24 kV<br />

6 - 2 Device characteristics<br />

date<br />

11/94<br />

- B•3•2 -<br />

revised<br />

05/2004<br />

The switch must be able to:<br />

■ operate the load current,<br />

■ break the installation’s short-circuit currents,<br />

■ operate weak currents (no-load transformer) without<br />

excessive over<strong>voltage</strong>,<br />

■ carry out a large number of operations.<br />

THE DEVICE MUST BE ABLE TO:<br />

■<br />

The<br />

OPERATE<br />

rated current<br />

THE<br />

depends<br />

LOAD CURRENT<br />

Furnace power: S = U I 3<br />

directly on the furnace supply <strong>voltage</strong> and power.<br />

⇒ I =<br />

S: U: apparent primary <strong>voltage</strong> power of of furnace US3<br />

transformer<br />

Example:<br />

Furnace Supply <strong>voltage</strong>: power: 30 100 kVMVA<br />

I = US3 = 30100<br />

• 3 •10 3 = 1924 A<br />

■ BREAK THE SHORT-CIRCUIT CURRENTS<br />

furnace switch current must may be able be calculated to break the in electrode a perfectly short-circuit general way. current.<br />

The short-circuit impedance is essentially due to the LV links.<br />

Zk LV = 2.510-3 Ω whatever the furnace size is<br />

The primary short-circuit power is:<br />

Sk MV=UMV •Ik MV• 3 andUMV=Zk •Ik<br />

The primary short-circuit current is:<br />

Ik MV = UMV withZk MV = UMV<br />

3 •Zk MV<br />

Ik MV =UMV (ULV)2<br />

3 1<br />

•<br />

(UMV)2 • Zk LV<br />

ULV 2 • Zk LV<br />

page 18


@@@@@@@@e<br />

@@@@@@@@<br />

@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e<br />

@@@@@@@@<br />

@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e<br />

@@@@@@@@e<br />

@@h<br />

@@h<br />

@@h<br />

@@h<br />

@@h<br />

@@h<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@g<br />

@@g<br />

@@g<br />

@@g<br />

@@g<br />

@@g<br />

@@@@@@@@<br />

@@@@@@@@<br />

@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@<br />

@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@@@@@@@<br />

@@@@@@@@<br />

<strong>Medium</strong> <strong>voltage</strong> <strong>switchgear</strong> <strong>application</strong> <strong>guide</strong><br />

6 - ARC FURNACES<br />

(cont’d)<br />

■<br />

OVERVOLTAGE<br />

OPERATE TRANSFORMER NO-LOAD CURRENTS WITHOUT EXCESSIVE<br />

In transformer: the melting 50% process of the (see case appendix upon opening 6) a and switch 90% operates of the case with upon the no-load closing.<br />

Operating This over<strong>voltage</strong> over<strong>voltage</strong> arises must during be furnace limited when transformer the arc operation. furnace is It installed.<br />

to the progressive destruction of the transformer’s internal insulation contributes<br />

reduces its lifespan.<br />

and<br />

The (installation network of must over<strong>voltage</strong> be adapted protection to the breaking capacitors device’s for example). characteristics<br />

With The means SF6 technology of limiting operating over<strong>voltage</strong> over<strong>voltage</strong> are simple. is low.<br />

A simple RC circuit placed upstream of the furnace transformer is sufficient.<br />

■<br />

In the<br />

MECHANICAL<br />

melting process<br />

AND ELECTRICAL<br />

a switch operates:<br />

ENDURANCE<br />

with currents between 0.8 Iloadand 2.6 Iloadand<br />

50% of 90% the case of the upon case opening<br />

closing with load currents of 2.5 upon<br />

Iload<br />

The mechanical endurance of the ISF2 is 50,000 operations.<br />

The supplying electrical the endurance furnace transformer depends during on the the average process value and of the the number current<br />

operations carried out under this current. of<br />

The load expected current is lifespan given by of the the curve poles below. (number of CO cycles) depending on the<br />

the expected lifespan of the poles<br />

(number of FO cycles)<br />

Example:for<br />

supplied by a 52 an MVA arc furnace<br />

in accordance with the load current<br />

under 30 kV with a load transformer<br />

cycles<br />

1000 A, the expected lifespan current<br />

50,000<br />

(or of an 50,000 ISF2 is CO 25,000 cycles CO if the cycles<br />

45,000<br />

set is replaced). pole<br />

40,000<br />

35,000<br />

30,000<br />

25,000<br />

0<br />

1<br />

2<br />

20,000<br />

15,000<br />

10,000<br />

5,000<br />

I (A)<br />

date<br />

11/94<br />

- B•3•2 -<br />

revised<br />

05/2004<br />

500 1,000 1,500 2,000 2,500<br />

0 curve without replacement of the poles<br />

1 curve with 1 replacement of the poles<br />

2 curve with 2 replacements of the poles<br />

page 19


<strong>Medium</strong> <strong>voltage</strong> <strong>switchgear</strong> <strong>application</strong> <strong>guide</strong><br />

