06.01.2015 Views

Solutions - Physics

Solutions - Physics

Solutions - Physics

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

dx!<br />

dt !<br />

"! # " t #<br />

i<br />

mi<br />

f xi<br />

g<br />

<br />

dx!<br />

i<br />

gt " #<br />

! dt : Integrable (3)<br />

f<br />

<strong>Physics</strong> 301: Classical Mechanics " x!<br />

i#<br />

m<br />

Problem<br />

i<br />

Set 2 Oct. 12, 2011 <br />

c) Fx " , x # ! f " x # g " x # ! m x!! : Not integrable (4)<br />

! !<br />

i<br />

i i i i i<br />

2-2. Using spherical coordinates, we can write the force applied to the particle as<br />

F! F e & F e & F e (1)<br />

r<br />

r<br />

$ $ % %<br />

But since the particle is constrained to move on the surface of a sphere, there must exist a<br />

reaction force ' e that acts on the particle. Therefore, the total force acting on the particle is<br />

F r r<br />

Ftotal ! F$ e$ & F% e % ! m!!r (2)<br />

The position vector of the particle is<br />

r ! Re (3)<br />

where R is the radius of the sphere and is constant. The acceleration of the particle is<br />

r<br />

30 CHAPTER 2<br />

r<br />

a! !! r ! R!! e<br />

(4)<br />

We must now express e!!<br />

r<br />

in terms of e<br />

r<br />

, e ! , and e " . Because the unit vectors in rectangular<br />

coordinates, e<br />

1<br />

, e2<br />

, e<br />

3<br />

, do not change with time, it is convenient to make the calculation in<br />

terms of these quantities. Using Fig. F-3, Appendix F, we see that<br />

29<br />

er<br />

$ e1 sin ! cos "% e2 sin ! sin " % e3<br />

cos ! #<br />

&<br />

e!<br />

$ e<br />

1<br />

cos ! cos "% e2 cos ! sin " ' e3<br />

sin ! &<br />

(5)<br />

&<br />

&<br />

e e sin " e cos "<br />

" $'<br />

1<br />

%<br />

2<br />

&(<br />

Then<br />

) ! !<br />

* )<br />

!<br />

!<br />

*<br />

e!<br />

$ e '" sin ! sin "% ! cos ! cos " % e ! cos ! sin "% " sin ! cos " ' e ! ! sin !<br />

r<br />

1 2<br />

$ e ! " sin ! % e ! !<br />

" !<br />

3<br />

(6)<br />

Similarly,<br />

e! $' e ! ! % e ! " cos ! (7)<br />

! r "<br />

e! $' e ! " sin ! ' e ! " cos ! (8)<br />

" r<br />

!<br />

And, further,<br />

)<br />

! 2 2 2 2<br />

" sin ! ! ! * )!! ! ! " sin ! cos ! * ) 2 ! !"!<br />

cos ! " sin ! *<br />

!! e $' e % % e ' % e % !! (9)<br />

r r ! "<br />

which is the only second time derivative needed.<br />

The total force acting on the particle is<br />

and the components are<br />

F<br />

!<br />

F<br />

"<br />

F $ mr!! $ mR!!e (10)<br />

total<br />

$ mR '<br />

)!! ! ! " 2 sin ! cos ! *<br />

) 2! !"! cos ! !! " sin !*<br />

$ mR %<br />

r<br />

(11)


which 2-4. gives One of the the correct balls’ result, 2<br />

height as can in be (4) described for the limit by k y, % y0.<br />

' v t & gt . The amount of time it<br />

0 0<br />

2<br />

takes to rise and fall to its initial height is therefore given by 2v0<br />

g . If the time it takes to cycle<br />

2-10. the ball through The differential the juggler’s equation hands we is are ( % asked 0.9 s , to then solve there is Equation must be 3 (2.22), balls which in the air is x"" during $% k"x<br />

. that<br />

Using time (. the A single given ball values, must the stay plots in are the shown air for at in least the figure. 3(, so the Of course, condition the is reader 2v0<br />

g will ) 3(<br />

not , or be able<br />

to distinguish & 1between the results shown here and the analytical results. The reader will have to<br />

v 0<br />

) 13.2 m * s .<br />

take the word of the author that the graphs were obtained using numerical methods on a<br />

