28.12.2014 Views

Multiple scattering effects in strain and composition analysis ... - IEMN

Multiple scattering effects in strain and composition analysis ... - IEMN

Multiple scattering effects in strain and composition analysis ... - IEMN

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

APPLIED PHYSICS LETTERS 94, 013112 2009<br />

<strong>Multiple</strong> <strong>scatter<strong>in</strong>g</strong> <strong>effects</strong> <strong>in</strong> stra<strong>in</strong> <strong>and</strong> <strong>composition</strong> <strong>analysis</strong><br />

of nanoisl<strong>and</strong>s by graz<strong>in</strong>g <strong>in</strong>cidence x rays<br />

M.-I. Richard, 1,2 V. Favre-Nicol<strong>in</strong>, 1,3 G. Renaud, 1,a T. U. Schülli, 1 C. Priester, 4 Z. Zhong, 5<br />

<strong>and</strong> T.-H. Metzger 2<br />

1 Institut Nanoscience et Cryogénie/SP2M/NRS, CEA Grenoble, 17 Avenue des Martyrs,<br />

F-38054 Grenoble Cedex, France<br />

2 ID01/ESRF, 6 rue Jules Horowitz, BP220, F-38043 Grenoble Cedex, France<br />

3 Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 9, France<br />

4 Département ISEN, Institut d’Electronique de Microélectronique et de Nanotechnologie, UMR CNRS 8520,<br />

Avenue Po<strong>in</strong>caré, 59652 Villeneuve d’Ascq Cedex, France<br />

5 Institut für Halbleiter-und Festkrperphysik, Johannes Kepler Universität L<strong>in</strong>z, L<strong>in</strong>z 4040, Austria<br />

Received 8 October 2008; accepted 12 December 2008; published onl<strong>in</strong>e 9 January 2009<br />

Experiments <strong>and</strong> numerical simulations based on f<strong>in</strong>ite element model<strong>in</strong>g show that the x-ray<br />

<strong>in</strong>tensity scattered by comparatively large nanostructures on a substrate is not simply related to their<br />

stra<strong>in</strong> <strong>in</strong> experiments us<strong>in</strong>g either graz<strong>in</strong>g <strong>in</strong>cidence or exit because of multiple <strong>scatter<strong>in</strong>g</strong> <strong>effects</strong>.<br />

However, whatever the nanostructure size, the <strong>composition</strong> profiles are correctly extracted from<br />

graz<strong>in</strong>g <strong>in</strong>cidence multiwavelength anomalous <strong>scatter<strong>in</strong>g</strong>. These <strong>effects</strong> are illustrated for the<br />

structural <strong>analysis</strong> of Ge dome-shaped isl<strong>and</strong>s grown on Si001. ©2009 American Institute of<br />

Physics. DOI: 10.1063/1.3064157<br />

a Electronic mail: gilles.renaud@cea.fr.<br />

The adjustment of the electronic <strong>and</strong> optical properties<br />

of nanoisl<strong>and</strong>s or nanowires requires a quantitative <strong>analysis</strong><br />

of their dimension, stra<strong>in</strong>, <strong>and</strong> <strong>composition</strong>, which is a subject<br />

of constant <strong>in</strong>terest. X-ray <strong>scatter<strong>in</strong>g</strong> is widely used for<br />

that sake. 1 Composition <strong>analysis</strong> can also be performed us<strong>in</strong>g<br />

multiwavelength anomalous diffraction MAD. 2 For large<br />

nanoisl<strong>and</strong>s with sufficiently large out-of-plane stra<strong>in</strong> profiles,<br />

the isostra<strong>in</strong> x-ray <strong>scatter<strong>in</strong>g</strong> method 3 can be comb<strong>in</strong>ed<br />

with anomalous diffraction to determ<strong>in</strong>e directly the out-ofplane<br />

stra<strong>in</strong> <strong>and</strong> <strong>composition</strong> profiles. However, often the<br />

scattered <strong>in</strong>tensity is assumed to directly reflect the stra<strong>in</strong><br />

state s<strong>in</strong>ce it is assumed to be its squared Fourier transform:<br />

the k<strong>in</strong>ematical or Born approximation is applied to extract<br />

the stra<strong>in</strong> state <strong>and</strong> <strong>composition</strong> of nano-objects. 4,5 The question<br />

arises to what extent this hypothesis is correct s<strong>in</strong>ce the<br />

x-ray beam has to be kept graz<strong>in</strong>g with respect to the surface<br />

to avoid background <strong>scatter<strong>in</strong>g</strong> from the substrate, result<strong>in</strong>g<br />