7 - APPENDICES Appendix 1: transformer<br />

Appendix 2: motor<br />

Appendix 3: capacitor<br />

Appendix 4: generator<br />

Appendix 5: cables<br />

Appendix 6: alternating current melting arc furnaces<br />

Appendix 7: diode and thyristor <strong>application</strong>s<br />

Appendix 8: fused switch-disconnector or fused contactor<br />

date<br />

11/94<br />

- B•3•2 -<br />

revised<br />

05/2004<br />

page 20


<strong>Medium</strong> <strong>voltage</strong> <strong>switchgear</strong> <strong>application</strong> <strong>guide</strong><br />

Appendix 1:<br />

transformer<br />

A transformer is defined by its rated power, its rated primary and<br />

secondary currents, its rated primary and secondary <strong>voltage</strong>s, its<br />

insulation level, its short-circuit <strong>voltage</strong> and its coupling.<br />

The peak-switching current is also a parameter that should not be<br />

forgotten in the determination of protective <strong>switchgear</strong>.<br />

1 - RATED POWER<br />

The<br />

S = U<br />

rated power (S in kVA or MVA) of a transformer is equal to:<br />

• 3 • I r<br />

2 - RATED CURRENT OF ONE WINDING<br />

The rated current Inis equal to:<br />

I r = 3 S •U<br />

3 - RATED VOLTAGE AND INSULATION LEVEL OF ONE WINDING<br />

This in “no-load” is the specified operating <strong>voltage</strong> between to be the applied terminals (primary) of one or transformer developed (secondary)<br />

The rated primary <strong>voltage</strong> must be higher than or equal to that of the winding. network.<br />

rated<br />

<strong>voltage</strong><br />

U r (kV)<br />

insulation level<br />

rms kV (50 Hz - 1 mn) kV impulse (1.2/50 µs)<br />

7.2 20 60<br />

12 28 75<br />

17.5 38 95<br />

24 50 125<br />

36 70 170<br />

4 - SHORT-CIRCUIT VOLTAGE<br />

The short-circuit short-circuit current <strong>voltage</strong> to be (expressed calculated. in %) allows the transformer’s secondary<br />

The short-circuit current is given in the following equation:<br />

•<br />

I k =In<br />

Uk: Ir: rated<br />

U<br />

100<br />

short-circuit current<br />

k<br />

andP k =U r •I k • 3<br />

in <strong>voltage</strong> Ampsin %<br />

given The usual in the Ukvalues tables on depending the following on transformer page. <strong>voltage</strong> and power are<br />

The real values must be requested from the manufacturer.<br />

date<br />

11/94<br />

- B•3•2 -<br />

revised<br />

05/2004<br />

page 1


<strong>Medium</strong> <strong>voltage</strong> <strong>switchgear</strong> <strong>application</strong> <strong>guide</strong><br />

Appendix 1:<br />

transformer(cont’d)<br />

For a MV/LV transformer<br />

transformer<br />

no-load secondary <strong>voltage</strong><br />

power U k (% U k (%)<br />

(kVA) 410 V 237 V<br />

50 to 630 4 4<br />

800 4.5 5<br />

1000 5 5.5<br />

1250 5.5 6<br />

1600 6 6.5<br />

2000 6.5 7<br />

2500 7 7.5<br />

3150 7 7.5<br />

For a MV/MV transformer<br />

transformer U k primary secondary<br />

power <strong>voltage</strong> <strong>voltage</strong><br />

(MVA) (%) (kV) (kV)<br />

5 8 24 or 36 7.2 or 12 or 17.5 or 24<br />

10 9<br />

20 11<br />

25 12<br />

5 9 72.5 7.2 or 12 or 17.5 or 24<br />

10 9<br />

20 9.5<br />

25 9.5<br />

5 - COUPLING<br />

The ■the coupling respective is a connection conventional modes symbol of the indicating:<br />

■The angular gap between the two vectors high representing and low <strong>voltage</strong> the <strong>voltage</strong> windings,<br />

between the neutral point (real or ideal) and the corresponding high and values<br />