%8<br />

computer. 2-5. The results obtained were at most within 10 of the analytical solution.<br />

flightpath v vs t<br />

10<br />

v (m/s)<br />

5<br />

N<br />

e r<br />

0 5 10 15 20 25 30<br />

plane<br />

mg<br />

t (s)<br />

point of maximum<br />

accelerationx vs t<br />

a) From the force diagram we have & m %! mv 2 R"<br />

2<br />

m% '! mv R"<br />

50<br />

r<br />

N g e . The acceleration that the pilot feels is<br />

N g e , which has a maximum magnitude at the bottom of the maneuver.<br />

b) If the acceleration felt by the pilot must be less than 9g, then we have<br />

& 1<br />

! 3* 330 mt *(s)<br />

s "<br />

2<br />

v<br />

R ) %<br />

8g<br />

8* 9.8 m * s<br />

A circle smaller than this will result in pilot blackout.<br />

2-6.<br />

x (m)<br />

v (m/s)<br />

100<br />

0<br />

0 5 10 15 20 25 30<br />

10<br />

5<br />

v vs x<br />

& 2<br />

0<br />

0 20 40 60 80<br />

x (m)<br />

r<br />

! 12.5 km<br />

(1)<br />

100<br />

2-11. The equation of motion is<br />

2<br />

Let the origin of our coordinate system be<br />

dx<br />

at the tail<br />

2<br />

m $% kmv end # mgof the cattle (or the closest cow/bull). (1)<br />

2<br />

dt<br />

a) The bales are moving initially at the speed of the plane when dropped. Describe one of<br />

This NEWTONIAN<br />

these<br />

equation MECHANICS—SINGLE<br />

bales by<br />

can<br />

the parametric<br />

be solved exactly PARTICLE<br />

equations<br />

in the same way as in problem 2-12 and we find 37<br />

x% x0 ' v0t<br />

(1)<br />

2<br />

1 ! g#<br />

kv "<br />

log<br />

0<br />

x $ % 2 &<br />

(2)<br />

2k ' g#<br />

kv (<br />

where the origin is taken to be the point at which v $ v0<br />

so that the initial condition is<br />

xv ) $ v 0 * $ 0 . Thus, the distance from the point v $ v0<br />

to the point v $ v1<br />

is<br />

2<br />

1 ! g#<br />

kv "<br />

0<br />

sv ) 0<br />

+ v1*<br />

$ log % 2 &<br />

2k ' g#<br />

kv1<br />

(<br />

(3)<br />

2-12. The equation of motion for the upward motion is<br />

Using the relation<br />

we can rewrite (1) as<br />

2<br />

dx<br />

2<br />

$# mkv # mg (1)<br />

2<br />

m<br />

dt<br />

2<br />

d x dv dv dx dv<br />

v<br />

2<br />

dt dt dx dt dx<br />

$ $ $ (2)


d<br />

max<br />

2<br />

v0<br />

%<br />

g $<br />

" 1'<br />

sin #<br />

2-15.<br />

mg sin θ<br />

mg<br />

θ<br />

The equation of motion along the plane is<br />

Rewriting this equation in the form<br />

dv<br />

m mg km<br />

dt<br />

2<br />

% sin 6 & v (1)<br />

1 dv<br />

% dt<br />

(2)<br />

42 k g<br />

2<br />

CHAPTER 2<br />

sin 6 & v<br />

k<br />

We know that the velocity of the particle continues to increase with time (i.e., dv dt ! 0 ), so that<br />

2<br />

" g k# sin v<br />

find<br />

$ ! . Therefore, we must use Eq. (E.5a), Appendix E, to perform the integration. We<br />

1 1<br />

v<br />

tanh<br />

k g * g +<br />

sin $ * sin $ +<br />

k<br />

, k -<br />

% 1 & ' ( )<br />

The initial condition v(t = 0) = 0 implies C = 0. Therefore,<br />

" gk #<br />

g<br />

v ( sin $ tanh sin $ t<br />

k<br />

t<br />

C<br />

(3)<br />

( dx<br />

dt<br />

(4)<br />

We can integrate this equation to obtain the displacement x as a function of time:<br />

Using Eq. (E.17a), Appendix E, we obtain<br />

" gk #<br />

g<br />

x( sin $ tanh sin $<br />

k<br />

. t dt<br />

x (<br />

" gk sin $ t#<br />

g ln cosh<br />

sin $<br />

k<br />

gk sin $<br />

) C/ (5)<br />

The initial condition x(t = 0) = 0 implies C/ = 0. Therefore, the relation between d and t is<br />

