03.01.2015 Views

Thermal decoupling of WIMPs - PPC 2010

Thermal decoupling of WIMPs - PPC 2010

Thermal decoupling of WIMPs - PPC 2010

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>PPC</strong> <strong>2010</strong>, Torino, 12-15 July <strong>2010</strong><br />

<strong>Thermal</strong> <strong>decoupling</strong> <strong>of</strong> <strong>WIMPs</strong><br />

A link between particle physics properties<br />

and the small-scale structure <strong>of</strong> (dark) matter<br />

Torsten Bringmann, University <strong>of</strong> Hamburg


Outlook<br />

Chemical vs kinetic <strong>decoupling</strong> <strong>of</strong> <strong>WIMPs</strong><br />

Kinetic <strong>decoupling</strong> from first principles<br />

The size <strong>of</strong> the first protohalos<br />

Observational prospects<br />

Conclusions<br />

Torsten Bringmann, University <strong>of</strong> Hamburg <strong>Thermal</strong> <strong>decoupling</strong> <strong>of</strong> <strong>WIMPs</strong> ‒<br />

2


Dark matter<br />

Existence by now (almost)<br />

impossible to challenge!<br />

Ω CDM =0.233 ± 0.013 (WMAP)<br />

electrically neutral (dark!)<br />

non-baryonic (BBN)<br />

cold ‒ dissipationless and negligible<br />

free-streaming effects<br />

collisionless (bullet cluster)<br />

(structure formation)<br />

credit: WMAP<br />

Torsten Bringmann, University <strong>of</strong> Hamburg <strong>Thermal</strong> <strong>decoupling</strong> <strong>of</strong> <strong>WIMPs</strong> ‒<br />

3


Dark matter<br />

Existence by now (almost)<br />

impossible to challenge!<br />

Ω CDM =0.233 ± 0.013 (WMAP)<br />

electrically neutral (dark!)<br />

non-baryonic (BBN)<br />

cold ‒ dissipationless and negligible<br />

free-streaming effects<br />

collisionless (bullet cluster)<br />

(structure formation)<br />

credit: WMAP<br />

WIMPS are particularly<br />

good candidates:<br />

well-motivated from particle physics<br />

[SUSY, EDs, little Higgs, ...]<br />

thermal production “automatically”<br />

leads to the right relic abundance<br />

Torsten Bringmann, University <strong>of</strong> Hamburg <strong>Thermal</strong> <strong>decoupling</strong> <strong>of</strong> <strong>WIMPs</strong> ‒<br />

3


The WIMP “miracle”<br />

iracle”<br />

IMP<br />

ed by<br />

)<br />

2<br />

eq<br />

a 3 nχ<br />

ls bee<br />

unithe<br />

relic<br />

The number density <strong>of</strong> Weakly Interacting Massive<br />

Particles in the early universe:<br />

n χ eq<br />

increasing〈σv〉<br />

time<br />

Fig.: Jungman, Kamionkowski & Griest, PR’96<br />

Jungman, Kamionkowski & Griest, PR ’96<br />

dn χ<br />

dt<br />

〈σv〉:<br />

+3Hn χ = −〈σv〉<br />

χχ → SM SM<br />

( )<br />

n 2 χ − n 2 χeq<br />

(thermal average)<br />

1) [for interaction strengths <strong>of</strong> the weak type]<br />

Torsten Bringmann, University <strong>of</strong> Hamburg <strong>Thermal</strong> <strong>decoupling</strong> <strong>of</strong> <strong>WIMPs</strong> ‒<br />