<strong>in</strong> multiple <strong>scatter<strong>in</strong>g</strong> <strong>effects</strong>. In this letter the multiple <strong>scatter<strong>in</strong>g</strong><br />

<strong>effects</strong> result<strong>in</strong>g from the graz<strong>in</strong>g <strong>in</strong>cidence geometry 6<br />

around <strong>in</strong>-plane Bragg reflections are <strong>in</strong>vestigated both experimentally<br />

<strong>and</strong> numerically, focus<strong>in</strong>g on isl<strong>and</strong>s grown us<strong>in</strong>g<br />

the Stranski–Krastanow growth mode. 7 They are illustrated<br />

for dome- <strong>and</strong> pyramid-shaped isl<strong>and</strong>s <strong>in</strong> the widely<br />

studied Ge/Si001 system.<br />

Deposition of 6 ML of Ge at 650 °C on Si001 by<br />

molecular beam epitaxy resulted <strong>in</strong> fairly monodispersed<br />

124 nm wide <strong>and</strong> 20 nm high domes, as found by atomic<br />

force microscopy. Graz<strong>in</strong>g <strong>in</strong>cidence x-ray diffraction measurements<br />

wavelength =1.0972 Å as illustrated <strong>in</strong> the <strong>in</strong>set<br />

of Fig. 1 were performed at the BM32 <strong>and</strong> BM02 beaml<strong>in</strong>es<br />

at the European Synchrotron Radiation Facility,<br />

Grenoble. Stra<strong>in</strong> sensitive radial scans <strong>in</strong> the vic<strong>in</strong>ity of the<br />

Si400 <strong>in</strong>-plane Bragg reflection were performed as a function<br />

of the Miller <strong>in</strong>dex h,0,0 h=2a/s<strong>in</strong>2/2, a be<strong>in</strong>g<br />

the Si lattice parameter <strong>and</strong> 2 the <strong>scatter<strong>in</strong>g</strong> angle, for different<br />

graz<strong>in</strong>g <strong>in</strong>cident angles i close to the critical angle<br />

for total external reflection, c =0.156°. The scattered <strong>in</strong>tensity<br />

along the exit angle f was <strong>in</strong>tegrated from 0° to 1.5°<br />

us<strong>in</strong>g a position sensitive detector.<br />

The <strong>in</strong>tensity profile as a function of h Fig. 1 is found<br />

to vary drastically with i . With <strong>in</strong>creas<strong>in</strong>g i , the position of<br />

the <strong>scatter<strong>in</strong>g</strong> peak shifts toward the Si Bragg peak. Above<br />

the critical angle, for i =0.2° <strong>and</strong> i =0.25°, a second peak<br />

hardly visible because of broaden<strong>in</strong>g due to the <strong>in</strong>homogeneous<br />

isl<strong>and</strong> size <strong>and</strong> the related <strong>in</strong>homogeneous stra<strong>in</strong><br />

distribution develops at lower h values h3.925 for i<br />

=0.2°, the orig<strong>in</strong> of which is given below. As all the curves<br />

cannot be superimposed by rescal<strong>in</strong>g, the <strong>in</strong>tensity profile<br />

cannot be directly related to the stra<strong>in</strong> state distribution <strong>in</strong> the<br />

nanoisl<strong>and</strong>s by a simple Fourier transform.<br />

FIG. 1. Color onl<strong>in</strong>e Experimental radial scans around the Si400 Bragg<br />

peak for Ge dome-shaped isl<strong>and</strong>s on Si001 for various values of i . Note<br />

the variation <strong>in</strong> the Ge peak position from h=3.95 to 3.965 as the <strong>in</strong>cident<br />

angle <strong>in</strong>creases. The <strong>in</strong>set displays the experimental setup. The <strong>in</strong>cident <strong>and</strong><br />

exit wave vectors k i <strong>and</strong> k f are kept graz<strong>in</strong>g angles i <strong>and</strong> f with respect<br />

to the surface. The <strong>scatter<strong>in</strong>g</strong> angle 2 is the <strong>in</strong>-plane angle between them.<br />