From this equation, we can easily find<br />

" gk $ t#<br />

1 d ( ln cosh sin<br />

(6)<br />

k<br />

" e dk<br />

#<br />

% 1<br />

cosh<br />

t ( (7)<br />

gk sin $<br />

2-16. The only force which is applied to the article is the component of the gravitational force<br />

along the slope: mg sin 0. So the acceleration is g sin 0. Therefore the velocity and displacement<br />

along the slope for upward motion are described by:<br />

" 0#<br />

where the initial conditions vt " ( 0# ( v0<br />

and " 0#<br />

v( v0 % g sin t<br />

(1)<br />

1<br />

2<br />

x( v0t % " g sin 0 # t<br />

(2)<br />

2<br />

xt( ( 0 have been used.<br />

At the highest position the velocity becomes zero, so the time required to reach the highest


" #"<br />

2<br />

2!gs VB<br />

VB<br />

#<br />

2!<br />

gs<br />

V # 15.6 m/sec<br />

B<br />

2-25.<br />

a) At A, the forces on the ball are:<br />

N<br />

The track counters the gravitational force and provides centripetal acceleration<br />

Get v by conservation of energy:<br />

So<br />

b) At B the forces are:<br />

mg<br />

2<br />

N" mg # mv R<br />

E # T $ U # 0 $ mgh<br />

top top top<br />

1<br />

E T U mv<br />

2<br />

2<br />

A<br />

#<br />

A<br />

$<br />

A<br />

# $<br />

E # E % v # 2gh<br />

top<br />

A<br />

N # mg $ m2gh R<br />

& 2h'<br />

N # mg( 1 $<br />

*<br />

)<br />

R +<br />

0<br />

N<br />

45˚<br />

mg<br />

2<br />

N mv R mg<br />

Get v by conservation of energy. From a), Etotal<br />

1 2<br />

At B, E# m v $ mgh-<br />

2<br />

# $ cos 45,<br />

2<br />

# mv R $ mg 2<br />

(1)<br />

# mgh .


R 2<br />

R<br />

R 45˚<br />

Rcos 45˚ = R 2<br />

h′<br />

So<br />

Etotal ! TB " UB<br />

Solving for<br />

2<br />

v<br />

becomes:<br />

R<br />

1<br />

R ! " h# or h# ! R $ ' 1 &<br />

%<br />

2<br />

)<br />

(<br />

2 *<br />

mgh mgR $ 1 % 1<br />

! ' 1 & "<br />

)<br />

(<br />

2 * 2<br />

mv<br />

2<br />

Substituting into (1):<br />

1<br />

2 + $ %<br />

- gh & gR' 1& (<br />

, ! v<br />

) 2 * .<br />

/ 0<br />

2<br />

2h<br />

3<br />

N mg + $ %<br />

! - "' & 2(<br />

,<br />

R ) 2 *.<br />

/ 0<br />

c) From b)<br />

B<br />

! 2 + h & R " R 2,<br />

/ 0<br />

2<br />

v g<br />

d) This is a projectile motion problem<br />

1 2 12<br />

v! + 2g h & R " R 2 ,<br />

/ 0<br />

45˚<br />

B<br />

45˚<br />

Put the origin at A.<br />

The equations:<br />

become<br />

Solve (3) for t when y = 0 (ball lands).<br />

A<br />

x! x " v t<br />

0 x0<br />

1<br />

y! y0 " vy0t & gt<br />

2<br />

2<br />

R v<br />

x ! " B<br />

t (2)<br />

2 2<br />

v B<br />

1 2<br />

# (3)<br />

y! h " t & gt<br />

2 2


2<br />

gt ! 2 vBt ! 2h#<br />

" 0<br />

t "<br />

2<br />

2<br />

B<br />

2<br />

B<br />

8<br />

v $ v % gh#<br />

2g<br />

We discard the negative root since it gives a negative time. Substituting into (2):<br />

2<br />

NEWTONIAN MECHANICS—SINGLE PARTICLE R v &<br />

B<br />

2 vB<br />

$ 2vB<br />

% 8gh#<br />

'<br />

71<br />

x " % ( )<br />

2 2 ( 2g<br />

*<br />

)<br />

+<br />

The equilibrium point (where dU d! " 0 ) that we wish to look at is clearly ! = 0. At that point,<br />