4


The WIMP “miracle”<br />

iracle”<br />

IMP<br />

ed by<br />

)<br />

2<br />

eq<br />

a 3 nχ<br />

ls bee<br />

unithe<br />

relic<br />

The number density <strong>of</strong> Weakly Interacting Massive<br />

Particles in the early universe:<br />

n χ eq<br />

increasing〈σv〉<br />

time<br />

Fig.: Jungman, Kamionkowski & Griest, PR’96<br />

Jungman, Kamionkowski & Griest, PR ’96<br />

Relic density (today):<br />

1) [for interaction strengths <strong>of</strong> the weak type]<br />

dn χ<br />

dt<br />

〈σv〉:<br />

+3Hn χ = −〈σv〉<br />

χχ → SM SM<br />

( )<br />

n 2 χ − n 2 χeq<br />

(thermal average)<br />

“Freeze-out” when annihilation<br />

rate falls behind expansion rate<br />

(→ a 3 n χ ∼ const.)<br />

Ω χ h 2 ∼ 3 · 10−27 cm 3 /s<br />

〈σv〉<br />

for weak-scale<br />

interactions!<br />

∼ O(0.1)<br />

Torsten Bringmann, University <strong>of</strong> Hamburg <strong>Thermal</strong> <strong>decoupling</strong> <strong>of</strong> <strong>WIMPs</strong> ‒<br />

4


Freeze-out = <strong>decoupling</strong> !<br />

WIMP interactions with heat bath <strong>of</strong> SM particles:<br />

χ<br />

SM<br />

χ χ<br />

χ<br />

(annihilation)<br />

SM SM (scattering) SM<br />

Torsten Bringmann, University <strong>of</strong> Hamburg <strong>Thermal</strong> <strong>decoupling</strong> <strong>of</strong> <strong>WIMPs</strong> ‒<br />

5


Freeze-out = <strong>decoupling</strong> !<br />

WIMP interactions with heat bath <strong>of</strong> SM particles:<br />

χ<br />

SM<br />

χ χ<br />

χ<br />

(annihilation)<br />

SM SM (scattering) SM<br />

Boltzmann suppression <strong>of</strong> n χ<br />

scattering processes much more frequent<br />

continue even after chemical <strong>decoupling</strong> (“freeze-out”) at T cd ∼ m χ /25<br />

Torsten Bringmann, University <strong>of</strong> Hamburg <strong>Thermal</strong> <strong>decoupling</strong> <strong>of</strong> <strong>WIMPs</strong> ‒<br />

5


Freeze-out = <strong>decoupling</strong> !<br />

WIMP interactions with heat bath <strong>of</strong> SM particles:<br />

χ<br />

SM<br />

χ χ<br />

χ<br />

(annihilation)<br />

SM SM (scattering) SM<br />

Boltzmann suppression <strong>of</strong> n χ<br />

scattering processes much more frequent<br />

continue even after chemical <strong>decoupling</strong> (“freeze-out”) at T cd ∼ m χ /25<br />

Kinetic <strong>decoupling</strong> much later:<br />

τ r (T kd ) ≡ N coll /Γ el ∼ H −1 (T kd )<br />

Random walk in<br />

momentum space<br />

N coll ∼ m χ /T<br />

Schmid, Schwarz, & Widerin, PRD ’99; Green, H<strong>of</strong>mann & Schwarz, JCAP ’05, ...<br />

Torsten Bringmann, University <strong>of</strong> Hamburg <strong>Thermal</strong> <strong>decoupling</strong> <strong>of</strong> <strong>WIMPs</strong> ‒<br />

5


Kinetic <strong>decoupling</strong> in detail<br />

Evolution <strong>of</strong> phase-space density f χ given by the full<br />

Boltzmann equation in FRW spacetime:<br />

E(∂ t − Hp · ∇ p )f χ = C[f χ ]<br />

Torsten Bringmann, University <strong>of</strong> Hamburg <strong>Thermal</strong> <strong>decoupling</strong> <strong>of</strong> <strong>WIMPs</strong> ‒<br />

6


Kinetic <strong>decoupling</strong> in detail<br />

Evolution <strong>of</strong> phase-space density f χ given by the full<br />

Boltzmann equation in FRW spacetime:<br />

∫<br />

d 3 p<br />

E(∂ t − Hp · ∇ p )f χ = C[f χ ]<br />

recovers the familiar<br />

dn χ<br />

dt<br />

+3Hn χ = −〈σv〉<br />

(<br />

n 2 χ − n 2 χeq)<br />

...<br />

Torsten Bringmann, University <strong>of</strong> Hamburg <strong>Thermal</strong> <strong>decoupling</strong> <strong>of</strong> <strong>WIMPs</strong> ‒<br />

