09.11.2012 Views

Hue, chroma, saturation, colorfulness lightness, brightness

Hue, chroma, saturation, colorfulness lightness, brightness

Hue, chroma, saturation, colorfulness lightness, brightness

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Colour + Perception<br />

CMPT 467/767<br />

Visualization<br />

Torsten Möller<br />

© Pfister/Möller


Recommended Reading<br />

© Pfister/Möller<br />

http://www.stonesc.com/<br />

2


Where / What<br />

© Pfister/Möller<br />

3<br />

Based on slide from Mazur


Contours & Texture<br />

C. Ware, “Visual Thinking for Design”


Gestalt Principles<br />

© Pfister/Möller<br />

5


Color


Hunters


Gatherers


“… avoiding catastrophe becomes<br />

the first principle in bringing color<br />

to information: Above all, do no<br />

harm.”<br />

© Pfister/Möller<br />

E. R. Tufte<br />

Tufte, “Envisioning Information”


Physics


Newton, 1666<br />

© Pfister/Möller<br />

11


Spectrum of Light<br />

© Pfister/Möller<br />

12


What are the primary colors?<br />

1)Red, Green, Blue<br />

2)Red, Yellow, Blue<br />

3)Orange, Green, Violet<br />

4)Cyan, Magenta, Yellow<br />

5)All of the above<br />

© Pfister/Möller<br />

14


Additive System (RGB)<br />

Blue<br />

Cyan<br />

Magenta<br />

Green<br />

Green<br />

Red<br />

Yellow


Subtractive System (CMYK)<br />

Cyan<br />

Blue<br />

Green<br />

Key<br />

(Black)<br />

Magenta<br />

Green<br />

Red<br />

Yellow


Visual System


Visual System<br />

• Light path<br />

– Cornea, pupil, lens, retina, optic nerve, brain<br />

• Retinal cells<br />

– Rods and cones<br />

– Unevenly distributed<br />

• Cones<br />

– Three “color receptors”<br />

– Concentrated in fovea<br />

Courtesy of Maureen Stone<br />

© Pfister/Möller


Cone Response<br />

• Encode spectra as three values<br />

• Long, medium and short (LMS)<br />

• Tri<strong>chroma</strong>cy<br />

Courtesy of Maureen Stone<br />

© Pfister/Möller<br />

From A Field Guide to Digital Color, © A.K. Peters, 2003


Effects of Retinal Encoding<br />

• All spectra that stimulate the same cone<br />

response are indistinguishable<br />

• Metameric match<br />

Courtesy of Maureen Stone<br />

© Pfister/Möller


CIE Standard “Cones”<br />

• CIE Color Matching Functions (CMF)<br />

• CIE tristimulus values (XYZ)<br />

• Foundation for color measurement<br />

Courtesy of Maureen Stone<br />

© Pfister/Möller<br />

From A Field Guide to Digital Color, © A.K. Peters, 2003


Opponent Color<br />

• Definition<br />

– A<strong>chroma</strong>tic axis<br />

– R-G and Y-B axis<br />

– Separate <strong>lightness</strong><br />

from <strong>chroma</strong> channels<br />

• Occurs in retina<br />

Courtesy of Maureen Stone<br />

© Pfister/Möller


Cone Response<br />

© Pfister/Möller<br />

23<br />

HyperPhysics, Georgia State University


Color-Opponent Cells<br />

© Pfister/Möller<br />

24<br />

Bear, Connors, Paradiso, “Neuroscience”