Using the previous expressions for v B<br />

and h# yields<br />

we have dU 2 d! 2 " mg # R % b 2$<br />

, which is stable for R&<br />

b 2 and unstable for R' b (2 . We can<br />

12<br />

use the results of Problem 2-46 & 2 3 2 2 '<br />

x" to obtain<br />

, 2 ! 1-R<br />

stability<br />

% h %<br />

(<br />

h<br />

for<br />

!<br />

the<br />

R<br />

case<br />

% 2<br />

R<br />

R<br />

" b 2 , where we will find that<br />

* 2 )<br />

the first non-trivial result is in fourth order and is negative. We therefore + have an equilibrium at<br />

! = 0 which is stable for R& b 2 and unstable for R) b 2 .<br />

e) Ux ( )" mgy( x)<br />

, with y(0)<br />

" h, so U( x ) has the shape of the track.<br />

<br />

3 2<br />

2-43. F "% kx + kx *<br />

2-26. All of the kinetic energy of the block goes into compressing the spring, so that<br />

2 2<br />

mv 2" kx 2, or x" v m k ! 23 . m , where x is the maximum<br />

4<br />

compression and the given<br />

values have been substituted. When U # x 1 2 1 x<br />

$ "%<br />

there , is F dx "<br />

2<br />

a rough 2 kx %<br />

floor, 4<br />

k it * exerts a force / mg k<br />

in a direction<br />

that opposes the block’s velocity. It therefore does an amount of work 1 / mgd k<br />

in slowing the<br />

2<br />

To sketch U(x), we note that for small x, U(x) behaves like the parabola kx . For large x, the<br />

block down after traveling across the floor a distance d. After 2 m of floor, 2 the block has energy<br />

mv<br />

2 2 ! /<br />

kmgd<br />

, which now goes into<br />

4<br />

1 x compressing the spring and still overcoming the friction<br />

behavior is determined by % k<br />

2<br />

on the floor, which is kx % 4/<br />

mgx * . Use of the quadratic formula gives<br />

2 2<br />

k<br />

U(x)<br />

2 2<br />

/ mg 0/ mg1<br />

mv 2/<br />

mgd<br />

x "! % 2 3 % !<br />

(1)<br />

k 4 k 5 k k<br />

E 0<br />

Upon substitution of the given values, the result is ! 1.12 m.<br />

E 1<br />

E 2<br />

2-27.<br />

x 4<br />

x 5<br />

x<br />

x 1 x 2<br />

x 3 E 3<br />

= 0<br />

0.6 m<br />

E 4<br />

1 2<br />

To lift a small mass dm of rope onto the table, E" mv an amount + U # x$<br />

2<br />

of work dW " , dm- g , z0<br />

! z-<br />

must be<br />

done on it, where z<br />

0<br />

" 06 . m is the height of the table. The total amount of work that needs to be<br />

For E " E 0<br />

, the motion is unbounded; the particle may be anywhere.<br />

done is the integration over all the small segments of rope, giving<br />

For E " E 1<br />

(at the maxima in U(x)) the particle is at a point of unstable equilibrium. It may<br />

2<br />

z0<br />

( ) ( ) / gz<br />

remain at rest where it is, but if perturbed<br />

0<br />

W " 6<br />

slightly, / dz g z it<br />

0<br />

! will z " move away from the equilibrium. (1)<br />

0 2<br />

dU<br />

When What is we the substitute value of E/ 1" mL We find ", 04 . the kgx -<br />

values , 4 m-<br />

, by we setting obtain W ! 0<br />

dx " . 18 . J .<br />

x = 0, - * are the equilibrium points<br />

3 2<br />

0 " kx % kx *<br />

1 2 1 2 1<br />

U# -* $ " E1<br />

" k* % k*<br />

" k*<br />

2<br />

2 4 4<br />

For E " E 2<br />

, the particle is either bounded and oscillates between % x2<br />

and x 2<br />

; or the particle<br />

comes in from -. to - and returns to -..<br />

x 3


m<br />

1<br />

% m2<br />

m1 % m2<br />

At equilibrium, like in previous problem, we have<br />

72 CHAPTER 2<br />

2 2<br />

32<br />

Gm1m2 m1v1 Gm2 2 r1<br />

2 d<br />

# $ v1<br />

# $ " # ! #<br />

!<br />

2<br />

For E , the particle d is either r at the stable d( mequilibrium % m ) point v x = 0, Gm or ( beyond % m ) x!"<br />

