06.01.2015 Views

Continuous Micro Reactor Technology for Drug Substance Synthesis:

Continuous Micro Reactor Technology for Drug Substance Synthesis:

Continuous Micro Reactor Technology for Drug Substance Synthesis:

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Continuous</strong> <strong>Micro</strong><br />

<strong>Reactor</strong> <strong>Technology</strong> <strong>for</strong><br />

<strong>Drug</strong> <strong>Substance</strong><br />

<strong>Synthesis</strong>:<br />

Brian J. Marquardt Ph.D.<br />

Wesley Thompson, Thomas Dearing, Michael Roberto<br />

Applied Physics Laboratory<br />

University of Washington<br />

Seattle, WA 98105<br />

marquardt@apl.uw.edu


Analytical Sampling <strong>for</strong> Online Applications


Why Use Advanced Flow <strong>Reactor</strong>s<br />

High Throughput Experimentation For…<br />

Discovery and screening<br />

Process development<br />

Process optimization<br />

Process control<br />

Production<br />

• Eliminate chemical engineering production<br />

problems related to scaling up batch systems<br />

• Increase production through use of many parallel<br />

microreactors to achieve volume


Intensity<br />

Esterification Reaction Monitored by<br />

Example: Esterification of Methanol<br />

Raman Spectroscopy<br />

20000<br />

15000<br />

Acetic Acid + + Methanol<br />

ROI<br />

H +<br />

H +<br />

Heat<br />

Methyl Acetate + H 2 O<br />

Standard Raman spectra<br />

Acetic Acid<br />

Methanol<br />

Methyl Acetate<br />

10000<br />

5000<br />

0<br />

400 600 800 1000 1200 1400 1600 1800<br />

Raman Shift (cm -1 )


Relative Intensity<br />

Batch Runs at Different Temperatures<br />

250<br />

200<br />

150<br />

65º<br />

55º 45º<br />

35º<br />

25º<br />

15º<br />

100<br />

5º<br />

50<br />

• PCA analysis of the <strong>for</strong>mation of acetate monitored<br />

by Raman spectroscopy – reaction time 1.5 hours<br />

0<br />

0 30 60<br />

Reaction Time (min.)<br />

Total experiment time ~ 1 week (includes charging reactors, cleaning, …)<br />

90


<strong>Continuous</strong> Rxn. with Temp. Step<br />

Temp 40°C<br />

Temp 25°C<br />

• with residence time module<br />

• flow rate: 10.56 ml/min<br />

(residence time ~ 2.5 min)<br />

(25°C – 40°C)<br />

methyl<br />

acetate<br />

acetic<br />

acid<br />

• With control of flow reactor parameters and analytics, fast optimization is possible


Product Yield vs. Temperature<br />

PCA Analysis on data after mixing:<br />

1 st PCA scores Increase in reaction yield<br />

after each temperature step<br />

Range = 30-60°C<br />

• without residence time module<br />

• flow rate: 0.89 ml/min<br />

(residence time ~ 5 min)<br />

• 1 week of batch data reproduced in less than three hours by continuous flow


Result: Estimated Response Surfaces


Challenges To Using AF <strong>Reactor</strong>s<br />

• EDUCATION!!!!!!<br />

• Sampling and screening<br />

• Analytical characterization<br />

• Data handling<br />

<br />

<br />

Sensor fusing<br />

Multi-sensor modeling<br />

• Process modeling and feed back control<br />

(particularly if they are used <strong>for</strong> production)<br />

• Process optimization – move toward feed<br />

<strong>for</strong>ward control


Demonstrating QbD - Phase 1<br />

‣ Goal: to improve reaction development and<br />

optimization through the use of continuous glass flow<br />

reactors, NeSSI and analytics<br />

‣ Funded by the FDA to demonstrate the benefits of<br />

improved reactor design, effective sampling and<br />

online analytics to increase process understanding<br />

(QbD)<br />

‣ Partners: FDA, Corning, CPAC, Kaiser, Parker<br />

‣ QbD Project began November 2008<br />

‣ Process Reactions – June 2009


AF <strong>Reactor</strong> and Raman Analyzer<br />

• 4 channel, 785 nm Kaiser Optical Systems Rxn2 probes placed at different reactor zones


Chloro<strong>for</strong>mate Chemistry<br />

Organic Acid Chloride<br />

Organic Carbonate + dimer<br />

O<br />

O<br />

OH<br />

pyridine<br />

Cl + O<br />

HO<br />

toluène<br />

O<br />

O<br />

OH<br />

+<br />

N<br />

.HCl<br />

2-ethylhexyl chloro<strong>for</strong>mate butane-1,2-diol 2-ethylhexyl 2-hydroxybutyl carbonate<br />

