01.01.2015 Views

Technologies and Product Design for Sustainable Military ... - E2S2

Technologies and Product Design for Sustainable Military ... - E2S2

Technologies and Product Design for Sustainable Military ... - E2S2

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Technologies</strong> <strong>and</strong> <strong>Product</strong> <strong>Design</strong> <strong>for</strong><br />

<strong>Sustainable</strong> <strong>Military</strong> Operations<br />

Environment, Energy Security & Sustainability (<strong>E2S2</strong>)<br />

Symposium<br />

By<br />

Blase Leven, Oral Saulters<br />

Expeditionary Capabilities Consortium, Kansas State University<br />

June 17, 2010<br />

Business Proprietary


Sustainability<br />

The reason that we are here….<br />

Outline:<br />

- Technology<br />

Research <strong>and</strong><br />

Development<br />

- ESOH<br />

Evaluations<br />

- Sustainability<br />

Evaluation Case<br />

Study<br />

What is Sustainability<br />

• Means different things <strong>for</strong> different people<br />

• One definition – people, planet, profit (a.k.a. – social,<br />

environmental, economic)<br />

<strong>Military</strong> Perspective<br />

• Adequate people, resources, <strong>and</strong> funds are available to support<br />

the mission.<br />

National Security Perspective<br />

• Peace <strong>and</strong> security<br />

• Secure energy supply<br />

• Financial markets stable, economic growth<br />

2


Sustainability<br />

What are the regulatory drivers<br />

Key Drivers<br />

“The leader<br />

who leads by<br />

pointing the<br />

way leaves no<br />

footprints <strong>for</strong><br />

his followers” –<br />

African proverb<br />

• Weapons Systems Acquisition Re<strong>for</strong>m Act (WSARA) of<br />

2009<br />

The Department remains committed to improving its requirements <strong>and</strong><br />

acquisition management practices to deliver the needed capability at<br />

acceptable per<strong>for</strong>mance levels <strong>and</strong> rates—<strong>and</strong> to be better stewards of<br />

the taxpayer's dollar.<br />

- Mona Lush, Office of the Under Secretary of Defense <strong>for</strong><br />

Acquisition, Technology, <strong>and</strong> Logistics<br />

• DoDI 5000.02 Operation of the Defense Acquisition System<br />

• Executive Order 13423 (Strengthening Federal<br />

Environmental, Energy, <strong>and</strong> Transportation Management)<br />

• Executive Order 13514 (Federal Leadership in<br />

Environmental Energy, <strong>and</strong> Economic Per<strong>for</strong>mance)<br />

• Energy Independence <strong>and</strong> Security Act of 2007<br />

• Energy Key Per<strong>for</strong>mance Parameter (KPP) policy<br />

• Fully Burdened Cost of Fuel (FBCF)<br />

3


Expeditionary Capabilities Consortium<br />

Partners<br />

M2 <strong>Technologies</strong>, Inc.<br />

• DoD insight <strong>and</strong> management <strong>for</strong> all tasks of the contract<br />

Sponsor is MC<br />

PEO, L<strong>and</strong><br />

Systems<br />

Kansas State University<br />

• Environmental, scientific, <strong>and</strong> engineering expertise<br />

CABEM <strong>Technologies</strong>, Inc.<br />

• Software programming <strong>and</strong> IT expertise<br />

M2, Kansas<br />

State University,<br />

<strong>and</strong> CABEM are<br />

core partners<br />

V<strong>and</strong>erbilt University<br />

• Human – Robot interaction expertise <strong>for</strong> Robots <strong>and</strong> Sensors<br />

project<br />

NanoScale Corporation<br />

• Commercialization of KSU nanomaterials research discoveries<br />

Other<br />

universities <strong>and</strong><br />

University of Surrey, UK<br />

companies<br />

• High-energy photon simulations <strong>for</strong> Bomb Detection project<br />