<strong>voltage</strong> terminals. This phase displacement is expressed by a time index. low<br />

connection HV LV<br />

mode symbol symbol<br />

delta D d<br />

star Y y<br />

zig-zag Z z<br />

neutral out N n<br />

To give low you powers an example, (25 to 160 the kVA): most Yzn11 widely or used Dyn11; couplings are the following:<br />

■for medium high powers: powers Yyn11, (250 Ydn11 kVA to or 3150 Dyn11. kVA): Dyn11;<br />

date<br />

11/94<br />

- B•3•2 -<br />

revised<br />

05/2004<br />

page 2


<strong>Medium</strong> <strong>voltage</strong> <strong>switchgear</strong> <strong>application</strong> <strong>guide</strong><br />

Appendix 1:<br />

transformer(cont’d)<br />

6 - SWITCHING CURRENT PEAK<br />

When peaks the are power produced. is switched on, very high signals or switching<br />

Ie<br />

I r<br />

date<br />

11/94<br />

- B•3•2 -<br />

revised<br />

05/2004<br />

transient state of the current during no-load transformer switching<br />

is They very may quickly be 14 absorbed. times greater The time than constant the rated of current. the damp This down switching depends current<br />

the winding resistance and the secondary load. The real values must beon<br />

requested from the manufacturer.<br />

Time constant and peak-switching current values depending on the immersed transformer power<br />

(high <strong>voltage</strong> switching).<br />

transformer<br />

power<br />

(kVA)<br />

n e = I e peak<br />

I r rms<br />

100 14 0.15<br />

160 12 0.20<br />

250 12 0.22<br />

400 12 0.25<br />

630 11 0.30<br />

800 10 0.30<br />

1000 10 0.35<br />

1250 9 0.35<br />

1600 9 0.40<br />

2000 8 0.45<br />

5000 8 0.50<br />

10000 8 0.50<br />

15000 8 0.50<br />

time<br />

constant<br />

(s)<br />

20000 8 0.50<br />

and In the the event time of constant low <strong>voltage</strong> divided switching, by 1.5 in the relation ratio neshould to the values be multiplied given in the by 2<br />

table These above.<br />

protection switching is defined. peaks must be taken into account when the type of<br />

The transformer may have its own optional devices.<br />

following: Depending on the type, the transformer’s own protective are the<br />

gas ■the leak, waterproof pressure protection and temperature unit for complete detector. filling transformer:<br />

■Buchholz gaz leak and protection pressure relay detector. for transformer fitted with a conservator:<br />

monitoring. ■thermostat, thermometer for immersed-type transformers: temperature<br />

■thermostatic probes for dry-type transformers: temperature control.<br />

t<br />

page 3


<strong>Medium</strong> <strong>voltage</strong> <strong>switchgear</strong> <strong>application</strong> <strong>guide</strong><br />

Appendix 2: motor<br />

A motor is defined by its mechanical power, its <strong>voltage</strong>, its<br />

insulation level, its starting type (torque, current, time) as well as<br />

1 - RATED POWER<br />

calculate A motor’s the power rated is the power mechanical by taking power the output which into it develops. account. We may<br />

The<br />

P = U<br />

rated power (P in kW) of a motor is equal to:<br />

• 3 •In •cos ϕ• η<br />

U: Ir: rated phase current to phase in Amps; <strong>voltage</strong> in V;<br />

cos ϕ: power factor (generally cos ϕ<br />

η: efficiency (generally η: 0.94 is used) = 0.92)<br />

2 - RATED CURRENT<br />

The rated current Iris equal to:<br />

I r = P<br />

3 •U •cos ϕ • η<br />

3 - RATED VOLTAGE AND INSULATION LEVEL<br />

The insulation rated level. <strong>voltage</strong> must be higher than that of the network as well as its<br />

rated insulation<br />

<strong>voltage</strong> level<br />

U r (kV) rms kV (50 Hz - 1 mn) impulse kV (1.2/50 µs)<br />

3 2 U + 1 kV * 4 U + 5 kV *<br />

3.3 2 U + 1 kV * 4 U + 5 kV *<br />

5 2 U + 1 kV * 4 U + 5 kV *<br />

6.6 2 U + 1 kV * 4 U + 5 kV *<br />

10 2 U + 1 kV * 4 U + 5 kV *<br />

11 2 U + 1 kV * 4 U + 5 kV *<br />

* for modern motors<br />

☞ note:the real values should be requested from the manufacturer.<br />

date<br />

11/94<br />

- B•3•2 -<br />

revised<br />

05/2004<br />

page4


<strong>Medium</strong> <strong>voltage</strong> <strong>switchgear</strong> <strong>application</strong> <strong>guide</strong><br />