Color Opponency<br />

© Pfister/Möller<br />

25<br />

C. Ware, “Visual Thinking for Design”


Color Appearance<br />

• Depends on many factors<br />

– Adjacent colors (background)<br />

– Viewing environment (surround)<br />

– Adaptation<br />

– Spatial effects<br />

© Pfister/Möller<br />

26


Simultaneous Contrast<br />

© Pfister/Möller<br />

27


Chromatic Adaptation<br />

www.usd.edu/psyc301/coloradapt.htm<br />

© Pfister/Möller


Effect of Spatial Frequency<br />

• Smaller = less saturated<br />

• The paint chip problem<br />

Courtesy of Maureen Stone<br />

© Pfister/Möller<br />

Redrawn from Foundations of Vision, fig 6<br />

© Brian Wandell, Stanford University


© Pfister/Möller<br />

Courtesy of Maureen Stone


© Pfister/Möller<br />

Courtesy of Maureen Stone


© Pfister/Möller<br />

Courtesy of Maureen Stone


Lightness Scales<br />

• Lightness: perceived reflectance<br />

• Brightness: perceived amount of light coming<br />

from a surface<br />

• Luminance: a measured value weighted by human<br />

spectral sensitivity<br />

– Varies with wavelength<br />

– Luminous efficiency function<br />

Green and blue lights of equal intensity<br />

have different luminance values<br />

© Pfister/Möller


L vs. Luminance<br />

© Pfister/Möller<br />

Corners of the<br />

RGB color cube<br />

Luminance of<br />

these colors<br />

L from HLS<br />

All the same<br />

Wrong!<br />

Modified from Maureen Stone


Value<br />

• Perceived <strong>lightness</strong>/darkness of a color<br />

• Scale from black to white<br />

– Power scale<br />

– Munsell value, L*<br />

• Single most important factor in color design<br />

© Pfister/Möller<br />

Courtesy of Maureen Stone


Get it right in black and white<br />

• Value alone defines shape<br />

– No edge without <strong>lightness</strong> change<br />

– No shading with out <strong>lightness</strong> variation<br />

• Value difference defines contrast<br />

– Defines legibility<br />

– Use at least 3:1 luminance contrast for text clarity<br />

– Controls attention<br />

© Pfister/Möller<br />

Modified from Maureen Stone


Drop Shadows<br />

Drop Shadow<br />

Controls Legibility<br />

Need an edge<br />

© Pfister/Möller<br />

Larry Arend, colorusage.arc.nasa.gov<br />

Courtesy of Maureen Stone


Controls Attention, Clutter<br />

Context<br />

Urgent<br />

Normal<br />

Normal<br />

Context<br />

Context<br />

Urgent<br />

Normal<br />

Normal<br />

Context<br />

© Pfister/Möller<br />

Context<br />

Urgent<br />

Normal<br />

Normal<br />

Context<br />

Courtesy of Maureen Stone


Bezold Spreading Effect<br />

© Pfister/Möller<br />

BU Lite Project<br />

41


Model “Color blindness”<br />

• Flaw in opponent processing<br />

– Red-green common (deuteranope, protanope)<br />

– Blue-yellow possible (tritanope)<br />

– Luminance channel almost “normal”<br />

• Effect is 2D color vision model<br />

– Flatten color space<br />

– Can be simulated (Brettel et. al.)<br />

– Vischeck (www.vischeck.com)<br />

Courtesy of Maureen Stone<br />

© Pfister/Möller


Color Blindness<br />

Protanope Deuteranope Tritanope<br />

No L cones No M cones No S cones<br />

Red / green<br />

deficiencies<br />

© Pfister/Möller<br />

Blue / Yellow<br />

deficiency<br />

Based on slide from Stone


Color-Blindness<br />

Normal Protanope Deuteranope Lightness<br />

© Pfister/Möller<br />

44<br />

Based on slide from Stone


www.vischeck.com<br />

© Pfister/Möller


Color Models


RGB Color Space<br />

• Additive system<br />

• Colors that can be<br />

represented by<br />

computer monitors<br />

• Not perceptually<br />

uniform<br />

© Pfister/Möller<br />

Yellow<br />

Red<br />

White<br />

Green<br />

Black<br />

48<br />

Cyan<br />

Blue<br />

C. Ware, “Visual Thinking for Design”


Lightness<br />

Perceptual Color Spaces<br />

<strong>Hue</strong><br />

Colorfulness<br />