provide<br />

additional<br />

expertise 4


Technology Research <strong>and</strong> Development<br />

One Program:<br />

• Formerly the Urban Operations Laboratory<br />

(UOL)<br />

Former sponsor<br />

was the MC<br />

Expeditionary<br />

Rifle Squad<br />

Seven Tasks:<br />

• Bomb Detection <strong>and</strong> Countermeasures<br />

• Robotics <strong>and</strong> Sensors<br />

• Human Factors<br />

• Operations Environmental Laboratory<br />

• Nanotechnologies<br />

• Strategic Planning<br />

• Integration Facility Support<br />

5


Bomb Detection <strong>and</strong> Countermeasures<br />

St<strong>and</strong>off Bomb Detection<br />

Combination of<br />

gamma <strong>and</strong><br />

neutron<br />

energies<br />

Give quick “yes”<br />

or “no” results<br />

No need to<br />

interpret images<br />

6


Robots <strong>and</strong> Sensors<br />

Controlling Robot Teams in Urban Environments<br />

Single user<br />

controlling<br />

multiple robots<br />

Advanced<br />

multi-modal<br />

interface<br />

Enabled by<br />

unique team<br />

intelligence<br />

level<br />

Where has the project been<br />

• Challenge - concurrent dem<strong>and</strong> of image management, navigation,<br />

monitoring <strong>and</strong> the decision-making processes. Currently ≥1:1<br />

operator to robot.<br />

• Key - “team” intelligence; simple, mobile interaction methods<br />

− Organization Model <strong>for</strong> Adaptive Complex Systems<br />

− Voice <strong>and</strong> touch based gesture interaction techniques<br />

• We have demonstrated<br />

− Basic supervisory team control using organizational control<br />

− Multi-modal user interaction<br />

− Changed to Rifle Team Recon Scenario in Fall 2008 <strong>and</strong><br />

simulation in summer 2009<br />

7


Robots <strong>and</strong> Sensors<br />

Decentralized Signal Processing <strong>for</strong> Target Detection<br />

<strong>and</strong> Surveillance<br />

Accomplishments<br />

Inputs: detection<br />

requirements,<br />

sensor parameters<br />

<strong>and</strong> terrain nature<br />

Phase I: Non-collaborative detection systems<br />

• Developed an optimal control theory based deployment<br />

algorithm<br />

• Proposed algorithm uses 10%-30% fewer number of<br />

sensors than state of the art algorithms.<br />

8


Robots <strong>and</strong> Sensors<br />

Reconnaissance Scenario <strong>for</strong> Deployment of Sensors<br />

<strong>and</strong> Robots<br />

Example scenario:<br />

“Recon Areas<br />

16NGN4052974<br />

Locate Insurgents”<br />

9


Human Factors<br />

Thermal Per<strong>for</strong>mance Evaluations <strong>and</strong> Planning<br />

Environmental testing chambers; profile scanning;<br />

<strong>and</strong> sweating manikin, head <strong>and</strong> foot<br />

Equipment<br />

evaluations<br />

Mission planning<br />

<strong>and</strong> feasibility<br />

tool<br />

• Thermal Safety Software<br />

10


Human Factors<br />

Project – Climate Control System<br />

One potential<br />

configuration of<br />

STE cooling<br />

device.<br />

Climate Control System: Schematic of STE Device<br />

Hot, Humid Air<br />

Buoyancy driven<br />

Air flow<br />

Another<br />

application may<br />

be water<br />

desalination<br />

STE<br />

Water<br />

Reservoir<br />

water evaporation<br />

cools STE surface<br />

STE<br />

Dry Air<br />

Tent Chamber<br />

Dry Air<br />

water vapor in<br />

chamber condenses<br />

on cool STE surface<br />

11


Power <strong>and</strong> Energy<br />

Project – Climate Control System<br />

Hydrogen fuel<br />

from water using<br />

solar energy<br />

Nanomaterials <strong>for</strong> Hydrogen <strong>and</strong> Batteries (Klabunde KSU;<br />

NanoScale, Inc.)<br />

Lithium-ion<br />

batteries <strong>for</strong><br />

high-current rate<br />

applications<br />

Beta-voltaic<br />

batteries<br />

Beta-voltaic Batteries (Edgar, KSU)<br />

Beta emitter<br />

Schottky metal contact (Au)<br />

High resistivity B12P2 epitaxial layer<br />

Low resistivity B12P2 substrate<br />

12


ESOH Evaluations<br />

Environmental Assessment <strong>and</strong> Decision Tools<br />

ESOH Assessment Services<br />

• Formal <strong>and</strong> in<strong>for</strong>mal (programmatic <strong>and</strong> urgent) <strong>for</strong>mats<br />

• Multidisciplinary teams & diverse tools - LCEAs, PESHEs, IHHAs,<br />

NEPA reports, etc <strong>for</strong> SE support, fielding, & milestone decisions<br />