The one dimensional detector slit setup allows summ<strong>in</strong>g the <strong>scatter<strong>in</strong>g</strong> contributions<br />

along f .<br />

0003-6951/2009/941/013112/3/$23.00<br />

94, 013112-1<br />

© 2009 American Institute of Physics


013112-2 Richard et al. Appl. Phys. Lett. 94, 013112 2009<br />

FIG. 2. Color onl<strong>in</strong>e a Simulated radial scan <strong>in</strong>tensities around the<br />

Si400 reflection for Ge isl<strong>and</strong>s on Si001 whose stra<strong>in</strong> has been calculated<br />

by FDM: a 124 nm wide <strong>and</strong> 20 nm high dome. The <strong>in</strong>tensity is <strong>in</strong>tegrated<br />

between f 0° <strong>and</strong> f 1.5°. The total DWBA <strong>in</strong>tensity is reported for<br />

different <strong>in</strong>cident angles <strong>and</strong> compared to the BA first path <strong>in</strong>tensity. The<br />

substrate <strong>scatter<strong>in</strong>g</strong> has been omitted. b Evolution of t i ,z 2 <strong>in</strong>aGe<br />

dome on Si001 as a function of height z <strong>and</strong> i / c for =1.097 Å. As the<br />

<strong>in</strong>tensity scattered by each z-layer above the surface is proportional to<br />

t i ,z 2 , an x-ray <strong>scatter<strong>in</strong>g</strong> experiment will predom<strong>in</strong>antly reflect the<br />

stra<strong>in</strong> state of a given height depend<strong>in</strong>g on i rather than the full isl<strong>and</strong><br />

stra<strong>in</strong> state distribution. c Same as a but for a 70 nm wide <strong>and</strong> 7 nm high<br />

pyramid.<br />

To underst<strong>and</strong> this effect, four paths accord<strong>in</strong>g to the<br />

distorted wave Born approximation DWBA have to be<br />

taken <strong>in</strong>to account, 8,9<br />

F DWBA =<br />

f j e ik f −k i ·r j + r i f j e ik f +k i ·r j<br />

jQDs<br />

jQDs<br />

+ r f f j e i−k f −k i ·r j<br />

jQDs<br />

+ r i r f f j e i−k f +k i ·r j,<br />

jQDs<br />

where f j is the atomic <strong>scatter<strong>in</strong>g</strong> factor <strong>and</strong> r j is the position<br />

of an atom j <strong>in</strong> the isl<strong>and</strong>; k i <strong>and</strong> k f are the <strong>in</strong>com<strong>in</strong>g <strong>and</strong> exit<br />

wave vectors <strong>and</strong> r i,f are the reflectivities of the <strong>in</strong>cident<br />

<strong>and</strong> scattered waves. The first term <strong>in</strong> Eq. 1, which we call<br />

first path, corresponds to the k<strong>in</strong>ematical <strong>scatter<strong>in</strong>g</strong> of the<br />

<strong>in</strong>cident wave by the isl<strong>and</strong>s or Born approximation BA.<br />

The three other terms imply s<strong>in</strong>gle or double reflections by<br />

the substrate. 8<br />

To <strong>in</strong>terpret these observations, the stra<strong>in</strong> field <strong>in</strong> a coherent<br />

Ge/Si001 dome-shaped isl<strong>and</strong> with the experimental<br />

width <strong>and</strong> height was calculated with the f<strong>in</strong>ite difference<br />

method FDM, 10 assum<strong>in</strong>g cont<strong>in</strong>uum theory of elasticity.<br />

For simplicity, a pure Ge dome was modeled. The scattered<br />

<strong>in</strong>tensity see Fig. 2a was then calculated us<strong>in</strong>g Eq. 1<br />

around the <strong>in</strong>-plane Si400 reflection for different values<br />

of i around c <strong>and</strong> summed up between f 0° <strong>and</strong> f<br />

1.5° to account for the experimental conditions. The isl<strong>and</strong><br />

form factor given by the BA shows two broad peaks that<br />

arise from two prevalent stra<strong>in</strong> states <strong>in</strong> the dome-shaped<br />

isl<strong>and</strong>: the first peak close to the Si Bragg peak corresponds<br />

to the basis <strong>and</strong> also to the ma<strong>in</strong> part of the isl<strong>and</strong>, which is<br />

surrounded by the 113 <strong>and</strong> 15323 facets, while the second<br />

peak results from the stra<strong>in</strong> state of the top part of the<br />

isl<strong>and</strong>, term<strong>in</strong>ated by 105 facets. For i =0.62 c , only one<br />