OH<br />

O<br />

Cl<br />

+ O O<br />

O<br />

O O O<br />

O<br />

O<br />

O<br />

O<br />

2-ethylhexyl chloro<strong>for</strong>mate<br />

2-ethylhexyl 2-hydroxybutyl carbonate<br />

dimmer dimer<br />

• Carbonate and dimer <strong>for</strong>mation


Design of Experiments In<strong>for</strong>mation<br />

• 31 Experiments total<br />

Temperature steps<br />

Reaction with no toluene<br />

Changes in butanediol ratio<br />

Changes in pyridine ratio<br />

Propanediol instead of butanediol<br />

Simulated <strong>Reactor</strong> problems<br />

• Pump failure<br />

• Less heat exchange<br />

• Poor dilution of chloro<strong>for</strong>mate


Raman Analysis of AF <strong>Reactor</strong><br />

1<br />

2<br />

3 4<br />

• Monitor reaction with 4 channel 785 nm Raman system<br />

• NeSSI sampling systems (1-4) equipped with Raman ballprobes<br />

• Online GC also used as post quench online analyzer (4)


NeSSI Ballprobe - Raman/NIR/UV<br />

Ballprobe Specs.<br />

•Hastalloy c-276<br />

Ti, SS, Monel<br />

•Sapphire optic<br />

•Std. temp range:<br />

-40 – 350° C<br />

•Pressure:<br />

0-350 Barr<br />

Matrix Solutions: www.ballprobe.com


What is NeSSI<br />

• Industry-driven ef<strong>for</strong>t to<br />

define and promote a new<br />

standardized alternative to<br />

sample conditioning systems<br />

<strong>for</strong> analyzers and sensors<br />

• Standard fluidic interface <strong>for</strong><br />

modular surface-mount<br />

components<br />

• ISA SP76<br />

• Standard wiring and<br />

communications interfaces<br />

• Standard plat<strong>for</strong>m <strong>for</strong><br />

micro analytics


What does NeSSI Provide<br />

• Simple “Lego-like” assembly<br />

Easy to re-configure<br />

No special tools or skills required<br />

• Standardized flow components<br />

“Mix-and-match” compatibility between vendors<br />

Growing list of components<br />

• Standardized electrical and communication (Gen II)<br />

“Plug-and-play” integration of multiple devices<br />

Simplified interface <strong>for</strong> programmatic I/O and control<br />

• Advanced analytics (Gen III)<br />

<strong>Micro</strong>-analyzers<br />

Integrated analysis or “smart” systems<br />

Provides plat<strong>for</strong>m <strong>for</strong> coupling analytics to flowing systems