6


Kinetic <strong>decoupling</strong> in detail<br />

Evolution <strong>of</strong> phase-space density f χ given by the full<br />

Boltzmann equation in FRW spacetime:<br />

∫<br />

d 3 p<br />

E(∂ t − Hp · ∇ p )f χ = C[f χ ]<br />

recovers the familiar<br />

T χ n χ ≡<br />

Torsten Bringmann, University <strong>of</strong> Hamburg <strong>Thermal</strong> <strong>decoupling</strong> <strong>of</strong> <strong>WIMPs</strong> ‒<br />

dn χ<br />

dt<br />

d 3 p<br />

(2π) 3 p2 f χ (p)<br />

+3Hn χ = −〈σv〉<br />

∫<br />

(<br />

n 2 χ − n 2 χeq)<br />

...<br />

Idea: consider instead the 2 nd moment ( d 3 p p 2 )<br />

∫<br />

and introduce<br />

analytic treatment possible<br />

no assumptions about f χ (p) necessary<br />

Allows highly accurate treatment, to order O(T/m χ ) 10 −3<br />

Bertschinger, PRD ’06; TB & H<strong>of</strong>mann, JCAP ’07; TB, NJP ’09<br />

6


The collision term<br />

χ p<br />

SM<br />

k<br />

˜p χ<br />

˜k<br />

SM<br />

C =<br />

∫<br />

d 3 k<br />

(2π) 3 2ω<br />

∫<br />

d 3˜k<br />

(2π) 3 2˜ω<br />

∫<br />

d 3 ˜p<br />

(2π) 3 2Ẽ (2π)4 δ (4) (˜p + ˜k − p − k)|M| 2<br />

× g SM<br />

[(<br />

1 ∓ g ± (ω) ) g ± (˜ω)f(˜p ) − ( 1 ∓ g ± (˜ω) ) g ± (ω)f(p) ]<br />

g ± : thermal distribution<br />

Torsten Bringmann, University <strong>of</strong> Hamburg <strong>Thermal</strong> <strong>decoupling</strong> <strong>of</strong> <strong>WIMPs</strong> ‒<br />

7


The collision term<br />

χ p<br />

SM<br />

k<br />

˜p χ<br />

˜k<br />

SM<br />

C =<br />

∫<br />

d 3 k<br />

(2π) 3 2ω<br />

∫<br />

d 3˜k<br />

(2π) 3 2˜ω<br />

∫<br />

d 3 ˜p<br />

(2π) 3 2Ẽ (2π)4 δ (4) (˜p + ˜k − p − k)|M| 2<br />

× g SM<br />

[(<br />

1 ∓ g ± (ω) ) g ± (˜ω)f(˜p ) − ( 1 ∓ g ± (˜ω) ) g ± (ω)f(p) ]<br />

g ± : thermal distribution<br />

Expansion in ω/m χ ∼ T/m χ<br />

[<br />

]<br />

C ≃ c(T )m 2 χ m χ T ∆ p + p · ∇ p +3 f(p)<br />

c(T )= ∑ ∫<br />

g SM<br />

6(2π) 3 m 4 dk k 5 ω −1 g ± ( 1 ∓ g ±) |M| 2 t=0<br />

i<br />

χT<br />

Torsten Bringmann, University <strong>of</strong> Hamburg <strong>Thermal</strong> <strong>decoupling</strong> <strong>of</strong> <strong>WIMPs</strong> ‒<br />