Appendix 2: motor<br />

(cont’d)<br />

4 - DIFFERENT MEDIUM VOLTAGE MOTORS<br />

Alternating and 100 kW current to 40 MW medium ranges. <strong>voltage</strong> motors are situated in the2 kV to 14 kV<br />

The <strong>application</strong>s motors can are be given classed in the in table 4 families below. whose main characteristics and<br />

motor characteristics, advantages <strong>application</strong>s<br />

type<br />

drawbacks<br />

asynchronous ■ highly robust due to their ■ intensive use<br />

motors with simple construction ■ aggressive or<br />

single cage, ■ hardly any on-load speed dangerous atmosphere<br />

double cage,<br />

or deep slots<br />

variation<br />

■ high quantity of reactive power<br />

absorbed with weak load<br />

asynchronous ■ easy optimisation of starting ■ machines with high starting<br />

motors with torque or signal torque<br />

widing rotor ■ rotor resistances and rings needing ■ machine needing strong<br />

adjustment and maintenance<br />

counter-current breaking<br />

■ power factor usually<br />

■ tending to give way to<br />

lower than 0.9<br />

double cage motors<br />

synchronous ■ same technology as ■ P > to 2000 kW<br />

motors<br />

alternators<br />

■ high transient state<br />

■ good output and good power<br />

factor<br />

synchronised ■ mixture of two previous ones: ■ tending to disappear<br />

asynchronous good starting torque and good<br />

motors<br />

power factor<br />

■ complex starting co-ordination<br />

5 - DIFFERENT MV ASYNCHRONOUS MOTOR STARTING TYPES<br />

J L<br />

J C J L<br />

J C<br />

J N<br />

J L J L<br />

J R3<br />

M<br />

R 3<br />

J R2<br />

R 2<br />

J R1<br />

M<br />

M<br />

M<br />

R 1<br />

date<br />

11/94<br />

- B•3•2 -<br />

revised<br />

05/2004<br />

direct auto-transformer reactance rotors<br />

6 - ASYNCHRONOUS MOTOR CHARACTERISTICS<br />

Direct characteristics<br />

asynchronous starting<br />

<strong>voltage</strong><br />

are motors<br />

power<br />

The the most widely used.<br />

starting current<br />

influencing main characteristics motor operation no-load current<br />

are opposite. given in the table<br />

asynchronous motor<br />

2 kV to 14 kV<br />

100 kW to 40 MW<br />

6 to 7 times motor I n<br />

≈ 0.3 times motor I n<br />

starting current cos ϕ 0.1 to 0.2<br />

no-load current cos ϕ ≈ 0.1<br />

load current cos ϕ 0.7 to 0.9<br />

page 5


<strong>Medium</strong> <strong>voltage</strong> <strong>switchgear</strong> <strong>application</strong> <strong>guide</strong><br />

Appendix 3: capacitor<br />

A capacitor bank is defined by the power, the <strong>voltage</strong>, the insulation<br />

level and the rated current. Depending on the connection mode<br />

(single or multi-steps bank), the switching current is an important<br />

parameter which must be taken into account.<br />

1 - REACTIVE POWER<br />

The reactive power (Q in kvar or Mvar) of a capacitor bank is equal to:<br />

Q =Un • 3 •Ic orU r<br />

2 •C•ω<br />

Ur: Ic: rated rated current <strong>voltage</strong> or of current the bank absorbed network by the <strong>voltage</strong> capacitor of the network (kV)<br />

C: capacitance<br />

ω = 2 •π •ƒnetwork= network pulsation<br />

2 - RATED CURRENT<br />

The rated current Icis equal to:<br />

Ic = Qc<br />

3 •Un<br />

3 - RATED VOLTAGE<br />

The insulation rated level. <strong>voltage</strong> must be the same as that of the network as well as its<br />

rated <strong>voltage</strong><br />

U r (kV)<br />

insulation level<br />

rms kV (50 Hz - 1 mn) impulse kV (1.2/50 µs)<br />

7.2 20 60<br />

12 28 75<br />

17.5 38 95<br />

24 50 125<br />

36 70 170<br />

date<br />

11/94<br />

- B•3•2 -<br />

revised<br />

05/2004<br />

page 6


<strong>Medium</strong> <strong>voltage</strong> <strong>switchgear</strong> <strong>application</strong> <strong>guide</strong><br />

Appendix 3: capacitor<br />

(cont’d)<br />

date<br />

11/94<br />

- B•3•2 -<br />

revised<br />

05/2004<br />

4 - SWITCHING CURRENT<br />

The current switching of the capacitance. current must always be lower than 100 times the rated<br />