Unique black and white © Pfister/Möller Courtesy of Maureen Stone


• <strong>Hue</strong>, Value, Chroma<br />

– 5 R 5/10 (bright red)<br />

– N 8 (light gray)<br />

• Perceptually uniform<br />

Munsell Color<br />

Munsell Renotation System<br />

maps between HVC and XYZ<br />

Courtesy of Maureen Stone<br />

© Pfister/Möller<br />

<strong>Hue</strong><br />

Chroma<br />

Value


Munsell Atlas<br />

© Pfister/Möller<br />

Courtesy Gretag-Macbeth


Interactive Munsell Tool<br />

• From www.munsell.com<br />

Courtesy of Maureen Stone<br />

© Pfister/Möller


• <strong>Hue</strong> - what people<br />

think of color<br />

• Saturation - purity,<br />

distance from grey<br />

• Lightness - from<br />

dark to light<br />

• Not perceptually<br />

uniform<br />

HSL Color Space<br />

© Pfister/Möller<br />

53<br />

wikipedia.org


Lab Color Space<br />

• Perceptually uniform<br />

• L approximates<br />

human perception of<br />

<strong>lightness</strong><br />

• a, b approximate R/G<br />

and Y/B channels<br />

• a, b called <strong>chroma</strong><br />

© Pfister/Möller<br />

CIELAB 1976<br />

55


Lab Color Space<br />

© Pfister/Möller<br />

56<br />

Based on slide from A. Oliva


Physical<br />

World<br />

Light<br />

Energy<br />

Spectral<br />

distribution<br />

functions F<br />

(l)<br />

Color Models<br />

Visual System Mental Models<br />

Cone<br />

Response<br />

Reduce to three<br />

values (LMS)<br />

CIE tristimulus<br />

values (XYZ)<br />

Courtesy of Maureen Stone<br />

Opponent<br />

Encoding<br />

Separate<br />

Lightness,<br />

Chroma<br />

(A,R-G,Y-B)<br />

© Pfister/Möller<br />

Perceptual<br />

Models<br />

Unique<br />

White<br />

CIELAB<br />

Munsell<br />

(HVC)<br />

Appearance<br />

Models<br />

<strong>Hue</strong>, <strong>chroma</strong>,<br />

<strong>saturation</strong>,<br />

<strong>colorfulness</strong><br />

<strong>lightness</strong>,<br />

<strong>brightness</strong><br />

CIECAM02


Nominal


Small Areas<br />

© Pfister/Möller<br />

59<br />

Tableau Software


Small Areas<br />

© Pfister/Möller<br />

60<br />

Ware, “Information Visualization”


Pop-Out<br />

<strong>Hue</strong> and <strong>lightness</strong> Lightness only<br />

© Pfister/Möller<br />

Based on slide from Stone


Brightness & <strong>saturation</strong> draw<br />

attention<br />

© Pfister/Möller


Bezold Spreading Effect<br />

© Pfister/Möller<br />

63<br />

Based on slide from Stone


Large Areas<br />

Tufte, VDQI (Vol. 1), p. 77


Large Areas<br />

Tufte, VDQI (Vol. 1), p. 76


Large Areas<br />

1 = Red is bigger<br />

2 = Green is bigger<br />

3 = Both look the same<br />

Cleveland & McGill, “A Color-Caused Optical Illusion on<br />

a Statistical Graph”, 1983


Color Size Illusion<br />

© Pfister/Möller<br />

67<br />

Cleveland & McGill, “A Color-Caused Optical<br />

Illusion on a Statistical Graph”, 1983


Maps<br />

© Pfister/Möller<br />

68<br />

C. Ware, “Visual Thinking for Design”


Maps<br />

© Pfister/Möller<br />

69<br />

C. Ware, “Visual Thinking for Design”


Highlighting<br />

© Pfister/Möller<br />

Based on slide from Stone


Take-home message<br />

• Color in small regions is difficult to<br />

perceive, and bright colors in large areas<br />

appear bigger<br />

• Use bright, saturated colors for small<br />

regions, and use low <strong>saturation</strong> pastel colors<br />

for large regions and backgrounds<br />

© Pfister/Möller<br />

71


Excel<br />

© Pfister/Möller<br />

72<br />

Junk Charts


"Famous programmers from Adleman to<br />

Zimmerman", grokcode.


Primary Colors<br />

• Primary color terms are remarkably<br />

consistent across cultures [Berlin & Kay,<br />

69]<br />

© Pfister/Möller<br />

74<br />

Ware, “Information Visualization”


Colors for Categories<br />

© Pfister/Möller<br />

75<br />

Ware, “Information Visualization”


