06.01.2015 Views

2006 Model Submission - Florida State Board of Administration

2006 Model Submission - Florida State Board of Administration

2006 Model Submission - Florida State Board of Administration

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

FLORIDA COMMISSION ON<br />

HURRICANE LOSS PROJECTION<br />

METHODOLOGY<br />

February 2007 <strong>Submission</strong><br />

Prepared by:<br />

This document contains information proprietary to<br />

EQECAT, which should be used for the purpose <strong>of</strong> the<br />

evaluation <strong>of</strong> EQECAT hurricane modeling technology<br />

by the <strong>Florida</strong> Commission on Hurricane Loss<br />

Projection Methodology. This document is not to be<br />

used by any other party nor for any other purpose<br />

without prior written authorization from EQECAT.<br />

1


February 23, 2007<br />

Larry Johnson, Vice Chair<br />

<strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

c/o Donna Sirmons<br />

<strong>Florida</strong> <strong>State</strong> <strong>Board</strong> <strong>of</strong> <strong>Administration</strong><br />

1801 Hermitage Boulevard, Suite 100<br />

Tallahassee, FL 32308<br />

Frankfurt<br />

Irvine<br />

London<br />

Oakland<br />

Paris<br />

Tokyo<br />

Warrington<br />

Wilmington<br />

Dear Mr. Johnson,<br />

I am pleased to inform you that EQECAT, Inc. is ready for the Commission’s review and recertification<br />

<strong>of</strong> its WORLDCATenterprise TM / USWIND ® hurricane model for use in <strong>Florida</strong>. As<br />

required by the Commission, enclosed are the data and analyses for the General,<br />

Meteorological, Vulnerability, Actuarial, Statistical, and Computer Standards, updated to reflect<br />

compliance with the Standards set forth in the Commission’s Report <strong>of</strong> Activities as <strong>of</strong><br />

November 1, <strong>2006</strong>. In addition, WORLDCATenterprise / USWIND has been reviewed by<br />

pr<strong>of</strong>essionals having credentials and/or experience in the areas <strong>of</strong> meteorology, engineering,<br />

actuarial science, statistics, and computer science, as documented in the signed Expert<br />

Certification (Forms G-1 to G-6).<br />

Note that we are seeking certification for both our standalone s<strong>of</strong>tware USWIND and our clientserver<br />

s<strong>of</strong>tware WORLDCATenterprise, as the hurricane loss model is the same in the two<br />

platforms. In our submission, for simplicity we refer to the hurricane loss model common to both<br />

platforms as USWIND, and only refer to specific platform or version numbers as relevant.<br />

The following change was made to WORLDCATenterprise / USWIND between the submission<br />

last year (USWIND Version 5.10 / WORLDCATenterprise Version 3.8) and the current<br />

submission (USWIND Version 5.11 / WORLDCATenterprise Version 3.9):<br />

1. The probabilistic hurricane database was regenerated to be consistent with the<br />

Commission’s November 1, <strong>2006</strong> storm set, and to additionally include the <strong>2006</strong><br />

hurricane season.<br />

EQECAT is confident that WORLDCATenterprise / USWIND is in compliance with the<br />

Commission’s standards and is ready to be reviewed by the Pr<strong>of</strong>essional Team.<br />

Sincerely,<br />

EQECAT, Inc.<br />

David F. Smith<br />

Director, Technology Development and Consulting<br />

■ EQECAT, INC., An ABS Group Company • 475 14th Street, 5th Floor, Suite 550 • Oakland, California 94612-1900 USA • Phone 510.817.3100 • Fax 510.663.1048<br />

2


Enclosures:<br />

1. 20 bound copies <strong>of</strong> EQECAT <strong>Submission</strong><br />

2. 20 CDs (labelled ‘FCHLPM – EQECAT <strong>2006</strong>’) containing electronic copy <strong>of</strong><br />

EQECAT <strong>Submission</strong> (FCHLPM_EQECAT<strong>2006</strong>.pdf) and the following files:<br />

• <strong>2006</strong>FormV2_EQECAT.xls<br />

• <strong>2006</strong>FormA1_EQECAT.xls<br />

• <strong>2006</strong>FormA3_EQECAT.xls<br />

• <strong>2006</strong>FormA4_EQECAT.xls<br />

• <strong>2006</strong>FormA5_EQECAT.xls<br />

• <strong>2006</strong>FormA6_EQECAT.xls<br />

• <strong>2006</strong>FormA7_EQECAT.xls<br />

• <strong>2006</strong>FormV2_EQECAT.pdf<br />

• <strong>2006</strong>FormA1_EQECAT.pdf<br />

• <strong>2006</strong>FormA3_EQECAT.pdf<br />

• <strong>2006</strong>FormA4_EQECAT.pdf<br />

• <strong>2006</strong>FormA5_EQECAT.pdf<br />

• <strong>2006</strong>FormA6_EQECAT.pdf<br />

• <strong>2006</strong>FormA7_EQECAT.pdf<br />

■ EQECAT, INC., An ABS Group Company • 475 14th Street, 5th Floor, Suite 550 • Oakland, California 94612-1900 USA • Phone 510.817.3100 • Fax 510.663.1048<br />

3


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

<strong>Model</strong> <strong>Submission</strong> Checklist<br />

1. Please indicate by checking below that the following has been included in your<br />

submission to the <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology.<br />

Yes No Item<br />

X 1. Letter to the Commission<br />

X<br />

a. Refers to the Expert Certification Forms and states that pr<strong>of</strong>essionals<br />

having credentials and/or experience in the areas <strong>of</strong> meteorology,<br />

engineering, actuarial science, statistics, and computer science have<br />

reviewed the model for compliance with the Standards<br />

X<br />

b. <strong>State</strong>s model is ready to be reviewed by the Pr<strong>of</strong>essional Team<br />

X<br />

c. Any caveats to the above statements noted with a complete explanation<br />

X 2. Summary statement <strong>of</strong> compliance with each individual Standard and the data<br />

and analyses required in the Disclosures and Forms<br />

X 3. General description <strong>of</strong> any trade secrets the modeler intends to present to the<br />

Pr<strong>of</strong>essional Team<br />

X 4. <strong>Model</strong> Identification<br />

X 5. 20 Bound Copies<br />

X 6. 20 CD ROMs containing:<br />

X<br />

a. <strong>Submission</strong> text in PDF format<br />

X<br />

b. PDF file highlightable and bookmarked by Standard, Form, and section<br />

X<br />

c. Data file names include abbreviated name <strong>of</strong> modeler, Standards year,<br />

and Form name (when applicable)<br />

X<br />

d. Forms V-2, A-1, A-3, A-4, A-5, A-6, A-7, and S-5 (for models submitted<br />

by organizations which have not previously provided the Commission<br />

with this analysis) in PDF format<br />

X<br />

e. Forms V-2, A-1, A-3, A-4, A-5, A-6, and A-7 in Excel format<br />

X<br />

f. Form S-5 (for models submitted by organizations which have not<br />

previously provided the Commission with this analysis) in ASCII format<br />

X 7. Table <strong>of</strong> Contents<br />

X 8. Materials consecutively numbered from beginning to end starting with the first<br />

page (including cover) using a single numbering system<br />

X 9. All tables, graphs, and other non-text items specifically listed in Table <strong>of</strong><br />

Contents<br />

X 10. All tables, graphs, and other non-text items clearly labeled with abbreviations<br />

defined<br />

X 11. Standards, Disclosures, and Forms in italics, modeler responses in non-italics<br />

X 12. Graphs accompanied by legends and labels for all elements<br />

X 13. All units <strong>of</strong> measurement clearly identified with appropriate units used<br />

X 14. Hard copy <strong>of</strong> all Forms included except Forms A-1 and S-5<br />

2. Explanation <strong>of</strong> “No” responses indicated above. (Attach additional pages if needed.)<br />

USWIND ® 5.11 /<br />

WORLDCATenterprise TM 3.9 Feb. 23, 2007<br />

<strong>Model</strong> Name <strong>Model</strong>er Signature Date<br />

4


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

<strong>Model</strong> Identification<br />

Name <strong>of</strong> <strong>Model</strong> and Version: USWIND ® 5.11 / WORLDCATenterprise TM 3.9<br />

Name <strong>of</strong> <strong>Model</strong>ing Organizarion: EQECAT, INC.<br />

Street Address: 475 14 th Street, Suite 550<br />

City, <strong>State</strong>, ZIP Code: Oakland, CA 94612-1900<br />

Mailing Address, if different from above:<br />

______________________________________________________________________<br />

Contact Person: David F. Smith<br />

Phone Number: (510) 817-3100 Fax Number: (510) 663-1048<br />

E-mail Address: dfsmith@eqecat.com<br />

Date: February 23, 2007<br />

5


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Licenses and Trademarks<br />

A number <strong>of</strong> trademarks and registered trademarks appear in this document. EQECAT,<br />

Inc. acknowledges all trademarks and the rights in the trademarks owned by the<br />

companies referred to herein.<br />

• EQECAT ® , USWIND ® , USQUAKE ® , WORLDCATenterprise are<br />

trademarks <strong>of</strong> EQECAT, Inc.<br />

• Windows is a trademark <strong>of</strong> Micros<strong>of</strong>t Corporation.<br />

• MapInfo ® is a trademark <strong>of</strong> the MapInfo Corporation. MapInfo ®<br />

contains data which is sublicensed from MapInfo Corporation. MapInfo<br />

has obtained this data under license from other third party vendors as<br />

noted below.<br />

5-Digit ZIP Code data for the United <strong>State</strong>s. Copyright © 1993-2005<br />

Geographic Data Technologies, Inc. All Rights Reserved.<br />

5-Digit ZIP Code Data for Puerto Rico. Copyright © 1994-2005<br />

Geodata Consultants, Inc. All Rights Reserved.<br />

6


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

TABLE OF CONTENTS<br />

<strong>2006</strong> STANDARDS<br />

Page<br />

GENERAL STANDARDS ..........................................................................10<br />

G-1 Scope <strong>of</strong> the Computer <strong>Model</strong> and Its Implementation............................................................10<br />

G-2 Qualifications <strong>of</strong> <strong>Model</strong>er Personnel and Consultants ............................................................23<br />

G-3 Risk Location................................................................................................................................32<br />

G-4 Independence <strong>of</strong> <strong>Model</strong> Components ........................................................................................34<br />

Form G-1: General Standards Expert Certification ..............................................................................35<br />

Form G-2: Meteorological Standards Expert Certification ..................................................................36<br />