7


The collision term<br />

χ p<br />

SM<br />

k<br />

˜p χ<br />

˜k<br />

SM<br />

C =<br />

∫<br />

d 3 k<br />

(2π) 3 2ω<br />

∫<br />

d 3˜k<br />

(2π) 3 2˜ω<br />

∫<br />

d 3 ˜p<br />

(2π) 3 2Ẽ (2π)4 δ (4) (˜p + ˜k − p − k)|M| 2<br />

× g SM<br />

[(<br />

1 ∓ g ± (ω) ) g ± (˜ω)f(˜p ) − ( 1 ∓ g ± (˜ω) ) g ± (ω)f(p) ]<br />

g ± : thermal distribution<br />

Expansion in ω/m χ ∼ T/m χ<br />

[<br />

]<br />

C ≃ c(T )m 2 χ m χ T ∆ p + p · ∇ p +3 f(p)<br />

c(T )= ∑ ∫<br />

g SM<br />

6(2π) 3 m 4 dk k 5 ω −1 g ± ( 1 ∓ g ±) |M| 2 t=0<br />

i<br />

χT<br />

Analytic solution if |M| 2 = |M| 2 0 (ω/m χ) 2<br />

∫<br />

generic situation for<br />

dk k 5 ... = N × |M| 2 0 m−2 χ T 7 m SM ≪ ω ≪ ω res<br />

Torsten Bringmann, University <strong>of</strong> Hamburg <strong>Thermal</strong> <strong>decoupling</strong> <strong>of</strong> <strong>WIMPs</strong> ‒<br />

7


The WIMP temperature<br />

T χ<br />

Resulting ODE for :<br />

4.5<br />

(<br />

dy<br />

dx =2m χc(T )<br />

1 − T χ<br />

H˜g −1/2 T<br />

T. Bringmann, 2009<br />

)<br />

y = mχg −1/2<br />

log 10<br />

(<br />

eff<br />

Tχ/T 2 )<br />

4.0<br />

3.5<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

T χ ∝ a −2<br />

T χ = T<br />

x kd =m χ /T kd<br />

(T < T kd )<br />

(T > T kd ) Example:<br />

m χ = 100 GeV<br />

|M| 2 ∼ g 4 Y (E χ /m χ ) 2<br />

1.0<br />

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5<br />

log 10 (x = m χ /T )<br />

Torsten Bringmann, University <strong>of</strong> Hamburg <strong>Thermal</strong> <strong>decoupling</strong> <strong>of</strong> <strong>WIMPs</strong> ‒<br />

8


The WIMP temperature<br />

T χ<br />

Resulting ODE for :<br />

4.5<br />

(<br />

dy<br />

dx =2m χc(T )<br />

1 − T χ<br />

H˜g −1/2 T<br />

T. Bringmann, 2009<br />

)<br />

y = mχg −1/2<br />

log 10<br />

(<br />

eff<br />

Tχ/T 2 )<br />

4.0<br />

3.5<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

T χ ∝ a −2<br />

T χ = T<br />

x kd =m χ /T kd<br />

(T < T kd )<br />

(T > T kd ) Example:<br />

m χ = 100 GeV<br />

|M| 2 ∼ g 4 Y (E χ /m χ ) 2<br />

1.0<br />

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5<br />

log 10 (x = m χ /T )<br />

Fast transition allows straight-forward definition <strong>of</strong> T kd<br />

TB & H<strong>of</strong>mann, JCAP ’07; TB, NJP ’09<br />

Torsten Bringmann, University <strong>of</strong> Hamburg <strong>Thermal</strong> <strong>decoupling</strong> <strong>of</strong> <strong>WIMPs</strong> ‒<br />

8


T kd<br />

in SUSY<br />

Implement all SM-neutralino scattering amplitudes<br />

Scan MSSM and mSUGRA parameter space<br />

(~10 6 models, 3 σ WMAP, all collider bounds OK)<br />

T. Bringmann, 2009<br />

TB, NJP ’09<br />

T. Bringmann, 2009<br />

Tkd [MeV]<br />

10 3<br />

10 2<br />

10<br />

10 4 50 100 500 1000 5000<br />

Higgsino (Z g < 0.05)<br />

mixed (0.05 ≤ Z g ≤ 0.95)<br />

<br />

Gaugino (Z g > 0.95)<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

⨯<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

K <br />

<br />

<br />

⨯<br />

′<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

⨯<br />

<br />

<br />

<br />

<br />

<br />

<br />

QCD<br />

<br />

<br />

<br />

<br />

I ′ J ∗ F ∗<br />

⨯<br />

<br />

<br />

xkd = mχ/Tkd<br />

10 4<br />

10 3<br />

<br />

<br />

<br />

Higgsino (Z g < 0.05)<br />

10 5 20 22 24 26 28 30<br />

mixed (0.05 ≤ Z g ≤ 0.95)<br />

Gaugino (Z g > 0.95)<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

m χ [GeV]<br />

x cd = m χ /T cd<br />

Torsten Bringmann, University <strong>of</strong> Hamburg <strong>Thermal</strong> <strong>decoupling</strong> <strong>of</strong> <strong>WIMPs</strong> ‒<br />