It is generally limited to 10 kA peak by impulse reactors.<br />

The switching current value depends on the type of bank used. It is equal to:<br />

1) for a single bank:<br />

Ie = 1<br />

L0 •C<br />

Ie =Ic • 2 •<br />

S •I L<br />

A B<br />

c • • 2 1ω<br />

I c<br />

k<br />

G<br />

U<br />

Ie: C: peak-switching capacitance of one current<br />

L0: network short-circuit tap<br />

Sk: supply short-circuit power reactor in MVA<br />

Qc: S capacitor = 3 •U •Isc bank with power U k<br />

3 =L0 in Mvar<br />

•Isc =U2<br />

• ω<br />

ω = 2 •π •ƒnetwork= network pulsation<br />

2) for a multi-steps bank with n identical steps:<br />

1 2 n + 1<br />

l l l<br />

C C C<br />

U: Ie: peak-switching network phase to current<br />

n: number of energized phase taps<strong>voltage</strong><br />

C: l: link capacitance reactor of one tap<br />

ω = 2 •π •ƒnetwork= network pulsation<br />

ƒinherent = 2<br />

1<br />

l • π • •C<br />

C<br />

L0 • ω<br />

Qc<br />

Ie =Ic • 2 •<br />

Ie = 2<br />

n + n1 ƒinherent<br />

3 •U •<br />

n + n<br />

• ƒnetwork<br />

1 c • l<br />

page 7


<strong>Medium</strong> <strong>voltage</strong> <strong>switchgear</strong> <strong>application</strong> <strong>guide</strong><br />

Appendix 4: generator<br />

A generator is defined by its power, its <strong>voltage</strong> and its internal<br />

impedance.<br />

1 - RATED POWER<br />

The<br />

S<br />

rated power (S in kVA or MVA) of a generator is equal to:<br />

In<br />

r = U • 3 •Ig<br />

large power stations, the power ranges between 500 and 1500 MVA<br />

2 - RATED CURRENT<br />

The rated current is equal toIg = 3<br />

S<br />

•U<br />

r<br />

3 - RATED VOLTAGE<br />

Generator standardised. <strong>voltage</strong> — contrary to distribution network <strong>voltage</strong> — is not<br />

There a variety of rated <strong>voltage</strong> values for generators.<br />

generator power<br />

(MVA)<br />

S n < 200 10 and 16<br />

200 - 400 14 and 21<br />

400 - 600 16 and 23<br />

600 - 1000 18 and 26<br />

S n > 1000 20 and 27<br />

generator rated <strong>voltage</strong><br />

(kV)<br />

4 - INTERNAL IMPEDANCE<br />

Manufacturers The resistance generally values are specify always generator negligible impedance before the reactance expressed values. in %.<br />

subtransient reactance reactance (X''d ≈20%),<br />

■the earth reactance (X'd ≈30%), (X'o ≈6%).<br />

These making values capacities will allow as well us to as determine protection the setting. circuit breaker breaking and<br />

Ik: (three-phase) short-circuit kA current<br />

Ur: Sr: generator generator rated rated power <strong>voltage</strong> (MVA)<br />

X'cc: transient reactance expressed (kV) in % by the manufacturer.<br />

date<br />

11/94<br />

- B•3•2 -<br />

revised<br />

05/2004<br />

I k = 3<br />

S<br />

•U<br />

r •<br />

r X' 1<br />

cc = 345<br />

•10 100 30 •<br />

= 8.66 kA<br />

page 8


@@@@@@@@e<br />

@@@@@@@@<br />

@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e<br />

@@@@@@@@<br />

@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e<br />

@@@@@@@@e<br />

@@h<br />

@@h<br />

@@h<br />

@@h<br />

@@h<br />

@@h<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@g<br />

@@g<br />

@@g<br />

@@g<br />

@@g<br />

@@g<br />

@@@@@@@@<br />

@@@@@@@@<br />

@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@<br />

@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@e@@@@@@@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@<br />

@@@@@@@@<br />

@@@@@@@@<br />

<strong>Medium</strong> <strong>voltage</strong> <strong>switchgear</strong> <strong>application</strong> <strong>guide</strong><br />