Form G-3: Vulnerability Standards Expert Certification ......................................................................37<br />

Form G-4: Actuarial Standards Expert Certification ............................................................................38<br />

Form G-5: Statistical Standards Expert Certification...........................................................................39<br />

Form G-6: Computer Standards Expert Certification...........................................................................40<br />

METEOROLOGICAL STANDARDS .........................................................41<br />

M-1 Base Hurricane Storm Set...........................................................................................................41<br />

M-2 Hurricane Characteristics ...........................................................................................................42<br />

M-3 Landfall Intensity..........................................................................................................................47<br />

M-4 Hurricane Probabilities................................................................................................................49<br />

M-5 Land Friction and Weakening.....................................................................................................51<br />

M-6 Logical Relationships <strong>of</strong> Hurricane Characteristics ................................................................58<br />

Form M-1: Annual Occurrence Rates.....................................................................................................59<br />

Form M-2: Maps <strong>of</strong> Maximum Winds......................................................................................................62<br />

Form M-3: Radius <strong>of</strong> Maximum Winds...................................................................................................65<br />

VULNERABILITY STANDARDS...............................................................67<br />

V-1 Derivation <strong>of</strong> Vulnerability Functions ........................................................................................67<br />

V-2 Mitigation Measures.....................................................................................................................73<br />

Form V-1: One Hypothetical Event.........................................................................................................74<br />

Form V-2: Mitigation Measures – Range <strong>of</strong> Changes in Damage .......................................................78<br />

ACTUARIAL STANDARDS.......................................................................80<br />

A-1 <strong>Model</strong>ed Loss Costs ....................................................................................................................80<br />

A-2 Underwriting Assumptions .........................................................................................................81<br />

A-3 Loss Cost Projections .................................................................................................................84<br />

A-4 Demand Surge..............................................................................................................................86<br />

A-5 User Inputs ...................................................................................................................................87<br />

A-6 Logical Relationship to Risk.......................................................................................................96<br />

A-7 Deductibles and Policy Limits ..................................................................................................101<br />

A-8 Contents......................................................................................................................................106<br />

A-9 Additional Living Expense (ALE) .............................................................................................108<br />

A-10 Output Ranges ...........................................................................................................................110<br />

7


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Form A-1: Loss Costs............................................................................................................................112<br />

Form A-2: Zero Deductible Loss Costs by ZIP Code .........................................................................115<br />

Form A-3: Base Hurricane Storm Set Average Annual Zero Deductible <strong>State</strong>wide Loss Costs ...118<br />

Form A-4: Hurricane Andrew Percent <strong>of</strong> Losses................................................................................119<br />

Form A-5: Distribution <strong>of</strong> Hurricanes by Size <strong>of</strong> Loss .......................................................................127<br />

Form A-6: Output Ranges ......................................................................................................................131<br />

Form A-7: Percentage Change In Output Ranges ...............................................................................172<br />

Form A-8: Percentage Change in Output Ranges by County.............................................................175<br />

STATISTICAL STANDARDS ..................................................................179<br />

S-1 <strong>Model</strong>ed Results and Goodness-<strong>of</strong>-Fit ....................................................................................179<br />

S-2 Sensitivity Analysis for <strong>Model</strong> Output .....................................................................................184<br />

S-3 Uncertainty Analysis for <strong>Model</strong> Output ...................................................................................187<br />

S-4 County Level Aggregation ........................................................................................................189<br />

S-5 Replication <strong>of</strong> Known Hurricane Losses.................................................................................190<br />

S-6 Comparison <strong>of</strong> Projected Hurricane Loss Costs....................................................................191<br />

Form S-1: Probability <strong>of</strong> <strong>Florida</strong> Landfalling Hurricanes per Year.....................................................193<br />

Form S-2: Probable Maximum Loss (PML)...........................................................................................194<br />

Form S-3: Five Validation Comparisons...............................................................................................195<br />

Form S-4: Average Annual Zero Deductible <strong>State</strong>wide Loss Costs – Historical versus <strong>Model</strong>ed .200<br />

COMPUTER STANDARDS .....................................................................202<br />

C-1 Documentation ...........................................................................................................................202<br />

C-2 Requirements .............................................................................................................................203<br />

C-3 <strong>Model</strong> Architecture and Component Design...........................................................................204<br />

C-4 Implementation...........................................................................................................................205<br />

C-5 Verification..................................................................................................................................207<br />

C-6 <strong>Model</strong> Maintenance and Revision ............................................................................................209<br />

C-7 Security .......................................................................................................................................210<br />

Appendix 1 - Credentials <strong>of</strong> Selected Personnel .................................................................................211<br />

Appendix 2 - Independent Review.........................................................................................................214<br />

TABLES<br />

Table 1. Key classes <strong>of</strong> the USWIND wind speed and damage calculation........................................19<br />

Table 2. Example damage to loss simulation.......................................................................................104<br />

Table 3. Comparison <strong>of</strong> point location observations with model-generated winds .......................180<br />

FIGURES<br />

Figure 1. Flowchart – USWIND Probabilistic Analysis..........................................................................17<br />

Figure 2. Flowchart – USWIND Hazard and Damage Calculation Procedure .....................................18<br />

Figure 3. Flowchart - Object Deployment for USWIND Hazard and Damage Calculations................20<br />

Figure 4. Business Workflow Diagram ...................................................................................................28<br />

Figure 5. USWIND vs. Kaplan-DeMaria Inland Decay Rates.................................................................55<br />

Figure 6a. 1916-13 Hurricane ...................................................................................................................56<br />

Figure 6b. Hurricane Charley (2004) .......................................................................................................56<br />

8


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Figure 6c. Wind field for Hurricane Wilma (2005) ..................................................................................57<br />

Figure 7. <strong>State</strong> <strong>of</strong> <strong>Florida</strong> and Neighboring <strong>State</strong>s by Region..............................................................60<br />

Figure 8. Hurricane Frequencies by Category by Region.....................................................................61<br />

Figure 9. Contour Map - Maximum Winds For <strong>Model</strong>ed Version Of Official Hurricane Set ..............63<br />

Figure 10. Contour Map - Maximum Winds For 100-Year Return Period From Stochastic Storm Set.<br />

Wind Speeds Are One-Minute Sustained Mph. .............................................................................64<br />

Figure 11. Rmax vs. Central Pressure ....................................................................................................66<br />

Figure 12. Flowchart – Vulnerability Development................................................................................69<br />

Figure 13. Loss Cost Relationships by Coverage .................................................................................97<br />

Figure 14. Loss Costs for Coastal Counties ..........................................................................................99<br />

Figure 15. Integration <strong>of</strong> Uncertainty on Hazard and Damage ...........................................................101<br />

Figure 16. Integration <strong>of</strong> Damage Distribution to Calculate Loss......................................................102<br />

Figure 17. Relationship Between Building and Contents Losses......................................................107<br />

Figure 18. Ground-up Loss Costs for Frame Structures ....................................................................115<br />

Figure 19. Ground-up Loss Costs for Masonry Structures ................................................................116<br />

Figure 20. Ground-up Loss Costs for Mobile Home Structures.........................................................117<br />

Figure 21. <strong>State</strong> <strong>of</strong> <strong>Florida</strong> by North/Central/South Regions..............................................................172<br />

Figure 22. <strong>State</strong> <strong>of</strong> <strong>Florida</strong> by Coastal/Inland Counties ......................................................................173<br />

Figure 23. Uncertainty Analysis for Frequency ...................................................................................181<br />

Figure 24. Goodness-<strong>of</strong>-fit for Translational Speed ............................................................................182<br />

Figure 25. Goodness-<strong>of</strong>-fit for Hurricane Frequency in <strong>Florida</strong>.........................................................182<br />

Figure 27. Historical vs. <strong>Model</strong>ed Losses for Companies A to F.......................................................196<br />

Figure 28. Historical vs. <strong>Model</strong>ed Losses by LOB for Company C....................................................197<br />

Figure 29. Historical vs. <strong>Model</strong>ed Losses by County for Company D...............................................198<br />

Figure 30. Historical vs. <strong>Model</strong>ed Losses by LOB for Company E....................................................199<br />

9


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

General Standards<br />

GENERAL STANDARDS<br />

G-1 Scope <strong>of</strong> the Computer <strong>Model</strong> and Its Implementation<br />

The computer model shall project loss costs for personal lines residential<br />

property from hurricane events.<br />

USWIND projects loss costs for personal lines residential property from hurricane<br />

events.<br />

For purposes <strong>of</strong> the Commission’s review and determination <strong>of</strong> acceptability, the<br />

loss costs submitted for this review are expected losses resulting from<br />

hurricanes. Wind losses resulting from a hurricane are included even if wind<br />

speeds fall below hurricane force. The vulnerability functions are based to a large<br />

degree on hurricane claims data, which includes wind speeds above and below<br />

the hurricane threshold <strong>of</strong> 74 mph.<br />

Expected loss costs include primary structure, appurtenant structures, contents,<br />

other covered personal property, and additional living expenses.<br />

Disclosures<br />

1. Specify the model and program version number.<br />

USWIND Version 5.11 / WORLDCATenterprise Version 3.9.<br />

2. Provide a concise, technical description <strong>of</strong> the model including each major<br />

component <strong>of</strong> the model used to produce personal lines residential loss costs in the<br />

<strong>State</strong> <strong>of</strong> <strong>Florida</strong>. Describe the theoretical basis <strong>of</strong> the model and include a<br />

description <strong>of</strong> the methodology, particularly the wind components, the damage<br />

components, and the insured loss components used in the model. The description<br />

should be complete and not reference unpublished work.<br />

General description <strong>of</strong> WORLDCATenterprise / USWIND<br />

WORLDCATenterprise is EQECAT’s global catastrophe management<br />

s<strong>of</strong>tware, covering over 80 countries and the perils <strong>of</strong> hurricane / typhoon /<br />

cyclone, windstorm, winterstorm, tornado, hail, wildfire, earthquake (ground<br />

shaking, fire following, sprinkler leakage, workers comp), flood and terrorism.<br />

The WORLDCATenterprise platform is a networked, multi-user, client server<br />

architecture enabling enterprise-wide analysis using centralized and sharable<br />

databases. WORLDCATenterprise uses a cost efficient industry standard<br />

computer infrastructure that can easily expand to meet growing user demand.<br />