1<br />

maximum is present <strong>in</strong> the simulated radial scan. It is positioned<br />

at h=3.944, i.e., displaced compared to the real<br />

maxima h=3.925 <strong>and</strong> 3.954 of the stra<strong>in</strong> state given by the<br />

first path. Above the critical angle, the positions of the <strong>in</strong>tensity<br />

maxima are close to the real positions of the maxima of<br />

the stra<strong>in</strong> state given by the first path.<br />

To discuss these <strong>effects</strong>, the isl<strong>and</strong>s can be decomposed<br />

<strong>in</strong>to layers of different heights z, each hav<strong>in</strong>g its own lattice<br />

parameter az. With this hypothesis, a radial position h corresponds<br />

to the <strong>scatter<strong>in</strong>g</strong> by a given layer at z. We also<br />

suppose case of Ge isl<strong>and</strong>s on Si that the higher z, the<br />

larger the lattice parameter <strong>and</strong> hence the smaller h. With<strong>in</strong><br />

the DWBA <strong>and</strong> as k z i,f = 2/ s<strong>in</strong> i,f , for small <strong>in</strong>cident<br />

<strong>and</strong> exit angles, the amplitude scattered at a given h by the<br />

portion of the isl<strong>and</strong> at height z can be written as 11<br />

F z DWBA i , f = F z BA h, i , f t i ,zt f ,z,<br />

where F z BA is the isl<strong>and</strong> form factor at height z <strong>and</strong> t,z<br />

=1+re −4iz/ is a generalized optical function. t i ,z<br />

varies as a function of i <strong>and</strong> z, as illustrated <strong>in</strong> Fig. 2b.<br />

Hence, the <strong>in</strong>tensity distribution <strong>in</strong> Fig. 2a results from the<br />

product of the isl<strong>and</strong> form factor by the generalized optical<br />

function. Because z is directly correlated with h, the optical<br />

function varies along the radial direction. If the value of i is<br />

below or at the critical angle of the substrate, the optical<br />

function can be very strongly enhanced for certa<strong>in</strong> heights z<br />

<strong>and</strong> thus for the correspond<strong>in</strong>g radial positions h. Low <strong>in</strong>cident<br />

angles maximize the generalized optical function for<br />

high z values <strong>and</strong> thus maximize the scattered <strong>in</strong>tensity at<br />

lower h values. For i =0.62 c , this maximum corresponds<br />

to z20 nm see Fig. 2b, i.e., the <strong>in</strong>tensity scattered by<br />

the isl<strong>and</strong>’s top, where it is the most relaxed, is strongly<br />

enhanced. Above the critical angle, the optical function does<br />

not display strong m<strong>in</strong>ima <strong>and</strong> maxima; the multiple <strong>scatter<strong>in</strong>g</strong><br />

<strong>effects</strong> can be neglected, <strong>and</strong> the k<strong>in</strong>ematical approximation<br />

is recovered. The condition for these DWBA <strong>effects</strong> to<br />

be significant is 11<br />

= rzH2/ahd /dz 1,<br />

where H is the total height of the nanocrystal, z is the<br />

parallel stra<strong>in</strong> of an isostra<strong>in</strong> area at height z, <strong>and</strong> rz is its<br />

radius. Hence, this phenomenon is observed only for large<br />

enough isl<strong>and</strong>s, with large enough vertical stra<strong>in</strong> gradient.<br />

For the simulated Ge dome, 10. For smaller isl<strong>and</strong>s with<br />

smaller stra<strong>in</strong> gradient, these multiple <strong>scatter<strong>in</strong>g</strong> <strong>effects</strong> are<br />

not observed. This was checked <strong>in</strong> the case of a small Ge<br />

pyramid on Si001 see Fig. 2c for which the <strong>in</strong>tensities<br />

simulated for different i values can be superimposed. Indeed,<br />

<strong>in</strong> that case, the DWBA <strong>analysis</strong> for isl<strong>and</strong>s on a substrate<br />

is identical to that of isl<strong>and</strong>s buried below the surface:<br />

the total scattered amplitude see Eq. 2 is proportional to<br />

the form factor amplitude, F BA k f −k i , accord<strong>in</strong>g to<br />

F DWBA i , f = F BA k f − k i t i t f ,<br />

where t i,f is the usual amplitude transmission function as<br />

a function of <strong>in</strong>cident exit angle.<br />

Hav<strong>in</strong>g determ<strong>in</strong>ed for which conditions the DWBA has<br />

to be used <strong>in</strong>stead of the BA, the question arises whether the<br />

st<strong>and</strong>ard MAD <strong>analysis</strong> us<strong>in</strong>g the BA is still valid for large<br />

isl<strong>and</strong>s under graz<strong>in</strong>g <strong>in</strong>cidence. Equation 2 shows that the<br />