NeSSI Sampling System <strong>for</strong> <strong>Reactor</strong><br />

Raman Probe<br />

monitor<br />

clean<br />

bypass


NeSSI and Raman Probe Images


Raman Peaks of Interest <strong>for</strong> Rxn.<br />

Chloro<strong>for</strong>mate<br />

Toluene<br />

Carbonate<br />

Dimer<br />

Toluene


3D Plot of Raman Reaction Data (Low cm -1 )<br />

GC Results (%)<br />

Test R-OH 2EHCF R-Cl Carbonate Dimer<br />

1 1.17 0.00 0.26 96.17 2.40<br />

2 2.16 45.84 0.32 51.42 0.59<br />

Ch. 1<br />

Toluene<br />

Chloro<strong>for</strong>mate<br />

Toluene


DoE Run1 Channel 1 Data (<strong>Reactor</strong>)<br />

0.18<br />

0.12<br />

Run1Ch1LowPCA<br />

Density 1<br />

Density 2<br />

Density 3<br />

0.16<br />

Run1Ch1LowPCA<br />

Feed 1<br />

Feed 2<br />

Feed 3<br />

0.1<br />

0.14<br />

0.12<br />

0.08<br />

0.1<br />

0.06<br />

0.08<br />

0.04<br />

0.06<br />

0.04<br />

0.02<br />

0.02<br />

0<br />

20 40 60 80 100 120<br />

0<br />

20 40 60 80 100 120<br />

0.14 Run1Ch1LowPCA<br />

Pressure 1<br />

Pressure 2<br />

Pressure 3<br />

0.12<br />

0.12<br />

0.1<br />

Run1Ch1LowPCA<br />

Ambient Temp.<br />

Quench Temp.<br />

<strong>Reactor</strong> Temp.<br />

0.1<br />

0.08<br />

0.08<br />

0.06<br />

0.06<br />

0.04<br />

0.04<br />

0.02<br />

0.02<br />

0<br />

20 40 60 80 100 120<br />

0<br />

20 40 60 80 100 120


Normalized Signal Intensity<br />

Normalized Signal Intensity<br />

Reaction Profiles <strong>for</strong> 2 DoE Steps<br />

0.8<br />

0.7<br />

0.6<br />

GC Results (%)<br />

Test R-OH 2EHCF R-Cl Carbonate Dimer<br />

1 1.17 0.00 0.26 96.17 2.40<br />

2 2.16 45.84 0.32 51.42 0.59<br />

1<br />

0.8<br />

0.5<br />

0.4<br />

Test 1<br />

0.6<br />

0.3<br />

0.2<br />

0.1<br />

Test 2<br />

---- Carbonate<br />

---- Chloro<strong>for</strong>mate<br />

0.2<br />

0<br />

0 10 20 30 40 50 60 0<br />

Sample Number<br />

0.4


Project Summary and Future Directions<br />

• Data collected and organized<br />

17 days in Toulouse France<br />

• Analysis and Modeling<br />

Evaluation of various modeling<br />

protocols<br />

• PCA, MCR, ALS<br />

Calibrate to GC results (PLS)<br />

• Phase 2 of project<br />

Acquire reactor at CPAC<br />

Focus on reactor control<br />

Implement more sensors<br />

Scale-up vs. scale-out<br />

Real-time product work-up<br />

• Implement Models <strong>for</strong> Process<br />

Feedback Control


FDA Project - Phase 2<br />

Nov. 2010 – Oct. 2011<br />

• Process Scale Up and Control<br />

Chemistry<br />

• Determine, evaluate and test reactions in CF reactors<br />

Pharmaceutical industry relevant chemistry<br />

Emphasis on processing not specific chemistry<br />

• Determine CRF (Critical Response Factors) and Levels<br />

Sampling & DoE<br />

• Coupling analytics at mL and mL scales<br />

• Scalability<br />

Reaction monitoring w/online analytics<br />

• Reaction/Data Modeling<br />

Determine Control Mechanisms<br />

Initiation of Process Control


Chemtrix - Labtrix<br />

• Reaction optimization<br />

Features<br />

• Syringe pumps<br />

• Automated sample collection and<br />

control<br />

• Tests at pressures of 25 bar and<br />

temperatures of -15 to 195°C<br />

• Standard interchangeable reactors<br />

• Catalyst reactors:<br />

Courtesy Paul Watts, University of Hull, UK<br />

• Labtrix plat<strong>for</strong>m will be the low volume reactor plat<strong>for</strong>m <strong>for</strong> our Phase II FDA project


Corning ® Advanced-Flow TM LF<br />

Low-Flow Capability (1-10 mL/min)<br />

Corning has introduced a reduced<br />

flow-rate reactor that retains the<br />

outstanding mixing and heat<br />

exchange per<strong>for</strong>mance of its<br />

Advance-Flow TM glass reactors<br />

while providing:<br />

• Low internal volume (2 mL flow)<br />

• High flexibility<br />

• Metal-free reaction path<br />

• Scalability<br />

• Compatibility with analytics<br />

• T, Flow and Pumping control<br />

• LF plat<strong>for</strong>m will be the larger reactor plat<strong>for</strong>m <strong>for</strong> our Phase II FDA project


<strong>Reactor</strong> with NeSSI and Analytics at CPAC


Esterification of Benzoic Acid and<br />

Subsequent Hydrolysis


Swern Oxidation – 3 step rxn


Phase 2 – QbD Envisioned<br />

• Process Optimization<br />

Scale Up Versus Scale Out<br />

• Transfer chemistry from mL scale to mL scale<br />

• Full DoE at small scale and transfer <strong>for</strong> fast optimization at larger<br />

scale<br />

Development of Generic Strategy<br />

• define selection of the best analytical tools, processing methods,<br />

and model designs in a short time frame<br />

• Speed optimization of new chemistry with CF reaction methods<br />

• <strong>Continuous</strong> Process Control<br />

Initiate control protocols utilizing analytics <strong>for</strong> improved product quality<br />

Evaluate continuous post-reaction workup steps – Phase 3<br />

• Purification<br />

• Desolvation<br />

• Separation


Mettler Toledo - React-IR,


Thermo/C2V Fast <strong>Micro</strong>-GC<br />

http://www.c2v.nl/ as well as http://www.thermo.com


Conclusions and Projections<br />

• The initial demonstration phase of the QbD project successfully<br />

demonstrated the capability of effective sampling coupled with<br />

higher order analytics to provide a real-time view of a chemical<br />

process<br />

• The second phase builds on the sampling and analytical methods<br />

developed in phase 1 and models the sensor data in real-time to<br />

per<strong>for</strong>m fast and efficient optimization of new chemistries using DoE<br />

and low volume continuous reactors (Chemtrix system)<br />

• Once the chemistry has been optimized and validated at the<br />

microliter scale, that chemistry will be scaled up to the mL scale<br />

(Corning LF system) and optimized using an optimal DoE<br />

• The final aspect of phase 2 will be to integrate the real-time analytics<br />

into a control algorithm <strong>for</strong> continuous feedback control of the<br />

system <strong>for</strong> consistent and validated quality production


Thanks<br />

• U.S. Food and <strong>Drug</strong><br />

Administration<br />

Moheb Nasr<br />

Christine Moore<br />

Sharmista Chatterjee<br />

David Morley<br />

• Corning Glass<br />

• Parker<br />

• Kaiser Optical Systems<br />

• CPAC<br />

• University of Washington<br />

• Applied Physics Lab<br />

• La Maison Européenne des<br />

Procédés Innovants (MEPI )<br />

U.S. Food and<br />

<strong>Drug</strong> Administration<br />

MEPI

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!