04.01.2015 Views

An Invitation to Random Schr¨odinger operators - FernUniversität in ...

An Invitation to Random Schr¨odinger operators - FernUniversität in ...

An Invitation to Random Schr¨odinger operators - FernUniversität in ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

16<br />

(A − z 1 ) −1 − (A − z 2 ) −1 = (z 1 − z 2 ) (A − z 1 ) −1 (A − z 2 ) −1 (3.17)<br />

and, if D(A) = D(B),<br />

= (z 1 − z 2 ) (A − z 2 ) −1 (A − z 1 ) −1 (3.18)<br />

(A − z) −1 − (B − z) −1 = (A − z) −1 (B − A) (B − z) −1 (3.19)<br />

For z ∈ C and M ⊂ C we def<strong>in</strong>e<br />

= (B − z) −1 (B − A) (A − z) −1 (3.20)<br />

dist(z, M) = <strong>in</strong>f{|z − ζ|; ζ ∈ M} (3.21)<br />

It is not hard <strong>to</strong> see that for any self adjo<strong>in</strong>t opera<strong>to</strong>r A and any z ∈ ρ(A) the<br />

opera<strong>to</strong>r norm ‖(A − z) −1 ‖ of the resolvent is given by<br />

‖(A − z) −1 ‖ =<br />

1<br />

dist(z, σ(A)) . (3.22)<br />

In particular, for a self adjo<strong>in</strong>t opera<strong>to</strong>r A and z ∈ C \ R<br />

‖(A − z) −1 ‖ ≤<br />

1<br />

Im z . (3.23)<br />

For the rest of this section we assume that the opera<strong>to</strong>r A is bounded. In this case,<br />

polynomials of the opera<strong>to</strong>r A can be def<strong>in</strong>ed straightforwardly<br />

A 2 ϕ = A ( A(ϕ) ) (3.24)<br />

(<br />

A 3 ϕ = A A ( A(Aϕ) )) etc. (3.25)<br />

More generally, if P is a complex valued polynomial <strong>in</strong> one real variable, P (λ) =<br />

∑ n<br />

j=0 a nλ j then<br />

It is a key observation that<br />

P (A) =<br />

n∑<br />

a n A j . (3.26)<br />

j=0<br />

‖P (A)‖ =<br />

sup<br />

λ∈σ(A)<br />

|P (λ)| (3.27)<br />

Let now f be a function <strong>in</strong> C ( σ(A) ) the complex-valued cont<strong>in</strong>uous functions on<br />

(the compact set) σ(A). The Weierstraß approximation theorem tells us, that on<br />

σ(A) the function f can be uniformly approximated by polynomials. Thus us<strong>in</strong>g<br />

(3.27) we can def<strong>in</strong>e the opera<strong>to</strong>r f(A) as a norm limit of polynomials P n (A).<br />

These opera<strong>to</strong>rs satisfy

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!