06.01.2015 Views

Lecture 9: Oceanic Basalts

Lecture 9: Oceanic Basalts

Lecture 9: Oceanic Basalts

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Lecture</strong> 9:<br />

<strong>Oceanic</strong> <strong>Basalts</strong>


So-called “spidergrams” – concentration normalised to estimate of “primitive<br />

mantle”.<br />

Mostly chondrite-normalised except for volatile elements<br />

Incompatible Compatible Unusual<br />

to plot<br />

major<br />

elements


Rb, Sr, Nd and Sm are all incompatible during mantle melting i.e. they<br />

partition preferentially into the melt phase.<br />

Nd is more incompatible than Sm and Rb is more incompatible than Sr<br />

Normalised<br />

Concentration<br />

Source<br />

1<br />

Melt<br />

LaNd Sm<br />

Rb Sr<br />

Lu<br />

Residue<br />

1<br />

1<br />

La Nd Sm Lu<br />

Rb Sr<br />

Low Sm/Nd ► low 143 Nd/ 144 Nd<br />

High Rb/Sr ► high 87 Sr/ 86 Sr<br />

La Nd Sm Lu<br />

Rb Sr<br />

High Sm/Nd ► high 143 Nd/ 144 Nd<br />

Low Rb/Sr ► low 87 Sr/ 86 Sr


0.5130<br />

0.5120<br />

ε<br />

143<br />

Nd = {<br />

Nd/ 144 Nd s -1} x 10 4<br />

143<br />

Nd/ 144 Nd CHUR<br />

0.5110<br />

Residual mantle<br />

143 Nd/<br />

144 Nd<br />

0.5100<br />

0.5090<br />

0.5080<br />

Partial melts of<br />

the mantle have<br />

lower Sm/Nd than<br />

their sources<br />

because D Nd<br />


Concentrate solely on oceanic basalts:<br />

No possibility of sampling continental material en<br />

route to eruption – any isotopic variation observed<br />

can be safely attributed to the mantle source<br />

Two main classes of oceanic basalts:<br />

Mid-Ocean Ridge <strong>Basalts</strong> – MORB<br />

Ocean Island <strong>Basalts</strong> - OIB


Basalt & Source<br />

La Lu<br />

MORB<br />

Melts have high Rb/Sr and low<br />

Sm/Nd, so evolve high 87 Sr/ 86 Sr<br />

and low 143 Nd/ 144 Nd<br />

143<br />

Nd/ 144 Nd<br />

Depleted<br />

Quadrant<br />

CHUR<br />

Residues have low Rb/Sr and<br />

high Sm/Nd, so evolve low<br />

87<br />

Sr/ 86 Sr and high 143 Nd/ 144 Nd<br />

or ε Nd<br />

Continental<br />

Crust<br />

High 143 Nd/ 144 Nd – ancient<br />

LREE depletion<br />

Enriched<br />

Quadrant<br />

La<br />

Lu<br />

Low 143 Nd/ 144 Nd – ancient<br />

LREE enrichment<br />

87<br />

Sr/ 86 Sr<br />

or ε Sr


MORB –<br />

Relatively homogeneous source.<br />

Depleted in incompatible elements and 87 Sr/ 86 Sr and<br />

143<br />

Nd/ 144 Nd indicate ancient “time-integrated”<br />

depletion.<br />

MORB sample upper mantle that was depleted in<br />

incompatible elements by the extraction of the<br />

continental crust.<br />

Upper mantle represents the complementary reservoir<br />

from which continental crust was extracted.


Source<br />

Basalt<br />

MORB<br />

La<br />

OIB<br />

Lu<br />

La<br />

Lu<br />

Many OIB fall between CHUR<br />

and MORB implying a source<br />

that is depleted relative to<br />

CHUR but less depleted than<br />

the MORB source.<br />

143<br />

Nd/ 144 Nd<br />

or ε Nd<br />

Depleted<br />

Quadrant<br />

CHUR<br />

Continental<br />

Crust<br />

Enriched<br />

Quadrant<br />

La<br />

Lu<br />

However, OIB magmas tend<br />

to be enriched in<br />

incompatible trace elements<br />

So, Rb/Sr and Sm/Nd<br />

observed in OIB do not<br />

reflect the “time-integrated”<br />

Rb/Sr and Sm/Nd of the OIBsource<br />

mantle represented<br />

by the isotope data.<br />

87<br />

Sr/ 86 Sr<br />

or ε Sr


OIB –<br />

Source<br />

La Lu<br />

LREE depleted<br />

Basalt<br />

La Lu<br />

LREE enriched<br />

Apparent paradox is mainly due to<br />

differences in the degree of partial<br />

melting.<br />

If OIB represent small melt fractions<br />

than MORB, then even a relatively<br />

depleted source can yield LREEenriched<br />

melts – especially so if<br />

melting starts in the garnet field<br />

because HREE are compatible in<br />

garnet.<br />

However, isotope data still indicate<br />

that OIB sample (or preserve) a<br />

greater variety of mantle<br />

heterogeneity.