10 2<br />

9


The smallest protohalos<br />

Free streaming <strong>of</strong> <strong>WIMPs</strong><br />

after washes out density<br />

contrasts on small scales<br />

t kd<br />

Loeb & Zaldarriaga, PRD ’05<br />

e.g. Green, H<strong>of</strong>mann & Schwarz, JCAP ’05<br />

Similar effect from<br />

baryonic oscillations<br />

Bertschinger, PRD ’06<br />

Cut<strong>of</strong>f in power spectrum<br />

corresponds to smallest<br />

gravitationally bound<br />

objects in the universe<br />

⎛<br />

M fs =2.9×10 −6 ⎜<br />

⎝<br />

(<br />

1 + ln<br />

(<br />

m χ<br />

100 GeV<br />

1<br />

g<br />

4<br />

eff T kd<br />

30 MeV<br />

M ao =3.4 × 10 −6 (<br />

T kd g 1 4<br />

eff<br />

50 MeV<br />

)<br />

/18.6<br />

) 1<br />

2<br />

g 1 4<br />

eff<br />

( Tkd<br />

30 MeV<br />

) 1<br />

2<br />

) −3<br />

M ⊙<br />

⎞<br />

3<br />

⎟<br />

⎠<br />

M ⊙<br />

Torsten Bringmann, University <strong>of</strong> Hamburg <strong>Thermal</strong> <strong>decoupling</strong> <strong>of</strong> <strong>WIMPs</strong> ‒<br />

10


The smallest protohalos<br />

Free streaming <strong>of</strong> <strong>WIMPs</strong><br />

after t kd washes out density<br />

contrasts on small scales<br />

e.g. Green, H<strong>of</strong>mann & Schwarz, JCAP ’05<br />

Similar effect from<br />

baryonic oscillations<br />

Loeb & Zaldarriaga, PRD ’05<br />

Bertschinger, PRD ’06<br />

Cut<strong>of</strong>f in power spectrum<br />

corresponds to smallest<br />

gravitationally bound<br />

objects in the universe<br />

Strong dependence on particle physics properties,<br />

no “typical” value <strong>of</strong> !<br />

Mcut/M⊙<br />

10 −4<br />

10 −6<br />

10 −8<br />

10 −10<br />

10 −12<br />

<br />

M cut ∼ 10 −6 M ⊙<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

⨯<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

⨯<br />

K <br />

′<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

⨯<br />

Higgsino (Z g < 0.05)<br />

mixed (0.05 ≤ Z g ≤ 0.95)<br />

Gaugino (Z g > 0.95)<br />

I ′ J ∗ F ∗<br />

m χ [GeV]<br />

T. Bringmann, 2009<br />

<br />

<br />

<br />

<br />

⨯<br />

<br />

<br />

50 100 500 1000 5000<br />

(see also Pr<strong>of</strong>umo, Sigurdson<br />

& Kamionkowski, PRL ’06)<br />

Torsten Bringmann, University <strong>of</strong> Hamburg <strong>Thermal</strong> <strong>decoupling</strong> <strong>of</strong> <strong>WIMPs</strong> ‒<br />

10


Other DM candidates<br />

Formalism applicable to any DM candidate that is nonrelativistic<br />

before kinetic <strong>decoupling</strong><br />

Many <strong>WIMPs</strong> have<br />

smaller spread in<br />

than neutralinos, e.g.<br />

Kaluza-Klein DM<br />

(Number <strong>of</strong> free parameters<br />

in the theory…)<br />

M cut<br />

Mcut/M⊙<br />

10 −4<br />

10 −5<br />

Formalism does not allow to compute<br />

m LKP [GeV]<br />

T. Bringmann, 2009<br />

KK dark matter<br />

(mUED, ΛR = 20, 30, 40)<br />

WMAP 3σ<br />

10 −6 500 600 700 800 900 1000<br />

M cut<br />

if DM has never been in thermal equilibrium, like the axion<br />

for hot or warm DM<br />

decaying DM<br />

e.g.<br />

10<br />

20<br />

30<br />

Tkd [MeV]<br />

Torsten Bringmann, University <strong>of</strong> Hamburg <strong>Thermal</strong> <strong>decoupling</strong> <strong>of</strong> <strong>WIMPs</strong> ‒<br />