Categorical Data<br />

• Limited distinguishability (8-14)<br />

– Best with <strong>Hue</strong><br />

– Best choices from Ware:<br />

© Pfister/Möller


• Greyscale<br />

• Saturation<br />

• Brightness<br />

Ordered Data<br />

• Rainbow is a learned order!<br />

© Pfister/Möller


Maximum <strong>Hue</strong> Separation<br />

© Pfister/Möller<br />

79


Analogous, yet distinct<br />

© Pfister/Möller


Sequential<br />

© Pfister/Möller


Sharpening<br />

• Differences are perceived better when<br />

samples are similar to the background color<br />

© Pfister/Möller<br />

82


Take-home message<br />

• Only a small number of colors can be used<br />

effectively as nominal labels<br />

• Keep the number of colors for nominal data<br />

to less than eight, and use quiet medium<br />

grey backgrounds<br />

© Pfister/Möller<br />

83


Ordinal


Order These Colors<br />

Based on slide from Stasko


Order These Colors<br />

Based on slide from Stasko


Order These Colors<br />

Based on slide from Stasko


Nominal<br />

Ordinal<br />

Brewer Scales<br />

© Pfister/Möller<br />

88<br />

Cynthia Brewer, Color Use Guidelines for Data Representation


Take-home message<br />

• Lightness and <strong>saturation</strong> are effective for<br />

ordinal data because they have an implicit<br />

perceptual ordering<br />

• Show ordinal data with a discrete set of<br />

color values that change in <strong>lightness</strong> or<br />

<strong>saturation</strong><br />

© Pfister/Möller<br />

90


Quantitative


Quantitative Data - to show<br />

• Mediocre<br />

– rainbow (hue)<br />

• Good<br />

– Greyscale<br />

– Luminance<br />

– Brightness<br />

order<br />

© Pfister/Möller<br />

[www.research.ibm.com/<br />

visualanalysis/perception.html]


Rainbow colour map<br />

• Learned order<br />

• Visually segmented<br />

– Solution - isoluminant rainbow<br />

© Pfister/Möller


ensity Map<br />

Colormaps<br />

Density Map<br />

Lightness scale<br />

Lightness scale<br />

Lightness scale<br />

Lightness scale<br />

with hue and<br />

<strong>chroma</strong> variation<br />

Lightness scale<br />

with hue and<br />

<strong>chroma</strong> variation<br />

© Lightness Pfister/Möller scale<br />

with hue and<br />

<strong>chroma</strong> variation<br />

<strong>Hue</strong> scale with<br />

<strong>lightness</strong> variation<br />

<strong>Hue</strong> 94scale<br />

with<br />

<strong>lightness</strong> variation<br />

After slide from M. Stone


Rainbow Colormap<br />

© Pfister/Möller<br />

95<br />

Rogowitz and Treinish, Why should engineers and<br />

scientists be worried about color?


Rainbow Colormap<br />

© Pfister/Möller<br />

96<br />

Rogowitz and Treinish, Why should engineers and<br />

scientists be worried about color?


Rainbow Colormap<br />

• <strong>Hue</strong> is used to show<br />

ordinal data<br />

• Not perceptually<br />

linear: Equal steps in<br />

the continuous range<br />

are not perceived as<br />

equal steps<br />

• Not good for<br />

colorblind people<br />

© Pfister/Möller<br />

97


Colormaps<br />

Rainbow Saturation<br />

Rogowitz and Treinish, How Not to Lie with Visualization


Color Segmentation<br />

© Pfister/Möller<br />

100<br />

C. Ware, “Visual Thinking for Design”


Colormaps<br />

Rainbow Saturation<br />

Discrete<br />

Discrete<br />

Rogowitz and Treinish, Why should engineers and scientists be<br />

worried about color?


Colormaps<br />

Rainbow Lightness<br />

Lightness<br />

& <strong>Hue</strong><br />

Lightness<br />

& <strong>Hue</strong><br />

Rogowitz and Treinish, Why should engineers and scientists be<br />

worried about color?


Task: Find high & low anomalies<br />

© Pfister/Möller<br />

http://www.jason.oceanobs.com/html/donnees/las/2005-03_uk.html


Task: Find high & low anomalies<br />

© Pfister/Möller<br />

http://www.jason.oceanobs.com/html/donnees/las/2005-03_uk.html


Task: Understand relative height<br />

© Pfister/Möller<br />

http://www.jason.oceanobs.com/html/donnees/las/2005-03_uk.html


Task: Find height 120<br />

© Pfister/Möller<br />

http://www.jason.oceanobs.com/html/donnees/las/2005-03_uk.html


Take-home message<br />

• Quantitative data can be shown with a<br />

discrete or continuous colormap<br />

• Use colormaps with a limited hue palette<br />

and redundantly vary <strong>lightness</strong> and<br />

<strong>saturation</strong>, and use discrete colormaps for<br />

accuracy<br />

© Pfister/Möller<br />

107


Color Aesthetics


DANGER!<br />

�Inappropriate use of colour can<br />

be disasterous to the application<br />

© Pfister/Möller<br />

109


Why Should We Care?<br />

• Poorly designed color is confusing<br />

– Creates visual clutter<br />

– Misdirects attention<br />

• Poor design devalues the information<br />

– Visual sophistication<br />

– Evolution of document and web design<br />

• “Attractive things work better”<br />

– Don Norman<br />

Courtesy of Maureen Stone<br />

© Pfister/Möller


Color Unity


Natural Colors

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!