WORLDCATenterprise uses standard PCs for end user ‘clients’ running<br />

ordinary internet browsers. All users are networked to standard Windows<br />

10


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

General Standards<br />

based servers which can be configured in scalable clusters to provide higher<br />

performance and capacity.<br />

WORLDCATenterprise enables insurer and reinsurer analysis <strong>of</strong> multiple<br />

perils for over 80 countries. A single product platform and user interface<br />

provides primary, facultative, treaty underwriting and accumulation<br />

management capability across all lines <strong>of</strong> business with aggregation up to the<br />

corporate level. WORLDCATenterprise also provides underwriters with<br />

important information about risk volatility and the impact <strong>of</strong> writing a new<br />

program on available capacity to enable real-time portfolio optimization.<br />

One <strong>of</strong> the components <strong>of</strong> WORLDCATenterprise, and also available as<br />

standalone s<strong>of</strong>tware, is USWIND, a probabilistic model designed to estimate<br />

damage and insured losses due to the occurrence <strong>of</strong> hurricanes along the<br />

3100 miles <strong>of</strong> US coastline from Texas to Maine. USWIND estimates the full<br />

probabilistic distribution <strong>of</strong> damage and loss for any scenario storm event.<br />

USWIND also calculates Average Annual Damage and Loss estimates, as<br />

well as annual probability exceedances using a database <strong>of</strong> 511,500<br />

stochastic storm simulation results to develop average annual loss rates for<br />

each property site. Scenario and average annual damage and losses can be<br />

calculated for individual property sites or for entire portfolios <strong>of</strong> residential and<br />

commercial properties.<br />

Scenario storms are used to estimate expected and probable maximum<br />

damage and loss due to a single event. USWIND models damage and loss<br />

due to scenario storms in several ways. Any <strong>of</strong> the approximately 100 years<br />

<strong>of</strong> historical storms contained in the storm database can be selected by users<br />

to calculate damage and loss. In addition, the USWIND Landfall Series<br />

enables users to select scenario storms by stating either the return period or<br />

the SSI intensity level desired and choosing from any or all <strong>of</strong> 3,100 individual<br />

landfalls from Texas to Maine. This enables users to define from 16 different<br />

storm types at each <strong>of</strong> 3,100 landfalls (or 49,600 different scenario events). A<br />

third scenario storm option enables users to define a virtually unlimited variety<br />

<strong>of</strong> user defined storm events. User-defined Storms can be created by<br />

modifying historical tracks or drawing entirely new tracks and then specifying<br />

the storm parameter values to be utilized. User-defined storms are <strong>of</strong>ten used<br />

to model incoming storms at a variety <strong>of</strong> potential landfall locations.<br />

Probabilistic Annual Damage & Loss is computed using the results <strong>of</strong> 511,500<br />

stochastic storm simulation results. Annual damage and loss estimates are<br />

developed for each individual site and aggregated, if desired, to overall<br />

portfolio damage and loss amounts. USWIND’s climatological models are<br />

based on NOAA (National Oceanic & Atmospheric <strong>Administration</strong>)/NWS<br />

(National Weather Service) Technical Reports. Climatological probability<br />

distributions (i.e., for storm parameters) were developed using an Adaptive<br />

Kernel Smoothing technique applied to the historical hurricane record<br />

11


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

General Standards<br />

published by NOAA and by the Commission’s November 1, <strong>2006</strong> <strong>Florida</strong><br />

Storm Set.<br />

Overall <strong>Model</strong> Methodology<br />

USWIND modeling methodology can be segmented into four components: 1)<br />

the Hazard definition, 2) Propagation <strong>of</strong> the hazard to a site, 3) Damage<br />

estimate, and 4) Loss estimation.<br />

1. Hazard Definition<br />

The storm database used by USWIND is a combination <strong>of</strong> historical and<br />

stochastic storms. Wind speed probabilistic distributions are calculated using<br />

the probabilistic distributions <strong>of</strong> all important storm parameters. The<br />

proprietary wind speed equation was based upon the NOAA model as<br />

published in NWS 23 and NWS 38. The NOAA model was modified and<br />

generalized to properly simulate wind speeds for all categories <strong>of</strong> storms,<br />

from a weak SSI 1 through a strong SSI 5. The NOAA model was further<br />

modified to properly simulate storm decay and wind attenuation due to friction<br />

and filling as a storm moves inland from landfall point. The equation<br />

computes wind speeds using pressure, the filling rate, radius to maximum<br />

winds, the angle <strong>of</strong> attack, translation speed, the gradient to sustained winds,<br />

the gust factor, the storm pr<strong>of</strong>ile (attenuation <strong>of</strong> wind speed outward from the<br />

center), and the friction caused by local terrain and man-made structures.<br />

2. Propagation <strong>of</strong> the Hazard to the Site<br />

USWIND utilizes an embedded commercial GIS (Geographic Information<br />

System), MapInfo, to compute the latitude and longitude <strong>of</strong> each site<br />

analyzed. The street address level, where such data is available, is used to<br />

geocode to the lat./long. coordinates. Failing the presence <strong>of</strong> a street<br />

address, the geocoding can be done at a ZIP Code, City or County centroid<br />

basis. Wind speed distributions at the site locations are computed taking local<br />

friction and distance to coast into account.<br />

3. Estimation <strong>of</strong> Damage<br />

USWIND provides the facility to define each <strong>of</strong> the property assets being<br />

analyzed in order to compute resulting damage. Damage can be calculated<br />

for Structure, Contents, Time Element (such as Additional Living Expense<br />

(ALE) or Business Interruption (BI)) and up to three additional user defined<br />

coverage types. Site information includes the latitude and longitude <strong>of</strong> the<br />

locations, the structure types (96 types), structure details such as number <strong>of</strong><br />

stories, insured value, cladding type and a class <strong>of</strong> occupancy type (12<br />

types). Damage is estimated using vulnerability functions associated with the<br />

12


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

General Standards<br />

structure definition and occupancy type and the distribution <strong>of</strong> peak gust wind<br />

speeds at each site. The vulnerability functions used by USWIND have been<br />

derived through three methods: empirical data, expert opinion, and<br />

engineering analysis.<br />

The probabilistic distribution <strong>of</strong> damage (for each coverage and site) is<br />

derived through the integration <strong>of</strong> the probabilistic distribution <strong>of</strong> wind speeds<br />

for the site with the probabilistic distributions <strong>of</strong> damage for given wind<br />

speeds. Damage distributions for each <strong>of</strong> the sites are aggregated into an<br />

overall portfolio distribution <strong>of</strong> damage.<br />

Since there can be a high degree <strong>of</strong> damage correlation for similar structure<br />

types within a geographic area, USWIND properly takes into account site and<br />

coverage level correlations when aggregating individual site damage into an<br />

overall portfolio damage amount.<br />

4. Estimation <strong>of</strong> Loss<br />

Insurance information in the form <strong>of</strong> insured values, limits, deductibles and<br />

facultative and/or treaty reinsurance are then integrated with the probabilistic<br />

distribution <strong>of</strong> computed damage for each site to determine the probabilistic<br />

distribution <strong>of</strong> “insured loss” amount. Correlation is properly taken into<br />

account when aggregating individual site loss into an overall portfolio loss<br />

amount.<br />

Reports<br />

USWIND produces a vast array <strong>of</strong> management information, more than 200<br />

reports in all. Report categories include:<br />

Underwriting. TIV and premium can be mapped by geographical<br />

segmentation (state, county or ZIP Code) or reported by corporate<br />

segmentation (company, division, branch, line <strong>of</strong> business, policy type,<br />

producer, account, policy or site). Pr<strong>of</strong>iles <strong>of</strong> the deductibles and limits in the<br />

portfolio can also be displayed.<br />

Scenario Storms. Damage (ground-up effects), gross loss (including<br />

deductibles and limits), net loss (including facultative reinsurance) can be<br />

reported at all <strong>of</strong> the levels noted in the underwriting reports. Mean values<br />

and an upper bound corresponding to a prescribed non-exceedance level are<br />

provided.<br />

Probabilistic. In a manner similar to Scenario Storms, the damage, gross loss,<br />

and net loss can be reported, including non-exceedances. Additional reports<br />

displaying portfolio damage and loss for different non-exceedance levels, for<br />

either annual aggregate or per occurrence analysis methods, are available.<br />

13


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

General Standards<br />

Reinsurance. Scenario and probabilistic results are displayed by reinsurer<br />

(including facultative reinsurance) or by treaty. Probabilistic results include the<br />

probability <strong>of</strong> penetrating and exceeding treaty layers.<br />

Landfall Series. An abbreviated set <strong>of</strong> reports is available from running a<br />

series <strong>of</strong> storms against the portfolio. The series <strong>of</strong> storms can be either <strong>of</strong><br />

uniform intensity (as denoted by the SSI scale) or uniform recurrence levels.<br />

The storm series can have landfalls at 1, 10 or 35 mile intervals.<br />

Probability Distributions<br />

In many instances, probability distributions have been developed from<br />

historical data, e.g., storm parameters such as radius to maximum winds,<br />

forward speed, etc.; and vulnerability functions. The goodness-<strong>of</strong>-fit tests<br />

used to compare modeled distributions <strong>of</strong> various parameters with the<br />

underlying historical data will be presented to the pr<strong>of</strong>essional team during<br />

the on-site review.<br />

Sensitivity and Uncertainty Analyses<br />

Many sensitivity and uncertainty analyses have been performed in the<br />

development <strong>of</strong> USWIND. For example, sensitivity analyses have been<br />

performed on track spacing; on the number <strong>of</strong> attack angles given landfall; on<br />

the number <strong>of</strong> wind speed class intervals given landfall and attack angle; and<br />

on the number <strong>of</strong> other storm parameter samples used in the stochastic<br />

hurricane database. A number <strong>of</strong> uncertainty analyses have been performed<br />

as well, including studies on the impact <strong>of</strong> vulnerability uncertainty on the loss<br />

exceedance curve. The sensitivity and uncertainty analyses EQECAT has<br />

performed will be presented to the pr<strong>of</strong>essional team during the on-site<br />

review.<br />

S<strong>of</strong>tware/Hardware<br />

WORLDCATenterprise<br />

The requirements for the WORLDCATenterprise (WCe) hardware<br />

configuration consist <strong>of</strong> a Master Server and one or more Analysis Servers.<br />

Applications running on the Master Server include the Master database, the<br />

Web Server, and the Java Server. EQECAT processes, including the<br />

importing <strong>of</strong> portfolio data and some analyses also run on the Master Server.<br />