<strong>in</strong>tensity scattered by a stripe at height z is simply the BA<br />

<strong>in</strong>tensity multiplied by the <strong>in</strong>cident <strong>and</strong> exit generalized op-<br />

2<br />

3<br />

4


013112-3 Richard et al. Appl. Phys. Lett. 94, 013112 2009<br />

Ge content<br />

1<br />

α<br />

0.8<br />

i<br />

=0.12°<br />

<br />

α i<br />

=0.2°<br />

<br />

<br />

<br />

0.6<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

0.4<br />

<br />

<br />

<br />

<br />

0.2<br />

<br />

<br />

<br />

<br />

<br />

<br />

0<br />

3.9 3.92 3.94 3.96 3.98<br />

h (r.l.u.)<br />

FIG. 3. Color onl<strong>in</strong>e Ge content as a function of h as extracted us<strong>in</strong>g<br />

graz<strong>in</strong>g <strong>in</strong>cidence MAD with 12 different energies around the Ge K-edge.<br />

The Ge content extracted for two different <strong>in</strong>cident angles rema<strong>in</strong>s consistent<br />

<strong>in</strong> spite of the strong Ih dependence with i .<br />

tical functions, which are energy <strong>in</strong>dependent far from c <strong>in</strong><br />

the case of a buffer conta<strong>in</strong><strong>in</strong>g nonanomalous atoms. Therefore<br />

dur<strong>in</strong>g a MAD experiment the extracted structure factors<br />

are F Ge <strong>and</strong> F Si multiplied by these functions. S<strong>in</strong>ce the Ge<br />

<strong>composition</strong> is extracted by a ratio of these factors accord<strong>in</strong>g<br />

to x Ge = f Si F Ge /f 0 0<br />

Ge F Si + f Si F Ge , where f Ge <strong>and</strong> f Si are the<br />

Ge Thomson atomic form factor <strong>and</strong> the Si atomic form factor,<br />

respectively, the generalized optical functions disappear<br />

from the result, <strong>and</strong> the deduced <strong>composition</strong> is not affected<br />

by multiple <strong>scatter<strong>in</strong>g</strong> <strong>effects</strong>. This result was experimentally<br />

checked by compar<strong>in</strong>g the results of graz<strong>in</strong>g-<strong>in</strong>cidence MAD<br />

<strong>analysis</strong> of the dome sample for different <strong>in</strong>cident angles.<br />

Figure 3 shows the Ge <strong>composition</strong> calculated from the Ge<br />

<strong>and</strong> Si structure factors F Si <strong>and</strong> F Ge , which were extracted<br />

for two <strong>in</strong>cident angles without any structural hypothesis,<br />

<strong>and</strong> ref<strong>in</strong>ed through a least-squares m<strong>in</strong>imization us<strong>in</strong>g<br />

a dedicated program. 12 This program evaluates the uncerta<strong>in</strong>ties<br />

of F Ge <strong>and</strong> F Si <strong>and</strong> hence the error bars on the Ge<br />

<strong>composition</strong>. The partial structure factors are affected by the<br />

generalized optical function as is the total <strong>scatter<strong>in</strong>g</strong> amplitude.<br />

However, only slight variations <strong>in</strong> the Ge <strong>composition</strong><br />

are observed, with overlapp<strong>in</strong>g error bars. Hence, the correct<br />

Ge content is extracted, whatever the conditions of <strong>in</strong>cidence.<br />

A BA treatment of anomalous diffraction can thus be<br />

performed to extract the <strong>composition</strong> of isostra<strong>in</strong> regions of<br />

the isl<strong>and</strong>s. The subcritical regime i c yields smaller<br />

<strong>scatter<strong>in</strong>g</strong> from the substrate <strong>and</strong> is thus preferred.<br />

To conclude, for large isl<strong>and</strong>s, multiple <strong>scatter<strong>in</strong>g</strong> <strong>effects</strong><br />

strongly distort the <strong>in</strong>tensity distribution <strong>in</strong> reciprocal space<br />