11


Survival <strong>of</strong> microhalos<br />

N-body simulations can<br />

follow evolution until z~26<br />

(for field halos and adopting a special multi-scale<br />

technique)<br />

Diemand, Moore & Stadel, Nature ’05<br />

General expectation afterwards: tidal disruption<br />

important, but compact core should survive...<br />

Berezinsky et al., PRD ’03, PRD ’08; Moore ’05, Diemand, Kuhlen & Madau ApJ<br />

’06; Green & Goodwin, MNRAS ’07, Goerdt et al., MNRAS ’07; ...<br />

...though prospects might be much worse.<br />

Zhao et al., ApJ ’07<br />

Details not well understood and still under debate,<br />

more input from simulations needed!<br />

Torsten Bringmann, University <strong>of</strong> Hamburg <strong>Thermal</strong> <strong>decoupling</strong> <strong>of</strong> <strong>WIMPs</strong> ‒<br />

12


Indirect detection <strong>of</strong> <strong>WIMPs</strong><br />

DM indirect detection:<br />

DM<br />

ark Matter Candidates 5<br />

e<br />

+<br />

_<br />

p<br />

"<br />

!<br />

DM<br />

!<br />

e +<br />

Total flux:<br />

Φ SM ∝〈ρ 2 χ〉 = (1 + BF)〈ρ χ 〉 2<br />

Fig.: Bergström, NJP ’09<br />

Figure 1. Illustration <strong>of</strong> the volumes in the solar neigbourhood entering the<br />

calculation <strong>of</strong> the average boost factor in the dark matter halo. Here we have in<br />

mind a dark matter particle <strong>of</strong> mass around 100 GeV annihilating into, from left to<br />

right, positrons, antiprotons, and gamma-rays. The difference in size for antiprotons<br />

and positrons depends on the different energy loss properties, as positrons at these<br />

energies radiate through synchrotron and inverse Compton emission much faster than<br />

do antiprotons.<br />

e influence Torsten <strong>of</strong> baryons Bringmann, could University give an enhanced <strong>of</strong> Hamburg density through adiabatic contraction<br />

<strong>Thermal</strong> <strong>decoupling</strong> <strong>of</strong> <strong>WIMPs</strong> ‒<br />

13


Indirect detection <strong>of</strong> <strong>WIMPs</strong><br />

DM indirect detection:<br />

DM<br />

ark Matter Candidates 5<br />

e<br />

+<br />

_<br />

p<br />

"<br />

!<br />

DM<br />

!<br />

e +<br />

Total flux:<br />

Φ SM ∝〈ρ 2 χ〉 = (1 + BF)〈ρ χ 〉 2<br />

“Boost factor”<br />

Fig.: Bergström, NJP ’09<br />

each decade in Msubhalo contributes about the same<br />

Figure 1. Illustration <strong>of</strong> the volumes in the solar neigbourhood entering the<br />

calculation <strong>of</strong> the average boost factor in the dark matter halo. Here we have in<br />

mind a dark matter particle <strong>of</strong> mass around 100 GeV annihilating into, from left to<br />

right, positrons, antiprotons, and gamma-rays. The difference in size for antiprotons<br />

and positrons depends on the different energy loss properties, as positrons at these<br />

(large extrapolations necessary!)<br />

energies radiate through synchrotron and inverse Compton emission much faster than<br />

do antiprotons.<br />

depends on uncertain form <strong>of</strong> microhalo pr<strong>of</strong>ile (<br />