Master database: Contains WCe System tables, customer portfolio data, and<br />

final analysis results.<br />

Web Server: Handles communications between the remote Client PCs and<br />

communicates with the Java Server.<br />

14


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

General Standards<br />

Java Server: Manages the activities performed on the Master and Analysis<br />

Server(s) and the Master and Results Databases.<br />

The Analysis Server houses the Results Database, containing the<br />

intermediate results tables, and runs most <strong>of</strong> the analysis calculations. WCe<br />

users access the Master Server via Internet Explorer web browsers<br />

commonly installed on the Client PCs. The Client PC may access the system<br />

via the LAN or via a WAN/Internet.<br />

Minimum Client Requirements:<br />

• Operating System: Windows 2000 Pr<strong>of</strong>essional or Windows XP.<br />

• Processor: 1.5 GHz or higher.<br />

• RAM: 256 MB minimum (512 MB is recommended).<br />

• Micros<strong>of</strong>t Office 97 or later (Office is only required if using the spreadsheet<br />

import option in WCe).<br />

• Browser: Micros<strong>of</strong>t Internet Explorer Version 5.5 or later<br />

• Monitor: Screen resolution <strong>of</strong> 1024 by 768 or greater; screen color depth<br />

<strong>of</strong> 256 colors or greater.<br />

Minimum Server Hardware Requirements:<br />

(Master Server and Analysis Server(s))<br />

• Operating System: Windows 2000 Advanced Server (SP3) or Windows<br />

2003 Server<br />

• Processors: Dual (2), Pentium 4, 2.4 GHz or higher CPUs.<br />

• RAM: 4 GB.<br />

• Hard Drives: Capacity to house five or six 70 Gigabyte drives.<br />

• NTFS File System<br />

• CDROM: 24 X internal CDROM for installation.<br />

• Network Card: Compatible with network, 1.0 GHz.<br />

• Monitor: Screen resolution <strong>of</strong> 1024 by 768 or greater; screen color depth<br />

<strong>of</strong> 256 colors or greater.<br />

USWIND<br />

• Operating System: Windows 2000 or Windows 2003 Server<br />

• CPU: One Pentium 4 Processor, 2.0 GHz or higher.<br />

• RAM: 1 GB.<br />

• Hard Drive: 100 GB.<br />

• NTFS File System<br />

• CDROM: 24 X internal CDROM for installation.<br />

• Network Card: Compatible with network, 1.0 GHz.<br />

• Monitor: Screen resolution <strong>of</strong> 1024 by 768 or greater; screen color depth<br />

<strong>of</strong> 256 colors or greater.<br />

15


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

General Standards<br />

The model structure is translated to the program structure using Object<br />

Oriented Design and Analysis methodology. Physical and abstract entities in<br />

the model structure are mapped to objects <strong>of</strong> the program structure. The<br />

interactions between objects are captured using Flowcharts and Event<br />

diagrams. Object oriented practices (data encapsulation, abstraction,<br />

inheritance and polymorphism) are extensively used to derive the benefits <strong>of</strong><br />

Object Oriented approach.<br />

USWIND’s climatological models are based on NOAA/NWS Technical<br />

Reports [Schwerdt, et. al.; Ho, et. al.]. Climatological probability distributions<br />

(i.e., for storm parameters) were developed using Adaptive Kernel Smoothing<br />

[Scott] applied to the historical hurricane record published by NOAA<br />

[Jarvinen, et. al.; Cry] and by the Commission’s November 1, <strong>2006</strong> <strong>Florida</strong><br />

Storm Set. The maximum wind speed and overwater wind field modeling was<br />

developed from NOAA/NWS equations [Schwerdt, et. al.], with some<br />

empirical adjustment to the “Observed/Gradient Wind Ratio” in order to<br />

generalize the equations for lower intensity storms. USWIND uses<br />

NOAA/NWS methods [Schwerdt, et. al.] as a starting point for calculating<br />

local overland frictional wind speed reduction, but the specific categories <strong>of</strong><br />

surface roughness were augmented with additional information [Simiu and<br />

Scanlan]. Vulnerability relationships were developed from several sources,<br />

including observed damage relationships in historical storms [Friedman 1972,<br />

1984; numerous Travelers Insurance Company internal memoranda] and<br />

engineering studies [McDonald-Mehta]. The simulation methodology<br />

combines several standard techniques including physical modeling [Friedman<br />

1975], Monte Carlo simulation [Metropolis and Ulam] and Variance Reduction<br />

Techniques [Kahn; Rubinstein]. The evaluation <strong>of</strong> loss costs and other risk<br />

measures is based on standard actuarial theory [Beard, et. al.].<br />

3. Provide a flow diagram that illustrates interactions among major model<br />

components.<br />

USWIND is a complex system made up <strong>of</strong> many components, databases, and<br />

data files. The flowcharts, class diagrams, and tables on the following pages<br />

summarize the key aspects <strong>of</strong> the system. These aspects include the<br />

representation <strong>of</strong> physical entities <strong>of</strong> the hurricane catastrophe domain (e.g.<br />

storm, site, portfolio, etc.) as classes and objects within the program (Figure<br />

1); the procedural flow <strong>of</strong> information and steps within the program (Figure 2);<br />

and the exchange <strong>of</strong> information among various components <strong>of</strong> the system<br />

(e.g. portfolio tables, storm database, results tables, etc.) (Table 1 and Figure<br />

3).<br />

16


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

General Standards<br />

FLOWCHART - USWIND PROBABILISTIC ANALYSIS<br />

Climatology<br />

Database<br />

Track/Pressure<br />

Joint Distribution<br />

Probabilistic<br />

Storm Data Base<br />

(511,500 storms)<br />

Wind Speed Joint<br />

Distribution<br />

Other Storm<br />

Parameter Joint<br />

Distribution<br />

Site Specific<br />

Parameters<br />

Joint Distribution<br />

Land Use<br />

Database<br />

Wind Field<br />

Samples<br />

Portfolio<br />

Description<br />

Damage<br />

Calculation<br />

Loss<br />

Calculation<br />

Vulnerability<br />

Functions<br />

Insurance<br />

Structures<br />

Risk Curve<br />

Output Reports<br />

WSJD_2_07.ppt<br />

Figure 1. Flowchart – USWIND Probabilistic Analysis<br />

17


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

General Standards<br />

Begin<br />

Portfolio<br />

Tables<br />

Read Site's Information<br />

from Database<br />

Compute Hazard at the<br />

Site<br />

Compute Damage to<br />

the Site due to<br />

calculated hazard<br />

Results<br />

Tables<br />

Output hazard and<br />

Damage Results<br />

End <strong>of</strong> Portfolio <br />

No<br />

Yes<br />

End<br />

Figure 2. Flowchart – USWIND Hazard and Damage Calculation Procedure<br />

18


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

General Standards<br />

TABLE 1.<br />

KEY CLASSES OF THE USWIND WIND SPEED AND DAMAGE CALCULATION<br />

Class<br />

Cportfolio<br />

No. <strong>of</strong><br />

Instances<br />

Once<br />

Owner(s)<br />

Main()<br />

Csite Multiple CPortfolio<br />

CstormPeril Multiple CPortfolio<br />

Cstorm Multiple CStormPeril<br />

CsiteWindHa<br />

zard<br />

CsiteWindDa<br />

mage<br />

Once<br />

Once<br />

CStormPeril<br />

CSiteWindH<br />

azard,<br />

CStormPeril<br />

Responsibilities<br />

• Principal object that serves as starting<br />

point.<br />

• Connects to Database.<br />

• Opens Input and Output tables.<br />

• Performs static initializations (like<br />

loading binary files into memory)<br />

• Creates CSite objects (one at time)<br />

• Creates the Peril objects<br />

(CStormPeril)<br />

• Analyzes the portfolio using the Peril<br />

objects<br />

• Holds site specific information<br />

• Calculates information necessary for<br />

performing hazard and damage<br />

computations.<br />

• Represents the Peril<br />

• Loads storm information from<br />

Database and prepares the storm<br />

• Uses CSiteWindHazard object to<br />

perform hazard calculations<br />

• Holds the storm information read from<br />

Database.<br />

• Calculates storm parameters<br />

necessary for subsequent<br />

computations.<br />

• Calculates hazard from a given Storm<br />

to a given Site.<br />

• Uses CStormPeril, CStorm, CSite<br />

objects to perform hazard calculations<br />

• Calculates damage to a site from a<br />

given hazard.<br />

• Uses CSite, CSiteWindHazard and<br />

other objects (e.g. CCoverage for<br />

coverage information, CDamage for<br />

damage curves, CResult for storing<br />

results information etc.)<br />

19


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

General Standards<br />

CPortfolio<br />

object<br />

1. Create a CSite object<br />

with information read about<br />

the site from Portfolio<br />

Tables<br />

CSite Object<br />

(sitepar.cpp)<br />

2. Ask CStormPeril objects<br />

to analyze this site<br />

uses<br />

uses<br />

CStormPeril<br />

Object<br />

(storm.cpp)<br />

Creates CSiteWindHazard<br />

object to perform Hazard<br />

Calculations<br />

uses<br />

CSiteWindHazard<br />

object<br />

(sitewind.cpp)<br />

uses<br />

CSiteWindDamage<br />

object<br />

(sitewdmg.cpp)<br />

Creates a<br />

CSiteWindDamage object<br />

to perform Damage<br />

Calculations<br />

Figure 3. Flowchart - Object Deployment for USWIND Hazard and Damage Calculations<br />

4. Provide a comprehensive list <strong>of</strong> complete references pertinent to the submission by<br />

Standard grouping, according to pr<strong>of</strong>essional citation standards.<br />

List <strong>of</strong> References:<br />

Meteorology Standards<br />

Cry, G. W. (1965). Tropical Cyclones <strong>of</strong> the North Atlantic Ocean, Technical<br />

Paper No. 55, U.S. Department <strong>of</strong> Commerce, Weather Bureau,<br />

Washington, DC.<br />

Franklin, J.L., M.L. Black, and K. Valde (2003). “GPS dropwindsonde wind<br />

pr<strong>of</strong>iles in hurricanes and their operational implications”, Weather and<br />

Forecasting, Vol. 18, No. 1, pp. 32-44.<br />

20


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

General Standards<br />

Ho, F. P., Su, J. C., Hanevich, K. L., Smith, R. J., and Richards, F. P. (1987).<br />

Hurricane Climatology for the Atlantic and Gulf Coasts <strong>of</strong> the United<br />