Appendix 5: cables<br />

MV cables<br />

single-pole cable<br />

individually screened<br />

three-pole cable<br />

screen<br />

belted three-pole cable<br />

conductor<br />

The purpose of all cable systems is to allow the transit of electrical<br />

energy which implies that in order to determine the system layout,<br />

it is necessary to know the following basic data:<br />

■ rated <strong>voltage</strong>,<br />

■ laying procedure,<br />

■ operating and short-circuit currents,<br />

■ conductor type.<br />

1 - RATED VOLTAGE<br />

The Uo: rms rated rated <strong>voltage</strong> power is defined frequency by <strong>voltage</strong> three values.<br />

the earth or the metal screen. between the phase conductor and<br />

U: Um: rms rms rated maximum power power frequency frequency <strong>voltage</strong> <strong>voltage</strong> between between two phase two phase conductors.<br />

Belted cables have the same phase to phase and phase to earth conductors.<br />

cables are only used for <strong>voltage</strong>s of 10 kV or less. insulation.<br />

These three values are written: Uo/U (Um) kV<br />

Example:<br />

individually belted cable: screened 6/6 (7.2) cable: kV 12/20 (24) kV<br />

2 - OPERATING AND SHORT-CIRCUIT CURRENT<br />

When temperature calculating at the the surface allowable of the current conductor for a and cable, screens the maximum must be allowable<br />

account:<br />

taken into<br />

cable, ■allowable its section permanent and how operating it is laid. temperature: this depends on the type of<br />

screens ■allowable (phase-earth short-circuit fault) current: must the be dimensioned conductor sections so that (phase the maximum fault) and<br />

temperatures circuit temperatures. reached during the fault remain below the allowable short-<br />

3 - CABLE-LAYING PROCEDURE<br />

The manufacturer characteristics correspond of allowable to specific steady ambient operating temperatures currents indicated and cable-laying by the<br />

conditions The ambient which temperatures are taken are as a sometimes reference.<br />

so that they heat each other or cool down with higher greater and the difficulty. links are often laid<br />

the So that currents allowable must be adjusted temperatures in accordance of the cable with constituents the installation are respected, conditions.<br />

date<br />

11/94<br />

- B•3•2 -<br />

revised<br />

05/2004<br />

page 9


<strong>Medium</strong> <strong>voltage</strong> <strong>switchgear</strong> <strong>application</strong> <strong>guide</strong><br />

Appendix 5: cables<br />

(cont’d)<br />

MV cables capacitance<br />

single-pole cable<br />

individually screened three-pole cable<br />

K<br />

C<br />

C<br />

C<br />

belted three-pole cable<br />

4 - TYPE OF CONDUCTOR<br />

A and cable mechanically is comprised united of either conductors. one conductor, or several electrically distinct<br />

The ■single-pole different types individually of cables screened insulated cables, by extruded solid dielectrics are:<br />

■individually ■belted three-pole screened cables. three-pole cables,<br />

■the The metal type part of metal: of the annealed conductor electrolytic is defined copper by:<br />

annealed aluminium, or 3/4 hard or sometimes<br />

■electric ■self-induction resistance coefficient per unit (L of in length H/km) (R which in ohm/km),<br />

geometrical size and the relative disposition of depends the conductors. essentially on the<br />

■the rated cables section capacitance. (mm2),<br />

5 - MV CABLES CAPACITANCE<br />

The capacitance of a cable depends on the construction type:<br />

■ single-pole<br />

cable capacitance<br />

cables:the<br />

C is that conductor measured is between surrounded the conductor by a screen and and the the<br />

which is earthed.<br />

screen<br />

■ individually screened three-pole<br />

by a screen and the cable capacitance<br />

cables:each<br />

is that measured conductor between is surrounded<br />

conductor and its individual screen which is earthed. each<br />

■ belted three-pole<br />

there is a capacitance<br />

cables:a<br />

K between screen conductors surrounds and a capacitance three conductors C between and<br />

a conductor and the screen which is earthed.<br />

Ic= The 3 capacitive C ωV which current causes Icof capacitance a network in C the only event to intervene of an earth whatever fault is:<br />

cable type.<br />

the<br />

In practice, C for for a star-connected individually screened capacitance, cables. the cable makers indicate:<br />

Upon ■the value request, 3 K the + C cable for belted maker cables.<br />

measured between the three inter-connected will tell you the conductors capacitance and the C2(C2= metal sleeve. 3 C)<br />

date<br />

11/94<br />

- B•3•2 -<br />

revised<br />

05/2004<br />

page 10


<strong>Medium</strong> <strong>voltage</strong> <strong>switchgear</strong> <strong>application</strong> <strong>guide</strong><br />