x .<br />

3<br />

! 0<br />

1 1 2 1 1 2<br />

4<br />

The For E result , the will particle be the<br />

4<br />

comes same in if from we consider "# to " the x5<br />

and equilibrium returns. of forces acting on 2nd star.<br />

76 CHAPTER 2<br />

2-44. 2-50.<br />

So one can see that in this problem x = a and x = –a are unstable equilibrium positions, and x = 0<br />

is a stable t<br />

d &<br />

equilibrium mv<br />

0 '<br />

position.<br />

& mv<br />

0 ' mv<br />

0 T θ T Ft<br />

a)<br />

# F$ d # # Ft $ v()<br />

t #<br />

dt ( 2 2 T 2<br />

v ) - (<br />

0 v )<br />

2 2<br />

v<br />

2 F t<br />

( 1* ) (<br />

4Ux<br />

0<br />

1* )<br />

k 4U0<br />

c) Around the 1 *<br />

m<br />

2 origin, F<br />

2 2<br />

0<br />

%<br />

2<br />

+ c , "# kx<br />

+ 2c , m 1 c m 2<br />

a<br />

$ # % ! & m<br />

& 2 ma c<br />

d) To escape to infinity from x = 0, the t m 1 particle g 2 m 2 g 2 2<br />

c & needs to<br />

2 Fget t at least ' to the peak of the potential,<br />

$ xt ()#-<br />

v( t)<br />

dt # ( m0 % * m<br />

2<br />

2 0)<br />

From the figure, the forces acting mv on the 0 masses Fgive + the equations c , of motion<br />

min<br />

2U<br />

0<br />

& Umax & U0 % vmin<br />

&<br />

2 m1 !! x1<br />

! m1g<br />

$ T m<br />

b)<br />

(1)<br />

e) From energy conservation, we v have m x !! m g T %<br />

(2)<br />

2 2 !<br />

2<br />

$ 2 cos<br />

2 2 2<br />

2<br />

where x2<br />

is related to x1<br />

by mvthe Ux<br />

relation 0<br />

mvmin<br />

dx 2U<br />

0<br />

' x (<br />

) & % & v &<br />

2 * 1 #<br />

2<br />

2 a 2 dt m ,<br />

+<br />

a -<br />

We note that, in the ideal case, because & b$<br />

x ' 2<br />

1 2<br />

xthe 2<br />

! initial velocity $ d is the escape velocity found in d), (3)<br />

ideally x is always smaller or equal to a, then from 4 the above expression,<br />

cos ) 1<br />

2* + . At equilibrium, !! x1 ! x!! 2 ! 0 and T ! ' mt<br />

1<br />

g . This 8Ugives as the equilibrium<br />

0<br />

x<br />

a exp ' (<br />

2<br />

* t<br />

( 2 + # 1<br />

values c) From for the a) we coordinates find m dx ma a ) x<br />

*<br />

, , ma - +<br />

-<br />

t& ln ( t)<br />

2<br />

2U . & % x &<br />

0 '<br />

0<br />

x ( 8U0<br />

a<br />

vm<br />

# x4<br />

md ' '<br />

1<br />

8U<br />

( (<br />

0 1<br />

0<br />

* #<br />

,<br />

2 + x10<br />

t! # b$<br />

exp t 1<br />

(4)<br />

4m1 $ m<br />

2 2<br />

a - * )<br />

2<br />

v<br />

,<br />

*<br />

,<br />

+<br />

ma - +<br />

-<br />

2<br />

F 1 *<br />

2<br />

x<br />

c<br />

md<br />

2<br />

x20<br />

!<br />

(5)<br />

NEWTONIAN F<br />

2<br />

Now if 10<br />

4m1 $ m<br />

2 2<br />

m # MECHANICS—SINGLE , then<br />

PARTICLE 75<br />

0<br />

We recognize that our expression x 10<br />

is identical to Equation (2.105), and has the same<br />

requirement that m2 m<br />

1<br />

, 2 for<br />

c<br />

when v!<br />

c 2 , we have t ! the ! 0.55 equilibrium year to exist. When the system is in motion, the<br />

descriptive equations are obtained<br />

10 3<br />

from the force laws:<br />

99c<br />

t<br />

when v = 99% c, we have t ! ! 6.67 years m2&<br />

b$<br />

x1'<br />

10 199 m1( !! x1<br />

$ g) ! ( x!! 2 $ g)<br />

(6)<br />

4x2<br />

2-53.<br />

To examine stability, let us expand the coordinates about their equilibrium values and look at<br />

their 2-51. F is a behavior conservative for small force displacements. when there exists Let a - non-singular<br />