<strong>Technologies</strong> <strong>and</strong> Systems Evaluated<br />

• Anti-Traction Material; Pulsed-Energy Projectile; Running Gear<br />

Entanglement System; Testing <strong>and</strong> Training Range; Advanced<br />

Tactical Laser; Nonlethal Thermobaric Technology; Odorants <strong>and</strong><br />

Irritants; Rigid Foam; Airburst Nonlethal Munitions; Mission<br />

Payload Module<br />

Software – Environmental Knowledge <strong>and</strong> Assessment Tool<br />

• Tool to identify <strong>and</strong> evaluate environmental <strong>and</strong> safety-related<br />

issues <strong>for</strong> products <strong>and</strong> systems<br />

• One-stop shopping, something <strong>for</strong> everyone<br />

• Consolidated location <strong>for</strong> environmental in<strong>for</strong>mation<br />

• Application <strong>for</strong> novice to environmental professional<br />

• www.ekat-tool.com<br />

13


ESOH Evaluations<br />

EKAT <strong>and</strong> Materials Screening


Environmental Sustainability<br />

Case Study – AA Battery <strong>Technologies</strong><br />

Overview<br />

"Energy in a<br />

nation is like<br />

sap in a tree; it<br />

rises from the<br />

bottom up" -<br />

Woodrow<br />

Wilson<br />

• ECC is conducting a preliminary sustainability evaluation of<br />

beta-voltaic power cell technology compared to disposable<br />

<strong>and</strong> rechargeable AA batteries<br />

• Using EKAT <strong>and</strong> other life cycle assessment software, <strong>and</strong><br />

data from previous analyses<br />

• Preliminary assessment will allow <strong>for</strong> comparative up-front<br />

materials screening <strong>and</strong> comprehensive assessment of<br />

potential risks throughout life-cycle stages<br />

Objectives<br />

• Investigate the life cycle impacts of various battery products<br />

<strong>and</strong> power systems<br />

• Utilize findings <strong>and</strong> results <strong>for</strong> improving the design of<br />

emerging technologies<br />

• Develop effective frameworks <strong>and</strong> pragmatic indicators to<br />

facilitate the advancement of sustainable products <strong>and</strong><br />

processes<br />

15


Environmental Sustainability<br />

Case Study – AA Battery <strong>Technologies</strong><br />

Per ISO 14040, a<br />

Life Cycle<br />

Assessment (LCA) is<br />

the “compilation<br />

<strong>and</strong> evaluation of<br />

the inputs, outputs<br />

<strong>and</strong> the potential<br />

environmental<br />

impacts of a<br />

product system<br />

throughout its life<br />

cycle”<br />

Application<br />

• Study will be conducted in terms of attributes that lead to<br />

the minimum number <strong>and</strong> weight of battery units needed to<br />

successfully per<strong>for</strong>m missions<br />

• Functional Unit, 1kWh<br />

• Real world reference, hours of battery power to Night Vision<br />

• Voltage <strong>and</strong> amperage requirements<br />

Devices Being Compared<br />

• Alkaline, Rechargeable, Lithium-ion<br />

• Conceptual Betavoltaic<br />

Steps<br />

• Define goal & scope (boundaries & basis <strong>for</strong> comparison<br />

[stages & media]); inventory (inputs/outputs); assess<br />

impacts (e.g., global warming, human health, ecotoxicity);<br />

interpret results (contribution, significance, alternatives,etc)<br />

• Assumptions – material abundance, equivalent reg<br />

restrictions, radioisotope shielding/sealing<br />

16


Battery Sustainability Evaluation Process<br />

Resource/Energy<br />

Resource/Energy<br />

Resource/Energy<br />

Resource/Energy<br />

Resource/Energy<br />

Raw Materials<br />

Extraction/<br />

Acquisition<br />

Intermediate<br />

Materials<br />

Processing<br />

Battery<br />

Manufacture/<br />

Packaging/Retail<br />

Battery<br />

Use/Reuse<br />

(n cycles)<br />

L<strong>and</strong>fill or<br />

Combustion<br />

Releases to<br />

Air, Water, Soil<br />

Releases to<br />

Air, Water, Soil<br />

Releases to<br />

Air, Water, Soil<br />

Releases to<br />

Air, Water, Soil<br />

Releases to<br />

Air, Water, Soil<br />

Battery (Metals) Recycling<br />

Sustainability (triple bottom line considerations)