(still) important to include realistic value for !<br />

e.g. Diemand, Kuhlen & Madau, ApJ ’07<br />

c v ...) and dN/dM<br />

M cut<br />

e influence Torsten <strong>of</strong> baryons Bringmann, could University give an enhanced <strong>of</strong> Hamburg density through adiabatic contraction<br />

<strong>Thermal</strong> <strong>decoupling</strong> <strong>of</strong> <strong>WIMPs</strong> ‒ 13


Observational prospects<br />

Is there a way to directly probe M cut<br />

Torsten Bringmann, University <strong>of</strong> Hamburg <strong>Thermal</strong> <strong>decoupling</strong> <strong>of</strong> <strong>WIMPs</strong> ‒<br />

14


Observational prospects<br />

Is there a way to directly probe M cut<br />

Point sources<br />

sources rather dim; difficult to resolve<br />

strong limits from background<br />

Pieri, Branchini & H<strong>of</strong>mann, PRL ’05<br />

Pieri, Bertone & Branchini, MNRAS ’08<br />

Kuhlen, Diemand & Madau, ApJ ’08<br />

Torsten Bringmann, University <strong>of</strong> Hamburg <strong>Thermal</strong> <strong>decoupling</strong> <strong>of</strong> <strong>WIMPs</strong> ‒<br />

14


Observational prospects<br />

Is there a way to directly probe M cut<br />

Point sources<br />

sources rather dim; difficult to resolve<br />

strong limits from background<br />

Proper motion<br />

strong limits from background<br />

only for rather large masses<br />

Pieri, Branchini & H<strong>of</strong>mann, PRL ’05<br />

Pieri, Bertone & Branchini, MNRAS ’08<br />

Kuhlen, Diemand & Madau, ApJ ’08<br />

Koushiappas, PRL ’06<br />

Ando et al., PRD ’08<br />

Torsten Bringmann, University <strong>of</strong> Hamburg <strong>Thermal</strong> <strong>decoupling</strong> <strong>of</strong> <strong>WIMPs</strong> ‒<br />

14


Observational prospects<br />

Is there a way to directly probe M cut<br />

Point sources<br />

sources rather dim; difficult to resolve<br />

strong limits from background<br />

Proper motion<br />

strong limits from background<br />

only for rather large masses<br />

Pieri, Branchini & H<strong>of</strong>mann, PRL ’05<br />

Pieri, Bertone & Branchini, MNRAS ’08<br />

Kuhlen, Diemand & Madau, ApJ ’08<br />

Koushiappas, PRL ’06<br />

Ando et al., PRD ’08<br />

Gravitational lensing<br />

virial radius much larger than Einstein radius<br />

multiple images <strong>of</strong> time-varying sources in<br />

strong lensing systems! Moustakas et al., 0902.3219<br />

Torsten Bringmann, University <strong>of</strong> Hamburg <strong>Thermal</strong> <strong>decoupling</strong> <strong>of</strong> <strong>WIMPs</strong> ‒<br />

14


Observational prospects<br />

Is there a way to directly probe M cut<br />

Point sources<br />

sources rather dim; difficult to resolve<br />

strong limits from background<br />

Proper motion<br />

strong limits from background<br />

only for rather large masses<br />

Pieri, Branchini & H<strong>of</strong>mann, PRL ’05<br />

Pieri, Bertone & Branchini, MNRAS ’08<br />

Kuhlen, Diemand & Madau, ApJ ’08<br />

Koushiappas, PRL ’06<br />

Ando et al., PRD ’08<br />

Gravitational lensing<br />

virial radius much larger than Einstein radius<br />

multiple images <strong>of</strong> time-varying sources in<br />

strong lensing systems! Moustakas et al., 0902.3219<br />

Anisotropy probes<br />

angular correlations in EGRB<br />

[again mostly large masses]<br />

γ -ray flux (one-point) probability function<br />

Ando et al., PRD ’06+’07<br />

Fornasa et al., PRD ’09<br />

Lee, Ando, & Kamionkowski, JCAP ’09<br />

Torsten Bringmann, University <strong>of</strong> Hamburg <strong>Thermal</strong> <strong>decoupling</strong> <strong>of</strong> <strong>WIMPs</strong> ‒<br />