Appendix 6: alternating<br />

current melting arc<br />

furnaces<br />

1 - MELTING PROCESS<br />

Arc furnace operating principle<br />

The operations standard including processing scrap cycle metal of loading, an arc furnace melting, comprises liquid steel a refining series ofand<br />

casting.<br />

alternating current melting arc furnace<br />

scrap metal<br />

loading<br />

melting<br />

liquid bath<br />

refining<br />

casting of liquid<br />

steel in ladles<br />

and inter-casting<br />

intermediary<br />

reloading<br />

furnace ■scrap is metal stopped. loading For and a single intermediary processing loading cycle, is carried two or three out when basket the<br />

loads ■scrap are metal required.<br />

part of the energy melting is consumed. during which the solid load is liquefied and the main<br />

■liquid bath steel refining casting which in ladles only involves requires the thermal furnace loss tipping compensation.<br />

metal is poured from the furnace into the ladles and the time so needed that the for liquid<br />

furnace to return to its original position. the<br />

The ■frequent scrap metal arcing melting and arc period suppression is characterised at the beginning by:<br />

■strong current variations caused by arc displacement of during each the basket,<br />

period,<br />

melting<br />

■short-circuits, generated by the metal as it collapses.<br />

2 - OPERATING FREQUENCY<br />

The number of casts per day furnace: depends 13 on casts the type per of day. furnace.<br />

■furnace with refining in the ladle furnace: 22 casts per day.<br />

date<br />

11/94<br />

- B•3•2 -<br />

revised<br />

05/2004<br />

page 11


<strong>Medium</strong> <strong>voltage</strong> <strong>switchgear</strong> <strong>application</strong> <strong>guide</strong><br />

Appendix 6: alternating<br />

current melting arc<br />

furnaces(cont’d)<br />

3 - ELECTRICAL POWER SUPPLY<br />

The transformer) power supply or on must the factory be channelled distribution from network. the HV (with step-down<br />

The from power 15 to 40 available kV. varies from 10 to 100 MVA with <strong>voltage</strong> values ranging<br />

arc furnace power supply<br />

on the internal factory network<br />

MV (15 to 40 kV)<br />

4<br />

MV/LV<br />

1 2 3 1<br />

1 = disconnector<br />

2 = circuit breaker<br />

3 = switch<br />

4 = arrester<br />

5 = over<strong>voltage</strong> limiting capacitors<br />

6 = earth switch<br />

5 6<br />

furnace<br />

10 to 100 MVA<br />

The furnace switch controls all devices downstream of the transformer.<br />

For ≈8 operations an average per of 13 cast. casts per day the <strong>switchgear</strong> carries out:<br />

≈100 ≈30,000 operations operations per per day. year.<br />

<strong>voltage</strong> The furnace (15 to transformer, 40 kV) to pass located to the next low to <strong>voltage</strong> the furnace, used by allows the furnace intermediate<br />

1000 V).<br />

≈800 to<br />

date<br />

11/94<br />

- B•3•2 -<br />

revised<br />

05/2004<br />

page 12


<strong>Medium</strong> <strong>voltage</strong> <strong>switchgear</strong> <strong>application</strong> <strong>guide</strong><br />

Appendix 7: diode and<br />

thyristor <strong>application</strong>s<br />

MV circuit breaker<br />

MV<br />

transformer<br />

LV<br />

rectifier bridge<br />

The transformer’s type coupling determines the choice of the breaking<br />

device.<br />

through In a diode the or contactor thyristor <strong>application</strong>, the circuit the breaker shape located of the load upstream current of which the MV/LV goes<br />

rectifier transformer bridge is greatly and coupling. deformed. It depends on the transformer’s type of<br />

1 - SWITCHGEAR TO BE USED<br />

We have to consider two types of feeding:<br />

■ the feeding transformer has the same primary and secondary coupling.<br />

The primary and secondary currents have the same shape.<br />

M<br />

direct<br />

current motor<br />

d i /d t low<br />

All our devices can interrupt this type of current because the current<br />

passes through zero during long periods owing to the switching cycle.<br />

no specific recommandations<br />

■ the feeding transformer has a different coupling on the primary and the<br />

secondary.The primary current is shaped as a stair with a high value of the<br />

di/dtwhen the current reaches the zero<br />

d i /d t high value<br />

■ if the rectifier bridge is with diodes and if the number of operations is<br />

acceptable, the vaccum technology or the SF6 auto-expansion (LF) are OK.<br />

■ if the rectifier bridge is with thyristors:<br />

■ the puffer technology (SF) can be used without any particular precautions.<br />

■ the rotating arc technology (LF or Rollarc) can be used if any tripping<br />

commands are accompanied by a thyristor locking command.<br />

date<br />

11/94<br />

- B•3•2 -<br />

revised<br />

05/2004<br />

page 13


<strong>Medium</strong> <strong>voltage</strong> <strong>switchgear</strong> <strong>application</strong> <strong>guide</strong><br />

