01.01.2015 Views

Analysis and Design of a 1-DOF Leg for Walking Machines

Analysis and Design of a 1-DOF Leg for Walking Machines

Analysis and Design of a 1-DOF Leg for Walking Machines

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>and</strong> design <strong>of</strong> a leg, which is composed<br />

by a Chebyshev mechanism <strong>and</strong><br />

pantograph. Its main characteristic is<br />

to posses only 1-<strong>DOF</strong>, with many<br />

advantages in terms <strong>of</strong> cost <strong>and</strong><br />

operation.<br />

A leg design has been proposed to be<br />

low-cost <strong>and</strong> easy in operation <strong>and</strong> it<br />

has been also improved in its<br />

mechanical design by adding two<br />

articulated parallelograms that make<br />

the foot <strong>of</strong> the robot always parallel<br />

with respect to the ground.<br />

III A KINEMATIC ANALYSIS<br />

A Kinematic analysis has been carried<br />

out in order to evaluate <strong>and</strong> simulate<br />

per<strong>for</strong>mances <strong>and</strong> operations <strong>of</strong> the leg<br />

system. A fixed reference system CXY<br />

has been considered attached at point<br />

C, as shown in Fig. 1. The position <strong>of</strong><br />

point B with respect to CXY frame can<br />

be evaluated as a function <strong>of</strong> the input<br />

crank angle α <strong>and</strong> kinematic<br />

parameters <strong>of</strong> the Chebyshev<br />

mechanism LEBDC in the <strong>for</strong>m<br />

X B = – a + m cosα + (c+f) cosα<br />

Y B = – m sinα – (c+f) sinθ (1)<br />

in which<br />

2 2 2 1/2<br />

−1<br />

senα − (sen α + B − D )<br />

θ = 2tan<br />

B + D<br />

(2)<br />

Coefficients B <strong>and</strong> D can be obtained<br />

by considering the closure equation <strong>of</strong><br />

the five-bar linkage CDBGM in Fig. 1.<br />

Thus, one can obtain φ 2 <strong>and</strong> φ 3 angles<br />

in the <strong>for</strong>m<br />

⎛<br />

2 ⎞<br />

−1<br />

⎜ L1<br />

− 4L1L3<br />

⎟<br />

ϕ2<br />

= tan ⎜−<br />

L2<br />

−<br />

⎟<br />

2L1<br />

⎝<br />

⎠<br />

⎛<br />

2 ⎞<br />

−1<br />

⎜ K1<br />

− 4K1K3<br />

⎟<br />

ϕ3<br />

= tan ⎜−<br />

K2<br />

−<br />

⎟<br />

2K1<br />

⎝<br />

⎠ (3)<br />

where<br />

Figure 1<br />

A kinematic scheme <strong>for</strong> the 1-<strong>DOF</strong> leg<br />

L 1 = 2 X B z 2 – 2 X M z 2 + X 2 B + X 2 M +<br />

z 2 2 + Y 2 B + Y 2 M – z 2 3 – 2 X B X M –<br />

2 Y B Y M<br />

L 2 = – 4 Y B z 2 +4 Y M z 2 (4)<br />

L 3 = – 2 X B z 2 +2 X M z 2 + X 2 B + X 2 M +<br />

z 2 2 + Y 2 2<br />

B + Y M<br />

K 1 = – 2 X B z 3 +2 X M z 3 + X B 2 + X M 2 +<br />

z 3 2 + Y B 2 + Y M 2 – z 2 2 – 2 X B X M –<br />

2 Y B Y M<br />

K 2 = – 4 Y B z 3 +4 Y M z 3 (5)<br />

K 3 = 2 X B z 3 – 2 X M z 3 + X B 2 + X M 2 +<br />

z 3 2 + Y B 2 + Y M<br />

2<br />

Consequently, the transmission angles<br />

γ <strong>and</strong> γ 2 shown in Fig. 1 can be<br />

evaluated as γ =θ+φ 2 , <strong>and</strong> γ 2 =φ 2 +φ 3 .<br />

The position <strong>of</strong> A with respect to the<br />

fixed frame can be given as<br />

X A = X B – (z 2 +z 4 ) cosφ 2 + (z 3 +z 5 ) cosφ 3<br />

Y A = Y B – (z 2 +z 4 ) sinφ 2 – (z 3 +z 5 ) sinφ 3<br />

(6)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!