Environmental Sustainability<br />

Case Study – AA Battery <strong>Technologies</strong><br />

Conceptual Betavoltaic Batteries<br />

Semiconductor<br />

Radioisotope<br />

• May lead to creating new power sources having several<br />

advantages over currently existing counterparts<br />

• Improved energy density<br />

• Efficiency<br />

• Much longer product lifetimes<br />

• Betavoltaics are direct nuclear to electrical energy conversion<br />

devices<br />

• Concept was proven >50 years ago, but device<br />

per<strong>for</strong>mance quickly degraded due to radiation damage<br />

to silicon<br />

• New material, icosahedral boron arsenide (IBA), being<br />

studied<br />

• Alternating layers of the radioisotope beta source <strong>and</strong><br />

semiconductor materials would be present within the<br />

battery shell.<br />

18


Environmental Sustainability<br />

Case Study – Betavoltaics using Icosahedral Boron Arsenide (IBA)<br />

Radioisotopes<br />

can have high<br />

energy<br />

densities <strong>and</strong><br />

can supply<br />

power <strong>for</strong><br />

decades<br />

Icosahedral<br />

boron arsenide<br />

may enable<br />

betavoltaics<br />

due to its<br />

extraordinary<br />

radiation<br />

resistance<br />

Cress, et al IEEE Trans. Nucl. Sci. 55 1735 (2008)<br />

IBA crystal structure<br />

• Icosahedral boron arsenide (IBA) can maintain its crystal<br />

structure even after huge dose of electrons<br />

19


Environmental Sustainability<br />

Case Study – Per<strong>for</strong>mance Metrics<br />

Battery Per<strong>for</strong>mance <strong>and</strong> Characteristics<br />

Desirable<br />

features:<br />

• Improved<br />

per<strong>for</strong>mance<br />

• Better<br />

mechanical<br />

<strong>and</strong> electrical<br />

durability<br />

• Cost-effective<br />

• Discharge (operating) life (per charge, if rechargeable)<br />

• Number of charge-discharge cycles<br />

• Mechanical <strong>and</strong> electrical durability of battery<br />

• Minimum volts <strong>and</strong> amperage<br />

• Weight<br />

Economics<br />

• Life cycle costs (direct <strong>and</strong> indirect)<br />

Mission Sustainability<br />

• Mission accomplishment (<strong>and</strong> safe)<br />

• Lower logistics burden (<strong>and</strong> no environmental impacts)<br />

• Lower cost<br />

20


Environmental Sustainability<br />

Case Study – Green Battery Metrics<br />

Desirable<br />

features:<br />

• Rechargeable<br />

• Less use of<br />

toxic or<br />

problematic<br />

materials<br />

• Nation/<br />

Theatre-wide<br />

collection<br />

program<br />

Materials <strong>and</strong> Energy Use<br />

• Amount of toxic or other unsafe materials used per unit<br />

energy (mg/Wh)<br />

• Amount of hazardous or reactive materials used per unit<br />

energy (mg/Wh)<br />

• Dem<strong>and</strong>s on renewable <strong>and</strong> non-renewable resources <strong>for</strong><br />

materials extraction <strong>and</strong> battery manufacturing<br />

• Energy use <strong>and</strong> associated emissions over the battery life<br />

cycle<br />

Recycling<br />

• Open-loop vs. closed-loop recycling processes<br />

• Economically recyclable vs. technically feasible recycling<br />

[Putois 95]<br />

• Collection system in place <strong>for</strong> spent batteries<br />

21


Environmental Sustainability<br />

Case Study – Preliminary Findings <strong>and</strong> Concerns<br />

Alkaline versus Rechargeables<br />

• Previous life cycle assessments found that material use,<br />

energy use, <strong>and</strong> emissions are lower <strong>for</strong> rechargeable NiCd<br />

batteries than <strong>for</strong> alkalines. (R.L. Lankey, F.C. McMichael; Environmental Science <strong>and</strong><br />

Technology. Life-Cycle Methods <strong>for</strong> Comparing Primary <strong>and</strong> Rechargeable Batteries. 2000.)<br />