Appendix 7: diode and<br />

thyristor <strong>application</strong>s<br />

(cont’d)<br />

The information corresponding should be relay taken must directly be positively from its safe auxiliary and the contacts device’s (opening opening<br />

contact) operating and device. relayed as directly as possible to the thyristor trigger<br />

than In this the case, given the values. arc is maintained in the device as long as the di/dtis higher<br />

MV<br />

+ Vdc<br />

+ Vdc<br />

S4<br />

stop PB<br />

S4<br />

1 NC<br />

KM<br />

tripping<br />

- Vdc<br />

trip.<br />

KM<br />

1 NO<br />

MV side fault<br />

1 NC<br />

MV<br />

+ Vdc<br />

LV<br />

K1<br />

1 NO<br />

K1<br />

LV contactor<br />

- Vdc<br />

LV =<br />

M<br />

=<br />

The vaccum technology allows the breaking in every cases<br />

date<br />

11/94<br />

- B•3•2 -<br />

revised<br />

05/2004<br />

page 14


<strong>Medium</strong> <strong>voltage</strong> <strong>switchgear</strong> <strong>application</strong> <strong>guide</strong><br />

Appendix 8: fused<br />

switch-disconnector or<br />

fused contactor<br />

35<br />

21<br />

20<br />

I limited current<br />

(peak kA)<br />

250<br />

160<br />

This is a good association if the <strong>switchgear</strong> breaking capacity is<br />

higher than the rated breaking current of the fuse (I 3 ) and if the<br />

fuse is able to withstand the load current<br />

(generally I load ≤ I r fuse )<br />

2<br />

1 - SWITCHGEAR CHARACTERISTICS<br />

which The fused are: contactor co-ordination imposes two parameters on the contactor<br />

presence ■the maximum of the fault fuses. current that it is likely to break, taking into account the<br />

■the fuses electrodynamic which depend on withstands the prospective of the contactor short-circuit without current fuses value and and with<br />

rating.<br />

the<br />

The figure below illustrates the fused contactor association.<br />

example of characteristics required of contactor when protection is provided by an<br />

interior Fusarc type fuse (250 A /7.2 kV) installed on a 6.6 kV network with a prospective<br />

short-circuit current of 50 rms kA.<br />

I 1 : current giving<br />

maximum breaking<br />

capacity (50 rms kA)<br />

I sc : maximum network<br />

short-circuit current<br />

8.75<br />

I sc<br />

(rms kA)<br />

I limited<br />

(35 peak kA)<br />

I 3 : minimum breaking<br />

current (2,200 rms A)<br />

I r : rated current<br />

(250 rms A)<br />

electrodynamic withstand (1)<br />

(25 peak kA)<br />

breaking capacity<br />

(10 rms kA)<br />

I r (315 rms A)<br />

I load<br />

1 3.5 8 50<br />

limited broken current amplitude<br />

characteristics<br />

fuse characteristics<br />

contactor characteristics<br />

(1) A device that withstands 25 peak kA without a fuse could, if it had a fuse, withstands a fuse<br />

peak current of over 35 peak kA without being destroyed. In fact, contact repulsion takes place<br />

above 25 peak kA but the destructive effect is linked to the thermal constraint which is relatively<br />

weak in the case of fuses intervening in less than 10 ms.<br />

short-circuit The fuse must current not be is required the most to intervene equal to the in Irto I1of I3range. the fuse The used. network<br />

Rated <strong>voltage</strong> fuses matching the network <strong>voltage</strong> must be used.<br />

0<br />

date<br />

11/94<br />

- B•3•2 -<br />

revised<br />

05/2004<br />

page 15


<strong>Medium</strong> <strong>voltage</strong> <strong>switchgear</strong> <strong>application</strong> <strong>guide</strong><br />

Appendix 8: fused<br />

switch-disconnector or<br />

fused contactor (cont’d)<br />

2 - DEVICE FUNCTIONS<br />

Each associated element ensures different and complementary functions.<br />

The role of the switch or<br />

■make or break the load<br />

contactoris<br />

current, to:<br />

■break ■cause fault three-phase currents tripping which are as not a result high of enough fuse breaking. to melt the fuse,<br />

The role of the fuse is to:<br />

■break ■limit switching short-circuit currents currents,<br />

■steadily withstand the load (in the current event without of a fault excessive circuit being overheating produced),<br />

depending on the installation and/or operating conditions.<br />

date<br />

11/94<br />

- B•3•2 -<br />

revised<br />

05/2004<br />

page 16

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!