MORB<br />

OIB<br />

143<br />

Nd/ 144 Nd<br />

Depleted<br />

Quadrant<br />

CHUR<br />

or ε Nd<br />

Enriched<br />

Quadrant<br />

Continental<br />

Crust<br />

87<br />

Sr/ 86 Sr<br />

OIB MORB<br />

Continental<br />

Crust<br />

or ε Sr<br />

650 km<br />

Transition<br />

Zone<br />

<br />

Depleted<br />

Upper Mantle<br />

Primordial<br />

Lower Mantle


DMM<br />

CHUR<br />

HIMU<br />

EM2<br />

EM1<br />

From: Hofmann, Nature 385, 219-229 (1997)


OIB Andean Margin MORB IAB OIB<br />

Well Stirred<br />

Depleted Upper<br />

Mantle<br />

Recycled<br />

Ocean<br />

Crust<br />

Less Well<br />

Stirred<br />

Ancient “streaks”<br />

And “blobs”


Eiler et al. (1996) Geochim Cosmochim Acta 61 2281-2293


143 Nd/<br />

144 Nd<br />

OIB<br />

Peridotite<br />

Massifs<br />

87<br />

Sr/ 86 Sr<br />

Zindler & Hart (1984) Annu. Rev. Earth Planet. Sci. 14, 493-571


Continental Crust


15.70<br />

15.60<br />

15.50<br />

15.40<br />

15.30<br />

8.5<br />

Northern Hemisphere Reference Line<br />

8.4<br />

Geochron<br />

8.3<br />

Δ7/4<br />

μ = 8.2<br />

17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5<br />

206 Pb/<br />

204 Pb<br />

207 Pb/<br />

204 Pb


The DUPAL Anomaly<br />

Δ7/4 > 11<br />

Δ7/4>3<br />

Δ7/4 > 7<br />

Hart Nature 309, 753-757 (1984)


Mantle Models<br />

Fine scale<br />

heterogeneity<br />

Large scale<br />

layering<br />

Zindler et al (1984) Earth Planet. Sci. Lett. 70, 175-195


250<br />

N<br />

200<br />

150<br />

MORB<br />

100<br />

50<br />

OIB<br />

Primordial<br />

He > 50 R a<br />

0<br />

10 20 30<br />

3<br />

He/ 4 He (R/R a )<br />

MORB = 8 ± 2Ra<br />

Some OIB (though by no means all) > 8 Ra


The Geochemical “Standard Model”<br />

Continental Crust<br />

&<br />

Lithospheric Mantle<br />

Best estimates suggest only 1/3-1/2 of<br />

mantle is depleted to form Continents.<br />

Depleted Upper Mantle<br />

Source of MORB and<br />

apparently devoid of high<br />

3<br />

He/ 4 He<br />

Primitive Lower Mantle<br />

Somewhere there is a source of<br />

primitive He which suggests<br />

mantle that has never melted


Kárason & van der Hilst (2000)<br />

AGU Monog. 121, 277-288


Kellogg et al. Science 283, 1881-1884 (1999)


A Numerical Model<br />

(Van Keken and Ballentine 1998; 1999)<br />

Mid Ocean<br />

Ridges<br />

Formulation:<br />

330,000 Tracers<br />

U+Th+K production of Heat, Ar and He.<br />

Degassing<br />

Phase changes and P,T dependant rheology<br />

Internal heating and U+Th concentration<br />

Secular cooling of mantle and core<br />

Benchmarks<br />

Surface heat flow<br />

Plate velocity<br />

Viscosity profile<br />

Caveat<br />

Not spherical<br />

Low effective temperature dependence<br />

No continental crust formation


What we think we know:<br />

The depleted upper mantle is broadly complementary to the continents.<br />

The uppermost mantle (MORB source) is fairly homogeneous and<br />

devoid of primordial He.<br />

The OIB source is more heterogeneous and includes both enriched and<br />

primordial material.<br />

Possible enriched components include subducted ocean crust,<br />

terrigeneous and pelagic sediments, delaminated continental mantle<br />

and intra-mantle differentiates.<br />

The heterogeneities need to persist for Ga to evolve their isotopic<br />

signatures. Until recently this was thought to require them to be large<br />

but this is now less clear.<br />

A source of high 3 He/ 4 He is required and this is most likely primordial<br />

mantle that has never melted. Whether this is a discrete layer or<br />

admixed into the mantle remains controversial

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!