1<br />

. x1 $ x10<br />

and potential -<br />

2<br />

. x2 $ function x2<br />

0<br />

. In the U(x) calculations, satisfying<br />

F(x) = –grad(U(x)). So if F is conservative, its components satisfy the following relations<br />

take terms dv in -<br />

1<br />

and -<br />

2<br />

, and their time derivatives, only up to first order. Equation (3) then<br />

2 dv b<br />

mv0<br />

a) m !" bv # ! " dt # v()<br />

t !<br />

2<br />

becomes dt-2 " $ (m1 m% 2v )-<br />

1<br />

. When %<br />

m written in btv terms / F of these new coordinates, the equation of<br />

0<br />

$ m/<br />

F<br />

x y<br />

&<br />

motion becomes<br />

/ y / x<br />

999m<br />

Now let v(t) = v 0<br />

/1000 , one finds t ! ! 138.7 hours<br />

2 2<br />

32<br />

and so on.<br />

.<br />

vb<br />

0<br />

g&<br />

4m1 $ m2<br />

!!<br />

'<br />

- !$<br />

1<br />

1<br />

4mm m / m d -<br />

(7)<br />

a) In this case all relations above are satisfied, so F is indeed a conservative force.<br />

and % ! d (& b$<br />

x '<br />

b)<br />

t<br />

m & btv0<br />

$ m'<br />

! vdt ! ( )<br />

%<br />

x() t<br />

ln<br />

b * m +<br />

0<br />

v<br />

&<br />

1 2 1 2<br />

2<br />

/ U<br />

bx<br />

F ( , )<br />

x<br />

&# & ayz ) bx ) c % U &# ayzx # # cx ) f1 y z<br />

(1)<br />

/ x<br />

2<br />

where f ( y, z)<br />

1<br />

is a function of only y and z<br />

/ U<br />

F ( , )<br />

y<br />

&# & axz ) bz % U & # ayzx # byz ) f<br />

2 x z<br />

(2)<br />

/ y<br />

We use the value of t found in question a) to find the corresponding distance<br />

'<br />

t


NEWTONIAN MECHANICS—SINGLE PARTICLE 77<br />

where<br />

f ( x, z)<br />

2<br />

is a function of only x and z<br />

! U<br />

F axy by c U ayzx byz f ( , )<br />

z<br />

"% " # # $ "% % #<br />

3 y z<br />

(3)<br />

! z<br />

then from (1), (2), (3) we find that<br />

where C is a arbitrary constant.<br />

bx<br />

2<br />

2<br />

2<br />

U "% axyz % byz % cx % # C<br />

b) Using the same method we find that F in this case is a conservative force, and its potential<br />

is<br />

U " % zexp( % x) % yln<br />

z # C<br />

c) Using the same method we find that F in this case is a conservative force, and its potential<br />

is ( using the result of problem 1-31b):<br />

U " % aln<br />

r<br />

2-54.<br />

a) Terminal velocity means final steady velocity (here we assume that the potato reaches this<br />

velocity before the impact with the Earth) when the total force acting on the potato is zero.<br />

b)<br />

mg = kmv and consequently v" g k " 1000 m/s .<br />

dv F dx dv vdv<br />

" " %( g# kv)<br />

$ " dt " % $ dx " % $<br />

dt m v g # kv<br />

& &<br />

g # kv<br />

x<br />

0<br />

0<br />

v0<br />

x<br />

v g g<br />

" # ln " 679.7 m<br />

k k g # kv<br />

0<br />

max 2<br />

0<br />

where v is the initial velocity of the potato.<br />

0<br />

2-55. Let’s denote vx0<br />

and v<br />

y0<br />

the initial horizontal and vertical velocity of the pumpkin.<br />

Evidently, vx0<br />

" v y 0<br />

in this problem.<br />

dvx<br />

dx dv vx0<br />

% vxf<br />

m " F "% mkv $ % " % dt " $ x " (1)<br />

dt v kv k<br />

x<br />

x x f<br />

x<br />

x<br />

where the suffix f always denote the final value. From the second equality of (1), we have<br />

Combining (1) and (2) we have<br />

dv<br />

% " $ " (2)<br />

x<br />

% kt<br />

dt v<br />

f<br />

xf<br />

vx0e<br />

kvx<br />

x<br />

f<br />

v<br />

k<br />

x0<br />

% kt<br />

" ' 1 %<br />

f<br />

(<br />

e (3)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!