<strong>State</strong>s, NOAA Technical Report NWS 38, U.S. Department <strong>of</strong> Commerce,<br />

National Oceanographic and Atmospheric <strong>Administration</strong>, National<br />

Weather Service, Washington, DC.<br />

Houston, S.H., and M.D. Powell (2003). “Surface wind fields for <strong>Florida</strong> Bay<br />

Hurricanes”, Journal <strong>of</strong> Coastal Research, Vol. 19, pp. 503-513.<br />

Jarvinen, B. R., Neumann, C. J., and Davis, M. A. S. (1984). A Tropical<br />

Cyclone Data Tape for the North Atlantic Basin, Technical Memorandum<br />

NWS NHC 22, National Oceanic and Atmospheric <strong>Administration</strong> and<br />

National Weather Service, Washington, DC.<br />

Krayer, W.R., and Marshall, R.D., (1992). “Gust factors applied to hurricane<br />

winds,” Bulletin <strong>of</strong> the American Meteorological Society, Vol. 73, No. 5, pp.<br />

613-617.<br />

Landsea, C. W. et al (2004). “A Reanalysis <strong>of</strong> Hurricane Andrew’s Intensity,”<br />

Bulletin <strong>of</strong> the American Meteorological Society, Vol. 85, No. 11, pp. 1699-<br />

1712.<br />

Powell, M.D., D. Bowman, D. Gilhousen, S. Murillo, N. Carrasco, and R. St.<br />

Fluer (2004). “Tropical Cyclone Winds at Landfall”, Bulletin <strong>of</strong> the<br />

American Meteorological Society, Vol. 85, No. 6, pp. 845-851.<br />

Schwerdt, R. W., Ho, F. P., and Watkins, R. R. (1979). Meteorological Criteria<br />

for Standard Project Hurricane and Maximum Probable Hurricane Wind<br />

Fields, Gulf and East Coasts <strong>of</strong> the United <strong>State</strong>s, NOAA Technical Report<br />

NWS 23, U.S. Department <strong>of</strong> Commerce, National Oceanographic and<br />

Atmospheric <strong>Administration</strong>, National Weather Service, Washington, DC.<br />

Vulnerability Standards<br />

Fujita, T. T. (1992). “Damage survey <strong>of</strong> Hurricane Andrew in south <strong>Florida</strong>,”<br />

Storm Data, Vol. 34, pp. 25–30.<br />

McDonald-Mehta Engineers (1993). Vulnerability Functions for Estimating<br />

Wind Damage to Buildings, for EQE Engineering and Design, Texas Tech<br />

University, Lubbock, TX. (Available on-site, only)<br />

Simiu, E. and Scanlan, R. H. (1996). Wind Effects on Structures, John Wiley<br />

and Sons, New York, NY.<br />

Actuarial Standards<br />

Friedman, D. G. (1972). "Insurance and the natural hazards," 9th ASTIN<br />

Colloquium, International Congress <strong>of</strong> Actuaries, Randers, Denmark,<br />

International Journal for Actuarial Studies in Non-Life Insurance and Risk<br />

Theory, Amsterdam, The Netherlands, Vol. VII, Part 1, pp. 4-58.<br />

Friedman, D. G. (1984). "Natural hazard risk assessment for an insurance<br />

program," The Geneva Papers on Risk and Insurance, Vol. 9, pp. 57-128.<br />

21


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

General Standards<br />

Statistical Standards<br />

Beard, R. E., Pentikäinen, T., and Pesonen, E. (1984). Risk Theory: The<br />

Stochastic Basis <strong>of</strong> Insurance, London: Chapman and Hall.<br />

Kahn, H. (1950). “Modifications <strong>of</strong> the Monte Carlo method,” in Proceedings,<br />

Seminar on Scientific Computations, November 16-18, 1949, Hurd, C. C.,<br />

ed., pp. 20-27, International Business Machines, New York, NY.<br />

Metropolis, N., and Ulam, S. (1949). “The Monte Carlo method,” Journal <strong>of</strong><br />

the American Statistical Association, Volume 44, page 335.<br />

Rubinstein, R. Y. (1981). Simulation and the Monte Carlo Method, John Wiley<br />

and Sons, New York, NY.<br />

Scott, D. W. (1992). Multivariate Density Estimation: Theory, Practice, and<br />

Visualization, John Wiley and Sons, New York, NY.<br />

Computer Standards<br />

Friedman, D. G. (1975). Computer Simulation in Natural Hazard Assessment,<br />

Monograph NSF-RA-E-75-002. Institute <strong>of</strong> Behavioral Sciences, University<br />

<strong>of</strong> Colorado, Boulder, CO.<br />

5. Provide a detailed description <strong>of</strong> all changes in the model from the prior year’s<br />

submission.<br />

The following change was made to WORLDCATenterprise / USWIND between<br />

the submission last year (USWIND Version 5.10 / WORLDCATenterprise Version<br />

3.8) and the current submission (USWIND Version 5.11 / WORLDCATenterprise<br />

Version 3.9):<br />

1. The probabilistic hurricane database was regenerated to be consistent with the<br />

Commission’s November 1, <strong>2006</strong> storm set, and to additionally include the <strong>2006</strong><br />

hurricane season.<br />

22


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

General Standards<br />

G-2 Qualifications <strong>of</strong> <strong>Model</strong>er Personnel and Consultants<br />

A. <strong>Model</strong> construction, testing, and evaluation shall be performed by<br />

modeler personnel or consultants who possess the necessary skills,<br />

formal education, or experience to develop the relevant components<br />

for hurricane loss projection methodologies.<br />

The model construction, testing, and evaluation was performed by a team <strong>of</strong><br />

individuals who possess the necessary skills, formal education, and experience<br />

to develop hurricane loss projection methodologies, and who abide by the<br />

standards <strong>of</strong> pr<strong>of</strong>essional conduct adopted by their pr<strong>of</strong>ession.<br />

B. The model or any modifications to an accepted model shall be<br />

reviewed by either modeler personnel or consultants in the following<br />

pr<strong>of</strong>essional disciplines: structural/wind engineering (licensed<br />

Pr<strong>of</strong>essional Engineer), statistics (advanced degree), actuarial science<br />

(Associate or Fellow <strong>of</strong> Casualty Actuarial Society), meteorology<br />

(advanced degree), and computer/information science (advanced<br />

degree). These individuals shall be signatories on Forms G-1 through<br />

G-6 as applicable and shall abide by the standards <strong>of</strong> pr<strong>of</strong>essional<br />

conduct if adopted by their pr<strong>of</strong>ession.<br />

The model and all modifications to it have been reviewed by modeler personnel<br />

or consultants in the following pr<strong>of</strong>essional disciplines, if relevant: structural/wind<br />

engineering (licensed Pr<strong>of</strong>essional Engineer), statistics (advanced degree),<br />

actuarial science (Associate or Fellow <strong>of</strong> Casualty Actuarial Society),<br />

meteorology (advanced degree), and computer/information science (advanced<br />

degree). These individuals are signatories on Forms G-1 through G-6 as<br />

applicable and abide by the standards <strong>of</strong> pr<strong>of</strong>essional conduct if adopted by their<br />

pr<strong>of</strong>ession.<br />

Disclosures<br />

1. Organization Background<br />

A. Describe the ownership structure <strong>of</strong> the modeling organization. Describe<br />

affiliations with other companies and the nature <strong>of</strong> the relationship, if any.<br />

Indicate if your organization has changed its name and explain the<br />

circumstances.<br />

EQECAT, Inc. is a wholly owned subsidiary <strong>of</strong> ABS Group, Inc.<br />

B. If the model is developed by an entity other than a modeling company, describe its<br />

organizational structure and indicate how proprietary rights and control over the<br />

model and its critical components is exercised. If more than one entity is involved<br />

in the development <strong>of</strong> the model, describe all involved.<br />

23


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

General Standards<br />

USWIND is developed by EQECAT, Inc., a modeling company.<br />

C. If the model is developed by an entity other than a modeling company, describe<br />

the funding source for the model.<br />

USWIND is developed by EQECAT, Inc., a modeling company.<br />

D. Describe the modeler’s services.<br />

EQECAT, Inc. provides a complete range <strong>of</strong> catastrophe management<br />

services: portfolio analysis; consulting on product pricing, structure, and<br />

underwriting guidelines; training for underwriters and loss control staff on<br />

critical structural details; securitization; information on scientific<br />

developments and hazard investigations from its own research and via<br />

links to key sites on the World Wide Web from the EQECAT home page;<br />

engineering evaluations <strong>of</strong> major individual risks; assistance with large<br />

claims settlements; and hazard modeling s<strong>of</strong>tware.<br />

E. Indicate how long the model has been used for analyzing insurance company<br />

exposures or other such uses. Describe these uses.<br />

USWIND has been used since 1995 to assist companies in establishing<br />

their Probable Maximum Loss (PML), managing claim response after<br />

hurricanes, and structuring reinsurance treaties.<br />

F. Indicate if the modeling organization has ever been involved in litigation or<br />

challenged by a statutory authority where the credibility <strong>of</strong> one <strong>of</strong> its U. S.<br />

hurricane model versions was disputed. Describe the nature <strong>of</strong> the case and the<br />

conclusion.<br />

EQECAT has engaged in a review <strong>of</strong> the model with the Hawaii Insurance<br />

Division, which is a requirement for all hurricane loss models to be used in<br />

residential rate filings in Hawaii.<br />

In December 2005, EQECAT sent an addendum to the Hawaii Insurance<br />

Division Questionnaire (Memorandum 2003-3R). EQECAT subsequently<br />

received a reply correspondence from the Hawaii Insurance Division,<br />

containing a series <strong>of</strong> follow-up questions. EQECAT submitted its<br />

response to the Division on February 14, 2007. These follow-up questions<br />

are <strong>of</strong> clarification nature and have no bearing on any aspect <strong>of</strong> the model<br />

applicable to <strong>Florida</strong>.<br />

24


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

General Standards<br />

2. Pr<strong>of</strong>essional Credentials<br />

A. Provide in a chart format (a) the highest degree obtained (discipline and<br />

University), (b) employment or consultant status and tenure in years, and (c)<br />

relevant experience and responsibilities <strong>of</strong> individuals involved in the primary<br />

development <strong>of</strong> or revisions to the following aspects <strong>of</strong> the model:<br />