14


Observational prospects<br />

Is there a way to directly probe M cut <br />

Point sources<br />

sources rather dim; difficult to resolve<br />

strong limits from background<br />

Proper motion<br />

strong limits from background<br />

only for rather large masses<br />

Waiting for clever ideas!<br />

Pieri, Branchini & H<strong>of</strong>mann, PRL ’05<br />

Pieri, Bertone & Branchini, MNRAS ’08<br />

Kuhlen, Diemand & Madau, ApJ ’08<br />

Koushiappas, PRL ’06<br />

Ando et al., PRD ’08<br />

Gravitational lensing<br />

virial radius much larger than Einstein radius<br />

multiple images <strong>of</strong> time-varying sources in<br />

strong lensing systems! Moustakas et al., 0902.3219<br />

Anisotropy probes<br />

angular correlations in EGRB<br />

[again mostly large masses]<br />

γ -ray flux (one-point) probability function<br />

Ando et al., PRD ’06+’07<br />

Fornasa et al., PRD ’09<br />

Lee, Ando, & Kamionkowski, JCAP ’09<br />

Torsten Bringmann, University <strong>of</strong> Hamburg <strong>Thermal</strong> <strong>decoupling</strong> <strong>of</strong> <strong>WIMPs</strong> ‒<br />

14


Conclusions<br />

Dark Matter decouples in two stages:<br />

chemical <strong>decoupling</strong><br />

kinetic <strong>decoupling</strong><br />

For <strong>WIMPs</strong>,<br />

<br />

<br />

relic density<br />

size <strong>of</strong> smallest mini-clumps<br />

10 −11 M ⊙ M cut 10 −3 M ⊙<br />

strong dependence on particle physics properties!<br />

An analytic treatment from first principles allows to<br />

determine the cut<strong>of</strong>f with a precision <strong>of</strong> O(T/m χ ) 10 −3<br />

Torsten Bringmann, University <strong>of</strong> Hamburg <strong>Thermal</strong> <strong>decoupling</strong> <strong>of</strong> <strong>WIMPs</strong> ‒<br />

15


Conclusions<br />

Dark Matter decouples in two stages:<br />

chemical <strong>decoupling</strong><br />

kinetic <strong>decoupling</strong><br />

For <strong>WIMPs</strong>,<br />

<br />

<br />

relic density<br />

size <strong>of</strong> smallest mini-clumps<br />

10 −11 M ⊙ M cut 10 −3 M ⊙<br />

strong dependence on particle physics properties!<br />

An analytic treatment from first principles allows to<br />

determine the cut<strong>of</strong>f with a precision <strong>of</strong> O(T/m χ ) 10 −3<br />

Observational consequences<br />

determination <strong>of</strong> “boost factor” for indirect DM detection<br />

direct measurement <strong>of</strong> cut<strong>of</strong>f: challenging but not impossible<br />

Torsten Bringmann, University <strong>of</strong> Hamburg <strong>Thermal</strong> <strong>decoupling</strong> <strong>of</strong> <strong>WIMPs</strong> ‒<br />

15


Conclusions<br />

Dark Matter decouples in two stages:<br />

chemical <strong>decoupling</strong><br />

kinetic <strong>decoupling</strong><br />

For <strong>WIMPs</strong>,<br />

<br />

<br />

relic density<br />

size <strong>of</strong> smallest mini-clumps<br />

10 −11 M ⊙ M cut 10 −3 M ⊙<br />

strong dependence on particle physics properties!<br />

An analytic treatment from first principles allows to<br />

determine the cut<strong>of</strong>f with a precision <strong>of</strong> O(T/m χ ) 10 −3<br />

Observational consequences<br />

determination <strong>of</strong> “boost factor” for indirect DM detection<br />

direct measurement <strong>of</strong> cut<strong>of</strong>f: challenging but not impossible<br />

A new window into the particle<br />

nature <strong>of</strong> dark matter!<br />

Torsten Bringmann, University <strong>of</strong> Hamburg <strong>Thermal</strong> <strong>decoupling</strong> <strong>of</strong> <strong>WIMPs</strong> ‒<br />

15

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!