31.12.2014 Views

Download full presentation (pdf, 4MB) - Students.sgthome.co.uk ...

Download full presentation (pdf, 4MB) - Students.sgthome.co.uk ...

Download full presentation (pdf, 4MB) - Students.sgthome.co.uk ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Glass Doping through Sol-Gel Chemistry :<br />

a little something<br />

can make a big difference<br />

Jean-Marie Nedelec<br />

Laboratoire des Matériaux Inorganiques, CNRS UMR 6002 ,<br />

Université Blaise Pascal, Clermont-Ferrand 2<br />

& E<strong>co</strong>le Nationale Supérieure de Chimie de Clermont-Ferrand<br />

FRANCE<br />

Society of Glass Technology Annual meeting, (10-12 September, Cambridge, UK)


PARIS<br />

CLERMONT-FERRAND<br />

MONTPELLIER


Port Doctoral position<br />

opening – 1 year<br />

J-marie.nedelec@univ-bpclermont.fr


Outline<br />

Introduction<br />

Silica xerogels : Effect of doping on the densification<br />

pathway<br />

Bioceramics : Improved bioactivity of doped ceramics<br />

Conclusions


Introduction<br />

Doping = atoms, ions, molecules,…<br />

= FUNCTION<br />

Optical, magnetic, biological,<br />

electrical,…<br />

= STRUCTURE<br />

Phase, hardness,<br />

microstructure


Introduction<br />

Sol-Gel Chemistry<br />

Nanoparticles<br />

Gel<br />

Powder<br />

Doping<br />

Thin films<br />

Very versatile route, high homogeneity,<br />

good dispersion of doping ions


Doped Silica xerogels<br />

Doping with rare earth ions, TM ions, dyes, biomolecules,…<br />

No effect of doping on the structure of the gels


2,2<br />

2,0<br />

1,8<br />

SiO 2<br />

SiO 2<br />

: Ag +<br />

SiO 2<br />

: Ce 3+<br />

Density (g/cm 3 )<br />

1,6<br />

1,4<br />

1,2<br />

1,0<br />

0,8<br />

0,6<br />

800 850 900 950 1000 1050 1100 1150<br />

Annealing Temperature (°C)


D 1<br />

δ Si-O-Si<br />

D 2<br />

ν Si-OH<br />

1100°C<br />

Intensity (a.u.)<br />

1050°C<br />

1000°C<br />

950°C<br />

900°C<br />

850°C<br />

800°C<br />

0 200 400 600 800 1000 1200<br />

Raman shift (cm -1 )


Normalized Raman Intensity<br />

0,060<br />

0,055<br />

0,050<br />

0,045<br />

0,040<br />

0,035<br />

0,030<br />

0,025<br />

750 800 850 900 950 1000 1050 1100 1150 1200<br />

0,04<br />

0,03<br />

0,02<br />

D1<br />

Si-OH<br />

0,12<br />

0,10<br />

0,08<br />

0,06<br />

0,04<br />

0,02<br />

0,00<br />

750 800 850 900 950 1000 1050 1100 1150 1200<br />

0,84<br />

0,80<br />

0,76<br />

0,72<br />

Si-O-Si<br />

D2<br />

0,01<br />

0,68<br />

0,00<br />

750 800 850 900 950 1000 1050 1100 1150 1200<br />

0,64<br />

750 800 850 900 950 1000 1050 1100 1150 1200<br />

Annealing Temperature (°C)<br />

J. Sol-Gel Sci. Techn. 32 (2004) 345-348<br />

J. Non-Cryst. Solids, 345-346, (2004), 570-574.


Low-frequency Raman spectra<br />

SiO 2 : Mn 2+<br />

Suprasil<br />

Intensity (a.u.)<br />

0 ppm<br />

200 ppm<br />

500 ppm<br />

-100 -50 0 50 100<br />

Raman shift (cm -1 )<br />

J. Non-Cryst. Solids, 243, (1999), 209


Duval et al., Phil. Mag. B 77 (1998)<br />

2.24 nm<br />

11.1 nm<br />

2.9 nm<br />

Suprasil<br />

undoped<br />

Mn 2+ 500 ppm<br />

0 20 40 60 80<br />

ω (cm -1 )