1. Meteorology<br />

2. Vulnerability<br />

3. Actuarial Science<br />

4. Statistics<br />

5. Computer Science<br />

The tables below summarize the credentials for the individuals involved in<br />

the development and maintenance <strong>of</strong> USWIND. More detailed credentials<br />

for selected personnel are provided in Appendix 1.<br />

1. Meteorology<br />

Name<br />

Apoorv Dabral<br />

Mahmoud<br />

Khater<br />

Andreas Mueller<br />

David Smith<br />

Qing Xia<br />

Krishnaraj<br />

Santhanam<br />

Highest Degree<br />

Ph.D. Wind Science and<br />

Engineering, Texas Tech<br />

University<br />

Ph.D. Structural Engineering<br />

Cornell University<br />

Ph.D. Physics<br />

Univeristy <strong>of</strong> Karlsruhe,<br />

Germany<br />

M.S. Geophysics<br />

Yale University<br />

Ph.D. Meteorology<br />

University <strong>of</strong> Chicago<br />

Ph.D Meteorology<br />

Saint Louis University<br />

Employee<br />

Since<br />

Relevant Experience<br />

2007 Wind engineering<br />

1988<br />

<strong>Model</strong> design, probabilistic<br />

analysis<br />

2002 Meteorology<br />

1994<br />

Meteorology, hurricane<br />

analysis<br />

2002 Meteorology<br />

2005 Meteorology<br />

25


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

General Standards<br />

2. Vulnerability<br />

Name<br />

James R. (Bob)<br />

Bailey<br />

Apoorv Dabral<br />

Jun-Rong Huo<br />

Omar Khemici<br />

Highest Degree<br />

Ph.D. Civil Engineering<br />

Texas Tech University<br />

Ph.D. Wind Science and<br />

Engineering, Texas Tech<br />

University<br />

Ph.D. Civil Engineering<br />

Institute <strong>of</strong> Engineering<br />

Mechanics, <strong>State</strong><br />

Seismological Bureau,<br />

China<br />

Ph.D. Civil Engineering<br />

Stanford University<br />

Employee<br />

Since<br />

Consultant<br />

Relevant Experience<br />

Wind engineering<br />

2007 Wind engineering<br />

1998 Structural engineering<br />

1990 Structural engineering<br />

3. Actuarial Science<br />

Name<br />

Shawna<br />

Ackerman,<br />

FCAS, MAAA<br />

Highest Degree<br />

B.A. Mathematics<br />

Oregon <strong>State</strong> University<br />

Employee<br />

Since<br />

Consultant<br />

Relevant Experience<br />

Actuarial science<br />

4. Statistics<br />

Name<br />

James Johnson<br />

Petros<br />

Keshishian<br />

Mahmoud<br />

Khater<br />

Nilesh Shome<br />

David Smith<br />

Highest Degree<br />

Ph.D. Civil Engineering<br />

University <strong>of</strong> Illinois<br />

Ph.D. Civil Engineering<br />

University <strong>of</strong> California,<br />

Berkeley<br />

Ph.D. Structural Engineering<br />

Cornell University<br />

Ph.D. Structural Engineering<br />

Stanford University<br />

M.S. Geophysics<br />

Yale University<br />

Employee<br />

Since<br />

Consultant<br />

Relevant Experience<br />

Probabilistic analysis<br />

1999 Probabilistic analysis<br />

1988<br />

<strong>Model</strong> design, probabilistic<br />

analysis<br />

1999 Probabilistic analysis<br />

1994<br />

<strong>Model</strong> design, probabilistic<br />

analysis<br />

26


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

General Standards<br />

5. Computer Science<br />

Name<br />

Branimir Betov<br />

Phil Burtis<br />

Richard Clinton,<br />

CPCU<br />

Kent David<br />

Ray Kincaid<br />

Tom Larsen<br />

Jason Mok<br />

Sergey<br />

Pasternak<br />

Anu Sandhu<br />

David Smith<br />

Kerry<br />

Zimmerman<br />

Highest Degree<br />

M.S. Electrical Engineering<br />

Technical University <strong>of</strong><br />

S<strong>of</strong>ia, Bulgaria<br />

B.S. Electrical Engineering<br />

Iowa <strong>State</strong> University<br />

B.A. Mathematics<br />

California <strong>State</strong> University,<br />

Long Beach<br />

M.S. Structural Analysis and<br />

Design<br />

University <strong>of</strong> California,<br />

Berkeley<br />

M.B.A.<br />

Pepperdine University<br />

M. Eng. Structural<br />

Engineering<br />

University <strong>of</strong> California,<br />

Berkeley<br />

B.S. Computer Engineering<br />

San Jose <strong>State</strong> University<br />

B.S. Electrical Engineering<br />

Petrochemical and Gas<br />

Industry Institute, Moscow,<br />

Russia<br />

M.B.A. Marketing and<br />

Finance<br />

Symbiosis Institute <strong>of</strong><br />

Management Studies, Pune,<br />

India<br />

M.S. Geophysics<br />

Yale University<br />

B.S. Computer Science<br />

California <strong>State</strong> University,<br />

San Luis Obispo<br />

Employee<br />

Since<br />

Relevant Experience<br />

1998 S<strong>of</strong>tware development<br />

1996 S<strong>of</strong>tware development<br />

1993<br />

1987<br />

Insurance underwriting,<br />

s<strong>of</strong>tware product<br />

management<br />

S<strong>of</strong>tware quality<br />

assurance<br />

1985 S<strong>of</strong>tware development<br />

1989<br />

<strong>Model</strong> design, s<strong>of</strong>tware<br />

development, s<strong>of</strong>tware<br />

product management<br />

<strong>2006</strong> S<strong>of</strong>tware development<br />

1995 S<strong>of</strong>tware development<br />

2004<br />

1994<br />

S<strong>of</strong>tware product<br />

management<br />

<strong>Model</strong> design, s<strong>of</strong>tware<br />

development<br />

1997 S<strong>of</strong>tware development<br />

B. Identify any new employees or consultants (since the previous submission)<br />

working on the model.<br />

Jason Mok and Apoorv Dabral joined the EQECAT model development<br />

team in August <strong>2006</strong> and January 2007, respectively. Bob Bailey has<br />

served as a consultant since leaving ABS Group in March <strong>2006</strong>.<br />

C. Provide visual business workflow documentation connecting all personnel related<br />

to model design, testing, execution, maintenance, and decision-making.<br />

27


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

General Standards<br />

See Figure 4 below.<br />

Product<br />

Manage<br />

ment<br />

(Tom<br />

Larsen,<br />

Anu<br />

Sandhu)<br />

Methodology Development<br />

(Mahmoud Khater,<br />

David Smith)<br />

GUI Development<br />

(Ray Kincaid,<br />

Phil Burtis)<br />

<strong>Model</strong> Development<br />

(Mahmoud Khater,<br />

David Smith)<br />

Configuration Managemnt<br />

(Ray K ncaid,<br />

Phil Burtis)<br />

Documentation/Publications<br />

(Mahmoud Khater,<br />

David Smith,<br />

Ray Kincaid,<br />

Phil Burtis)<br />

Quality Assurance<br />

(Kent David)<br />

Shipping<br />

(Ray Kincaid,<br />

Phil Burtis)<br />

Customer<br />

Customer Service<br />

(Tom Larsen)<br />

Figure 4. Business Workflow Diagram<br />

D. Indicate specifically whether individuals listed in A. and B. are associated with<br />

the insurance industry, consumer advocacy group, or a government entity as well<br />

as their involvement with consulting activities.<br />

None <strong>of</strong> the individuals listed in A. and B. including the consultants<br />

Shawna Ackerman (credentials above); Dr. James Johnson (credentials<br />

above and in Appendix 1); and Dr. James R. (Bob) Bailey are associated<br />

28


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

General Standards<br />

with the insurance industry, a consumer advocacy group, or a government<br />

entity.<br />

Shawna Ackerman a principal and consulting actuary with a private<br />

actuarial firm, provides advice in the area <strong>of</strong> actuarial science.<br />

Dr. James Johnson provides advice in the area <strong>of</strong> probabilistic analysis.<br />

Dr. James R. (Bob) Bailey provides support in the area <strong>of</strong> mitigation<br />

measures within vulnerability.<br />

3. Independent Peer Review<br />

A. Provide dates <strong>of</strong> external independent peer reviews that have been performed on<br />

the following components as currently functioning in the model:<br />

1. Meteorology<br />

2. Vulnerability<br />

3. Actuarial Science<br />

4. Statistics<br />

5. Computer Science<br />

1. Meteorology<br />

Dr. Don Friedman performed a review <strong>of</strong> the meteorological aspects <strong>of</strong> the<br />

model in 1995. His concerns were as follows: (1) the method used to<br />

generate a visual representation <strong>of</strong> the wind patterns (a “friction index”)<br />

over a geographic area produces some discontinuities which might make<br />

a user suspicious <strong>of</strong> the credibility <strong>of</strong> the underlying analysis. (2) The<br />

degree <strong>of</strong> variation between predicted wind speeds versus measured wind<br />

speeds in several test cases indicates that there are varying degrees <strong>of</strong><br />

uncertainty in the various estimated wind speed patterns. This is not<br />

surprising, because Dr. Friedman believes “that there are inherent<br />

deficiencies in the sole use <strong>of</strong> information from National Weather Service<br />

Reports, and that all models suffer from the same inadequacies.” He<br />

stated that it is up to the modeler to decide whether that output is <strong>of</strong><br />

sufficient accuracy to provide a realistic basis for estimating the loss<br />

producing potential <strong>of</strong> past and future hurricanes for the purposes for<br />

which the results are to be used. We feel that the accuracy is sufficient for<br />

the purpose. We have addressed the concern about the visual<br />

representation <strong>of</strong> the wind patterns and related suggestions for the<br />

improvements made by Dr. Friedman.<br />

2. Vulnerability<br />

Dr. Kishor Mehta, Dr. James McDonald, and Dr. C. Allin Cornell performed<br />

independent reviews <strong>of</strong> the vulnerability model in 1995.<br />

29


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

General Standards<br />

3. Actuarial Science<br />

Discussed in conjunction with Statistics below.<br />

4. Statistics<br />

Dr. C. Allin Cornell and Dr. Richard Mensing reviewed the overall<br />

methodology and technical approach in 1995. Their comments were as<br />

follows: Cornell - suggested we make the procedure more transparent in<br />

order to facilitate communication and learning by the users - “simple, brute<br />

force Monte Carlo simulation is about as straight-forward as you can be...<br />

but you are doing something smarter and hence more difficult to grasp.”<br />

Further suggestions were for a thorough sensitivity study and ideas for the<br />

treatment <strong>of</strong> uncertainty. Mensing - “Overall, I believe the methodology<br />

represents a very good approach to a probabilistic analysis <strong>of</strong> the<br />

damages and losses associated with hurricanes.” His suggestions were to<br />

review the treatment <strong>of</strong> uncertainty and verify the adequacy <strong>of</strong> the portfolio<br />

input data. Additional studies were done to address these issues prior to<br />

the release <strong>of</strong> USWIND.<br />

Mr. Peter Kelly and Dr. Lixin Zeng <strong>of</strong> Arkwright Mutual Insurance<br />