<strong>and</strong> need a complete DWBA <strong>analysis</strong> to extract the lattice<br />

parameter distribution. By contrast, the <strong>in</strong>-plane stra<strong>in</strong> <strong>in</strong><br />

small isl<strong>and</strong>s can be <strong>in</strong>vestigated us<strong>in</strong>g a BA treatment.<br />

Hence, <strong>scatter<strong>in</strong>g</strong> from small <strong>and</strong> large isl<strong>and</strong>s can be dist<strong>in</strong>guished<br />

simply by vary<strong>in</strong>g the <strong>in</strong>cident angle around the<br />

critical angle c , check<strong>in</strong>g if the <strong>in</strong>tensities can be superimposed<br />

to each other by rescal<strong>in</strong>g. This may be most useful for<br />

bimodal isl<strong>and</strong> growth e.g., pyramids <strong>and</strong> domes <strong>in</strong> the<br />

Ge/Si case to discrim<strong>in</strong>ate the orig<strong>in</strong> of the measured <strong>in</strong>tensity.<br />

Most importantly, the st<strong>and</strong>ard MAD <strong>analysis</strong> can be<br />

applied to all isl<strong>and</strong>s as long as the x-ray energy is far from<br />

an absorption edge of the substrate <strong>and</strong> the substrate does not<br />

conta<strong>in</strong> any elements violat<strong>in</strong>g this condition.<br />

Z.Z. acknowledges support from the FWF, Vienna. We<br />

acknowledge Hubert Renevier for fruitful discussions.<br />

1 J. Stangl, V. Holý, <strong>and</strong> G. Bauer, Rev. Mod. Phys. 76, 7252004.<br />

2 A. Létoublon, V. Favre-Nicol<strong>in</strong>, H. Renevier, M. G. Proietti, C. Monat, M.<br />

Gendry, O. Marty, <strong>and</strong> C. Priester, Phys. Rev. Lett. 92, 186101 2004.<br />

3 I. Kegel, T.-H. Metzger, A. Lorke, J. Peisl, J. Stangl, G. Bauer, J. M.<br />

Garcia, <strong>and</strong> P. Petroff, Phys. Rev. Lett. 85, 1694 2000.<br />

4 T. U. Schülli, J. Stangl, Z. Zhong, R. T. Lechner, M. Sztucki, T. H.<br />

Metzger, <strong>and</strong> G. Bauer, Phys. Rev. Lett. 90, 066105 2003; T. U. Schülli,<br />

M. Stoffel, J. Stangl, R. T. Lechner, E. W<strong>in</strong>tersberger, M. Sztucki, T. H.<br />

Metzger, O. G. Schmidt, <strong>and</strong> G. Bauer, Phys. Rev. B 71, 035326 2005.<br />

5 A. Malachias, S. Kycia, G. Medeiros-Ribeiro, R. Magalhães-Paniago, T. I.<br />

Kam<strong>in</strong>s, <strong>and</strong> R. Stanley Williams, Phys. Rev. Lett. 91, 176101 2003.<br />

6 M. Schmidbauer, D. Grigoriev, M. Hanke, P. Schafer, T. Wiebach, <strong>and</strong> R.<br />

Kohler, Phys. Rev. B 71, 115324 2005.<br />

7 I. N. Stranski <strong>and</strong> L. Krastanow Sitzungsber. Akad. Wiss. Wien, Math.-<br />

Naturwiss. Kl., Abt. 2B 146, 797 1938.<br />

8 M. Rauscher, R. Paniago, H. Metzger, Z. Kovats, J. Domke, H. D.<br />

Pfannes, J. Schulze, <strong>and</strong> I. Eisele, J. Appl. Phys. 86, 6763 1999.<br />

9 J. Coraux, V. Favre-Nicol<strong>in</strong>, M. G. Proietti, B. Daud<strong>in</strong>, <strong>and</strong> H. Renevier,<br />

Phys. Rev. B 75, 235312 2007.<br />

10 V. Ranjan, G. Allan, C. Priester, <strong>and</strong> C. Delerue, Phys. Rev. B 68, 115305<br />

2003.<br />

11 I. Kegel, T.-H. Metzger, A. Lorke, J. Peisl, J. Stangl, G. Bauer, K. Nordlund,<br />

W. V. Schoenfeld, <strong>and</strong> P. Petroff, Phys. Rev. B 63, 035318 2001.<br />

12 V. Favre-Nicol<strong>in</strong>, <strong>in</strong> preparation.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!