Rechargeables versus Rechargables<br />

• Comparing nickel-metal hydride (NiMH) <strong>and</strong> NiCd<br />

rechargeable battery technologies, both battery types have<br />

roughly the same level of per<strong>for</strong>mance. However, the<br />

negative health impacts of cadmium, as compared to the<br />

metal hydride batteries, is the reason why rechargeable<br />

NiMH use is encouraged over NiCd. (D. Parsons; International Journal of Life<br />

Cycle Assessment. The Environmental Impact of Disposable Versus Re-Chargeable Batteries <strong>for</strong> Consumer Use.<br />

2007.)<br />

Alkaline versus Lithium Ion<br />

• For the same amount of per<strong>for</strong>mance, lithium-based<br />

batteries weight half as much as alkaline, but last twice as<br />

long.<br />

22


Environmental Sustainability<br />

Case Study – Preliminary Findings <strong>and</strong> Concerns<br />

Betavoltaics<br />

• Key factors include output power, lifetime, dimensions,<br />

radioactive material (toxicity, availability, etc),<br />

manufacturing cost, purity, shielding, suitable<br />

semiconductors, etc.<br />

• Availability – only a few companies currently<br />

manufacturing devices (Widetronix, City Labs, Qynergy<br />

Corporation, Northwestern Polytechnical University in<br />

China, Betabat) (C.E. Whiteley, J.H. Edgar, Z.J. Pei; Department of Chemical Engineering, Kansas<br />

State University. One-Step Conversion of Radiation Energy to Electricity Using Solid-State Devices: A Review.<br />

2010.)<br />

• Power – available power offered by current beta voltaic<br />

batteries is relatively low, as compared to chemical<br />

batteries (C.E. Whiteley, J.H. Edgar, Z.J. Pei; Department of Chemical Engineering, Kansas State<br />

University. One-Step Conversion of Radiation Energy to Electricity Using Solid-State Devices: A Review. 2010.<br />

• Range of beta particles short, there<strong>for</strong>e min shielding<br />

• Longevity (>30 years), low weight, high energy content<br />

• To be continued . . .<br />

23


Acknowledgments<br />

“Do not try<br />

to...[teach] a<br />

great many<br />

things,<br />

awaken<br />

people's<br />

curiosity, it is<br />

enough to<br />

open minds;<br />

do not<br />

overload<br />

them, put<br />

there just a<br />

spark; if there<br />

is some good<br />

inflammable<br />

stuff, it will<br />

surely set<br />

fire” - Anatole<br />

France<br />

United States Marine Corps<br />

• PEO, L<strong>and</strong> Systems<br />

• Expeditionary Rifle Squad<br />

M2 <strong>Technologies</strong>, Inc.<br />

CABEM <strong>Technologies</strong>, Inc.<br />

Researchers at Kansas State University<br />

• ECC collaborators including James Edgar <strong>and</strong> Clinton<br />

Whiteley, Department of Chemical Engineering, Kansas<br />

State University<br />

Consortium <strong>for</strong> Environmental Stewardship <strong>and</strong> Sustainability<br />

(CESAS)<br />

Environment, Energy Security & Sustainability (<strong>E2S2</strong>)<br />

Symposium Organizers<br />

24


“Alone we can do<br />

so little, together<br />

we can do so<br />

much” – Helen<br />

Keller<br />

Service Sponsor<br />

Consortium Leadership<br />

Contact In<strong>for</strong>mation<br />

Expeditionary Capabilities Consortium<br />

– <strong>for</strong>merly the Urban Operations Laboratory<br />

Michael D. Halloran<br />

U.S. Marines PEO L<strong>and</strong> Systems<br />

Quantico, VA<br />

703-432-4956<br />

michael.d.halloran@usmc.mil<br />

John Blair, Program Manager<br />

M2 <strong>Technologies</strong>, Inc.<br />

Manhattan, KS<br />

785-323-0295<br />

blairj@M2tech.us<br />

Larry Erickson, Director<br />

Jay Fredkin, Owner<br />

Blase Leven, Associate Director<br />

CABEM <strong>Technologies</strong><br />

Oral Saulters, Team Leader<br />

Franklin, MA<br />

Kansas State University<br />

508-541-3123<br />

Manhattan, KS<br />

jayfredkin@cabemtechnologies.com<br />

785-532-6519<br />

lerick@ksu.edu; baleven@ksu.edu; osaulter@ksu.edu<br />

On-line<br />

• www.expeditionarycapabilities.org<br />

• www.uol.ksu.edu<br />

25

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!