Company reviewed all aspects <strong>of</strong> the USWIND model in their paper ‘The<br />

Engineering, Statistical, and Scientific Validity <strong>of</strong> EQECAT USWIND<br />

<strong>Model</strong>ing S<strong>of</strong>tware’ in 1996. They stated the following in their review:<br />

“The validity <strong>of</strong> EQECAT USWIND modeling s<strong>of</strong>tware is reviewed<br />

from several perspectives. Using several external sources for<br />

hurricane data, it is found that the storm data set represents the<br />

historical and expected long term storm patterns well and generally<br />

without bias. By reviewing storm damage estimates against a<br />

theoretical understanding <strong>of</strong> the wind effects on structures as well as<br />

actual experience, it was found that the model’s damage estimates<br />

reasonably reflect the physical properties <strong>of</strong> force and damage and<br />

that the system has no systematic bias in its damage estimation<br />

logic.”<br />

A copy <strong>of</strong> their review is provided in Appendix 2.<br />

5. Computer Science<br />

Daryl Orts and Chuck Walrad performed independent reviews <strong>of</strong> the<br />

computer science aspects <strong>of</strong> the model in 1998.<br />

B. Provide documentation <strong>of</strong> independent peer reviews directly relevant to the<br />

modeler’s responses to the current Standards, Disclosures, or Forms. Identify<br />

any unresolved or outstanding issues as a result <strong>of</strong> these reviews.<br />

30


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

General Standards<br />

Refer to the Appendix for documentation. There are no unresolved or<br />

outstanding issues resulting from the reviews.<br />

C. Describe the nature <strong>of</strong> any on-going or functional relationship the organization<br />

has with any <strong>of</strong> the persons performing the independent peer reviews.<br />

Dr. Cornell has also done a peer review on our USQUAKE model. Dr.<br />

Mensing was a full-time employee <strong>of</strong> EQECAT for several years and<br />

continues as a consultant to EQECAT, although he was an independent<br />

consultant at the time he performed the review described above. Drs.<br />

Cornell, Mensing, and Friedman were compensated for their time by<br />

EQECAT.<br />

4. Provide a completed Form G-1, General Standards Expert Certification.<br />

5. Provide a completed Form G-2, Meteorological Standards Expert Certification.<br />

6. Provide a completed Form G-3, Vulnerability Standards Expert Certification.<br />

7. Provide a completed Form G-4, Actuarial Standards Expert Certification.<br />

8. Provide a completed Form G-5, Statistical Standards Expert Certification.<br />

9. Provide a completed Form G-6, Computer Standards Expert Certification.<br />

See Forms G-1 to G-6 at the end <strong>of</strong> this section.<br />

31


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

General Standards<br />

G-3 Risk Location<br />

A. ZIP Codes used in the model shall be updated at least every 24 months<br />

using information originating from the United <strong>State</strong>s Postal Service.<br />

The United <strong>State</strong>s Postal Service issue date <strong>of</strong> the updated information<br />

shall be reasonable.<br />

The USWIND ZIP Code database was updated in February <strong>2006</strong>, based on<br />

information originating from the United <strong>State</strong>s Postal Service current as <strong>of</strong> August<br />

2005. EQECAT will update the ZIP Code database in the USWIND model at<br />

least every 24 months.<br />

B. ZIP Code centroids, when used in the model, shall be based on<br />

population data.<br />

The ZIP Code centroids used in USWIND are derived using population.<br />

C. ZIP Code information purchased by the modeler shall be verified by the<br />

modeler for accuracy and appropriateness.<br />

EQECAT verifies each new ZIP Code database through a suite <strong>of</strong> procedures,<br />

including automated numeric tests and visual tests.<br />

Disclosures<br />

1. List the current ZIP Code databases used by the model and the components <strong>of</strong> the<br />

model to which they relate. Provide the effective (<strong>of</strong>ficial United <strong>State</strong>s Postal<br />

Service) date corresponding to the ZIP Code databases.<br />

USWIND uses Dynamap 5-Digit ZIP Codes distributed by MapInfo. The<br />

source <strong>of</strong> the data is Geographic Data Technology, Inc. (GDT). GDT created<br />

the data using a combination <strong>of</strong> its DYNAMAP/2000 data, the United <strong>State</strong>s<br />

Postal Service (USPS) ZIP+4 Data File, the USPS National 5-Digit ZIP Code<br />

and Post Office Directory, USPS ZIP+4 <strong>State</strong> Directories, and the USPS City<br />

<strong>State</strong> File.<br />

The ZIP Code data is used in the import component <strong>of</strong> the model.<br />

The effective date <strong>of</strong> the ZIP Code data is August 2005.<br />

2. Describe in detail how invalid ZIP Codes are handled.<br />

Invalid ZIP Codes in input data are generated from many sources, including<br />

(a) typographical errors in the insurers’ data, (b) usage <strong>of</strong> mailing address<br />

instead <strong>of</strong> site address, or (c) usage <strong>of</strong> an out <strong>of</strong> date ZIP Code. The<br />

32


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

General Standards<br />

USWIND program attempts to locate any invalid sites to the most refined level<br />

possible, the data quality permitting. At the end <strong>of</strong> the ‘geocoding’ process,<br />

USWIND echoes the status <strong>of</strong> the quality <strong>of</strong> the data, indicating how many<br />

locations were mapped to the street address level, to ZIP Code centroids, city<br />

centroids, and to county centroids.<br />

In addition, if users are uncertain <strong>of</strong> the quality <strong>of</strong> street address information,<br />

they can enter latitude and longitude coordinates.<br />

The steps in the geocoding process are as follows:<br />

1. If the street address is available, the program attempts to geocode the<br />

location to its exact location, to within approximately 400 feet in most<br />

urban areas.<br />

2. If the program was unable to calculate the exact street location, the<br />

program looks at the site ZIP Code. If the input ZIP Code exactly matches<br />

a ZIP Code in our database, the geocoding stops.<br />

3. If the exact ZIP Code was not matched, the program then looks through<br />

the database <strong>of</strong> ‘point’ ZIP Codes. Point ZIP Codes indicate Post Office<br />

boxes or private entities who desire their own ZIP Code. The location <strong>of</strong><br />

these point ZIP Codes is provided by the US Government. For displaying<br />

maps <strong>of</strong> exposure and losses, these ZIP Codes are also ‘mapped’ to<br />

regional ZIP Codes which correspond to the ZIP Code area which the<br />

point ZIP Code is in.<br />

4. If the location is still not found, the program next looks at the city name in<br />

the input data. If the city name was included in the input data, and the city<br />

name is in the USWIND databases, then the location is geocoded to a city<br />

centroid, and the geocoding summary is updated to indicate this.<br />

5. If the location is still not found, the program next looks at the county name<br />

in the input data. If the county name was included in the input data, and<br />

the county name is in the USWIND databases, then the location is<br />

geocoded to a county centroid, and the geocoding summary is updated to<br />

indicate this.<br />

6. If the data provided fails these steps then the risk is removed from the<br />

database.<br />

33


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

General Standards<br />

G-4 Independence <strong>of</strong> <strong>Model</strong> Components<br />

The meteorological, vulnerability, and actuarial components <strong>of</strong> the model<br />

shall each be theoretically sound without compensation for potential bias<br />

from the other two components.<br />

The meteorology, vulnerability, and actuarial components <strong>of</strong> USWIND have been<br />

independently developed, verified, and validated. The meteorology component,<br />

completely independent <strong>of</strong> the other components, calculates wind speed at each<br />

site.<br />

The vulnerability component is entirely independent <strong>of</strong> all other calculations, e.g.<br />

meteorological, loss, etc. Validation <strong>of</strong> the vulnerability functions has been<br />

performed independently from other validation tests, e.g. whenever the<br />

vulnerability functions have been validated using claims data from a historical<br />

storm, the wind field for that storm has first been validated independently. If any<br />

<strong>of</strong> the other calculation modules were changed, no changes would be necessary<br />

to the vulnerability functions.<br />

The loss distributions are calculated using the damage distribution at each site<br />

and the policy structure. Finally, the site distributions (damage and loss) are<br />

combined statistically to estimate the expected annual loss and the loss<br />

exceedance curve for the portfolio. All components together have been validated<br />

and verified to produce reasonable and consistent results.<br />

34


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

General Standards<br />

Form G-1: General Standards Expert Certification<br />

I hereby certify that I have personally reviewed the submission <strong>of</strong> USWIND Version 5.11 /<br />

WORLDCATenterprise Version 3.9 for compliance with the <strong>2006</strong> Standards adopted by the<br />

<strong>Florida</strong> Commission on Hurricane Loss Projection Methodology and hereby certify:<br />

1) that the model meets the General Standards (G1 – G4),<br />

2) that the Disclosures and Forms related to the General Standards section contain accurate,<br />

reliable, unbiased, and complete information,<br />

3) that my review was completed in accordance with the pr<strong>of</strong>essional standards and code <strong>of</strong><br />

ethical conduct for my pr<strong>of</strong>ession, and<br />

4) that in expressing my opinion I have not been influenced by any other party in order to<br />

bias or prejudice my opinion.<br />

Mahmoud Khater, Chief Technical Officer<br />

Name<br />

Ph.D. Civil Engineering<br />

Pr<strong>of</strong>essional Credentials (Area <strong>of</strong> Expertise)<br />

Signature (original submission)<br />

Date<br />

Signature (response to Deficiencies, if any)<br />

Date<br />

Signature (final submission)<br />

Date<br />

An updated signature is required following modifications to the model and any revisions to the<br />

original submission.<br />

NOTE: A facsimile or any properly reproduced signature will be acceptable to meet this<br />

requirement.<br />

35


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

General Standards<br />

Form G-2: Meteorological Standards Expert Certification<br />

I hereby certify that I have personally reviewed the submission <strong>of</strong> USWIND Version 5.11 /<br />