Bioactive Ceramics<br />

Need for improved bone replacement materials<br />

Bioactive ceramics<br />

Crystalline : HAP Amorphous : Bioglass ®<br />

Control of bioactivity and new functions through<br />

- doping<br />

- <strong>co</strong>ntrol of porosity


Bioglass ® (L.L. Hench et al.)<br />

bioactive<br />

Inert/fibrous<br />

capsule<br />

Resorbable<br />

10-30 d<br />

Na 2 O-CaO-P 2 O 5 -SiO 2<br />

Bioactivity = function (<strong>co</strong>mposition)<br />

Sr – doped glasses


Sol-Gel elaboration of doped bioactive glasses<br />

Ca(NO 3 ) 2 ,4H 2 O<br />

Si(OEt) 4<br />

O=P(OEt) 3<br />

Monolith<br />

(Ca,P,Si) sol<br />

Gel<br />

Doping : + Sr(NO 3 ) 2<br />

Reflux @ 85 °C Drying @ 60°C<br />

Powder<br />

Treatment<br />

24 h @ 700 °C


Mesoporous Bioactive glass<br />

monoliths<br />

250,00<br />

Adsorption<br />

Desorption<br />

200,00<br />

Volume (cc.g -1 )<br />

150,00<br />

100,00<br />

50,00<br />

1.5 cm<br />

0,00<br />

0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00<br />

P/P0<br />

SSA between 70 and 150 m 2 /g


150 °C<br />

450 °C<br />

10 nm 15 nm<br />

600 °C<br />

700 °C<br />

20 nm 15 nm


In vitro assays<br />

└►In vitro assays allow important evaluation for the bioactivity of glasses<br />

Immersion in<br />

biological fluids<br />

(DMEM) for<br />

varying periods<br />

:<br />

up to 4 days<br />

soaking<br />

Glass particles<br />

are embedded in<br />

resin<br />

Samples are cut into thin<br />

sections 1 µm thick<br />

Micro-PIXE-RBS<br />

characterization


Ion and electron beams methods<br />

Ion beam analysis at the micrometer scale<br />

Micro-beam lines<br />

PIXE : Particles Induced X-ray Emission – Multi-elementary analysis<br />

Resolution : 1 µm at 50 pA<br />

Experimental set-up<br />

Si(Li) diode at 135°<br />

Data Treatment<br />

Gupix <strong>co</strong>de<br />

Concentrations measurements : Z > 11 (Na), sensitivity ≈ 1 µg/g<br />

Elemental maps : 10x10 µm 2 –2x2 mm 2<br />

Major elements<br />

Trace elements<br />

Ca, P, Mg, Si, Zn, Sr, K, Na, S …


Ion and electron beams methods<br />

Ion beam analysis at the micrometer scale<br />

Micro-beam lines<br />

RBS : Rutherford Backscattering Spectros<strong>co</strong>py<br />

Elastic diffusion of the incident ion by nucleus in the target (Coulomb interaction)<br />

Experimental set-up<br />

Si diode at 135°<br />

Data Treatment<br />

SimNRA <strong>co</strong>de<br />

Rumpin <strong>co</strong>de<br />

Resolution : 1 µm at 50 pA<br />

Stoechiometric : Z > 5 (B) ; C, N, O….<br />

Sample weight, irradiation damages<br />

Deposited charge (to calculate <strong>co</strong>ncentrations with PIXE)


Experimental device: the CENBG microbeam line<br />

Ion source<br />

H + , He +<br />

Singletron electrostatic accelerator<br />

Proton beam of 1.5 MeV energy; ∆E/E = 2.5x10<br />

500 pA intensity<br />

Size of the spot: 1 µm m x 1µm1<br />

10 ─5<br />

Experimental set up<br />

Collimator<br />

Russian quadruplet<br />

PIXE<br />

STIM<br />

Switching magnet<br />

Collimator<br />

Electrostatic<br />

scanning plates<br />

RBS


PIXE-RBS study of interactions<br />

SiO 2 75 % -CaO 25 % glass<br />

Si<br />

Ca<br />

P<br />

After 15 minutes of interaction


Si<br />

Ca<br />

P<br />

Mg<br />

After 1 hour of interaction


Influence of doping 5 % Sr<br />

Si<br />

Ca<br />

P<br />

4 days<br />

Sr<br />

Mg<br />

-Doped glass reacts more slowly<br />

-The Ca/P peripherical phase is still present after 4 days


Evolution of Ca/P ratio in the periphery<br />

Un-doped glass<br />

5 % Sr-doped glass<br />

Time (days)<br />

Time (days)<br />

Chem. Mat. 20 (2008) 4969


SiO 2 -CaO 5 days


SiO 2 -CaO-P 2 O 5<br />

5 days<br />

J. Phys. Chem C 112, (2008) 9418


Sr 2+ delivery in solution<br />

15<br />

Concentration (ppm)<br />

10<br />

5<br />

0<br />

0 2 4<br />

Interaction time in DMEM (days)


Conclusions<br />

Flexibility of the process<br />

NEW MATERIALS<br />

Better dispersion<br />

HIGH HOMOGENEITY<br />

Doping<br />

STRUCTURAL MODIFICATION<br />

Doping species<br />

NEW FUNCTIONALITIES


Acknowledgements<br />

Université Clermont-Ferrand<br />

E. Jallot<br />

J. Lao<br />

L. Courthéoux<br />

J. Soulie<br />

Université Lille<br />

S. Turrell<br />

C. Kinowski<br />

M. Bouazaoui<br />

B. Capoen<br />

Université Paris 7<br />

J.M. sautier<br />

S. Loty<br />

University Trento<br />

M. Ferrari<br />

Université Bordeaux<br />

CENBG<br />

P. Moretto<br />

FNS & FRT LuminiX and LuNaTIC, ANR PNANO 2005 & 2006, INSERM Pro A for funding

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!