WORLDCATenterprise Version 3.9 for compliance with the <strong>2006</strong> Standards adopted by the<br />

<strong>Florida</strong> Commission on Hurricane Loss Projection Methodology and hereby certify:<br />

1) that the model meets the Meteorological Standards (M1 – M6),<br />

2) that the Disclosures and Forms related to the Meteorological Standards section contain<br />

accurate, reliable, unbiased, and complete information,<br />

3) that my review was completed in accordance with the pr<strong>of</strong>essional standards and code <strong>of</strong><br />

ethical conduct for my pr<strong>of</strong>ession, and<br />

4) that in expressing my opinion I have not been influenced by any other party in order to<br />

bias or prejudice my opinion.<br />

David Smith, Director<br />

Name<br />

MS Geophysics<br />

Pr<strong>of</strong>essional Credentials (Area <strong>of</strong> Expertise)<br />

Signature (original submission)<br />

Date<br />

Signature (response to Deficiencies, if any)<br />

Date<br />

Signature (final submission)<br />

Date<br />

An updated signature is required following modifications to the model and any revisions to the<br />

original submission.<br />

NOTE: A facsimile or any properly reproduced signature will be acceptable to meet this<br />

requirement.<br />

36


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

General Standards<br />

Form G-3: Vulnerability Standards Expert Certification<br />

I hereby certify that I have personally reviewed the submission <strong>of</strong> USWIND Version 5.11 /<br />

WORLDCATenterprise Version 3.9 for compliance with the <strong>2006</strong> Standards adopted by the<br />

<strong>Florida</strong> Commission on Hurricane Loss Projection Methodology and hereby certify:<br />

1) that the model meets the Vulnerability Standards (V1 – V2),<br />

2) that the Disclosures and Forms related to the Vulnerability Standards section contain<br />

accurate, reliable, unbiased, and complete information,<br />

3) that my review was completed in accordance with the pr<strong>of</strong>essional standards and code <strong>of</strong><br />

ethical conduct for my pr<strong>of</strong>ession, and<br />

4) that in expressing my opinion I have not been influenced by any other party in order to<br />

bias or prejudice my opinion.<br />

Omar Khemici, Director<br />

Name<br />

Ph.D., P.E Civil Engineering<br />

Pr<strong>of</strong>essional Credentials (Area <strong>of</strong> Expertise)<br />

Signature (original submission)<br />

Date<br />

Signature (response to Deficiencies, if any)<br />

Date<br />

Signature (final submission)<br />

Date<br />

An updated signature is required following modifications to the model and any revisions to the<br />

original submission.<br />

NOTE: A facsimile or any properly reproduced signature will be acceptable to meet this<br />

requirement.<br />

37


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

General Standards<br />

Form G-4: Actuarial Standards Expert Certification<br />

I hereby certify that I have personally reviewed the submission <strong>of</strong> USWIND Version 5.11 /<br />

WORLDCATenterprise Version 3.9 for compliance with the <strong>2006</strong> Standards adopted by the<br />

<strong>Florida</strong> Commission on Hurricane Loss Projection Methodology and hereby certify:<br />

1) that the model meets the Actuarial Standards (A1 – A10),<br />

2) that the Disclosures and Forms related to the Actuarial Standards section contain<br />

accurate, reliable, unbiased, and complete information,<br />

3) that my review was completed in accordance with the pr<strong>of</strong>essional standards and code <strong>of</strong><br />

ethical conduct for my pr<strong>of</strong>ession, and<br />

4) that in expressing my opinion I have not been influenced by any other party in order to<br />

bias or prejudice my opinion.<br />

Shawna Ackerman, Consulting Actuary<br />

Name<br />

FCAS, MAAA<br />

Pr<strong>of</strong>essional Credentials (Area <strong>of</strong> Expertise)<br />

Signature (original submission)<br />

Date<br />

Signature (response to Deficiencies, if any)<br />

Date<br />

Signature (final submission)<br />

Date<br />

An updated signature is required following modifications to the model and any revisions to the<br />

original submission.<br />

NOTE: A facsimile or any properly reproduced signature will be acceptable to meet this<br />

requirement.<br />

38


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

General Standards<br />

Form G-5: Statistical Standards Expert Certification<br />

I hereby certify that I have personally reviewed the submission <strong>of</strong> USWIND Version 5.11 /<br />

WORLDCATenterprise Version 3.9 for compliance with the <strong>2006</strong> Standards adopted by the<br />

<strong>Florida</strong> Commission on Hurricane Loss Projection Methodology and hereby certify:<br />

1) that the model meets the Statistical Standards (S1 – S6),<br />

2) that the Disclosures and Forms related to the Statistical Standards section contain<br />

accurate, reliable, unbiased, and complete information,<br />

3) that my review was completed in accordance with the pr<strong>of</strong>essional standards and code <strong>of</strong><br />

ethical conduct for my pr<strong>of</strong>ession, and<br />

4) that in expressing my opinion I have not been influenced by any other party in order to<br />

bias or prejudice my opinion.<br />

Mahmoud Khater, Chief Technical Officer<br />

Name<br />

Ph.D. Civil Engineering<br />

Pr<strong>of</strong>essional Credentials (Area <strong>of</strong> Expertise)<br />

Signature (original submission)<br />

Date<br />

Signature (response to Deficiencies, if any)<br />

Date<br />

Signature (final submission)<br />

Date<br />

An updated signature is required following modifications to the model and any revisions to the<br />

original submission.<br />

NOTE: A facsimile or any properly reproduced signature will be acceptable to meet this<br />

requirement.<br />

39


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

General Standards<br />

Form G-6: Computer Standards Expert Certification<br />

I hereby certify that I have personally reviewed the submission <strong>of</strong> USWIND Version 5.11 /<br />

WORLDCATenterprise Version 3.9 for compliance with the <strong>2006</strong> Standards adopted by the<br />

<strong>Florida</strong> Commission on Hurricane Loss Projection Methodology and hereby certify:<br />

1) that the model meets the Computer Standards (C1 – C7),<br />

2) that the Disclosures and Forms related to the Computer Standards section contain<br />

accurate, reliable, unbiased, and complete information,<br />

3) that my review was completed in accordance with the pr<strong>of</strong>essional standards and code <strong>of</strong><br />

ethical conduct for my pr<strong>of</strong>ession, and<br />

4) that in expressing my opinion I have not been influenced by any other party in order to<br />

bias or prejudice my opinion.<br />

Branimir Betov, Senior S<strong>of</strong>tware Engineer<br />

Name<br />

M.S. Electrical Engineering<br />

Pr<strong>of</strong>essional Credentials (Area <strong>of</strong> Expertise)<br />

Signature (original submission)<br />

Date<br />

Signature (response to Deficiencies, if any)<br />

Date<br />

Signature (final submission)<br />

Date<br />

An updated signature is required following modifications to the model and any revisions to the<br />

original submission.<br />

NOTE: A facsimile or any properly reproduced signature will be acceptable to meet this<br />

requirement.<br />

40


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Meteorological Standards<br />

Meteorological Standards<br />

M-1 Base Hurricane Storm Set<br />

For validation <strong>of</strong> landfall and by-passing storm frequency in the stochastic<br />

storm set, the modeler shall use the latest updated Official Hurricane Set or<br />

the National Hurricane Center HURDAT as <strong>of</strong> June 1, <strong>2006</strong> or later.<br />

Complete additional season increments based on updates to HURDAT<br />

approved by the Tropical Prediction Center/National Hurricane Center are<br />

acceptable modifications to these storm sets. Peer reviewed atmospheric<br />

science literature can be used to justify modifications to the Base<br />

Hurricane Storm Set.<br />

The storm set used is the Official Hurricane Set provided by the Commission on<br />

November 1, <strong>2006</strong>, with the <strong>2006</strong> hurricane season additionally included.<br />

Disclosures<br />

1. Identify the Base Hurricane Storm Set, the release date, and the time period<br />

included for landfall and by-passing storm frequencies.<br />

The storm set used is the Official Hurricane Set provided by the Commission<br />

on November 1, <strong>2006</strong>, with the <strong>2006</strong> hurricane season additionally included.<br />

2. If the modeler has modified the Base Hurricane Storm Set, provide justification for<br />

such modifications.<br />

EQECAT has not modified the Base Hurricane Storm Set. In updating the<br />

model, EQECAT has included the <strong>2006</strong> hurricane season in addition to the<br />

period 1900 through 2005. No hurricanes made landfall in or close bypass to<br />

the mainland United <strong>State</strong>s during <strong>2006</strong>.<br />

41


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Meteorological Standards<br />

M-2 Hurricane Characteristics<br />

Methods for depicting all modeled hurricane characteristics, including but<br />

not limited to wind speed, radial distributions <strong>of</strong> wind and pressure,<br />

minimum central pressure, radius <strong>of</strong> maximum winds, strike probabilities,<br />

tracks, the spatial and time variant wind fields, and conversion factors,<br />

shall be based on information documented by currently accepted scientific<br />

literature.<br />

The modeling <strong>of</strong> hurricane characteristics is based on information documented<br />

by currently accepted scientific literature or on EQECAT analyses <strong>of</strong><br />

meteorological data.<br />

Disclosures<br />

1. Identify the hurricane characteristics (e.g., central pressure or radius <strong>of</strong> maximum<br />

winds) that are used in the model. Describe the historical data used for each <strong>of</strong> these<br />

characteristics identifying all storms used.<br />

The following parameter descriptions all pertain specifically to the USWIND<br />

probabilistic analysis. Use <strong>of</strong> USWIND in a ‘user storm’ scenario mode may<br />

allow much greater flexibility in some parameters (i.e., landfall location, track<br />

direction, etc.) than the discrete, categorized values used in the probabilistic<br />

database.<br />

Hurricane Parameters in the <strong>Model</strong>:<br />

1. Landfall Location: Landfall points run along the coastline every 10 nautical<br />

miles from south <strong>of</strong> the Texas-Mexico border through Maine, and<br />

generally follow the NWS-38 smoothed coastal mileposts. There are 310<br />

discrete landfall points used to develop the probabilistic hurricane data<br />

set. The <strong>Florida</strong> coast runs from landfall #84 (Escambia county, FL-<br />

Alabama border), through #180 (Nassau county, FL-Georgia border). That<br />

is, from coastal milepost 840 through 1800. The historical data used is the<br />

Commission's Official Hurricane Set <strong>of</strong> November 1, <strong>2006</strong>, and HURDAT.<br />

All hurricanes in the Official Hurricane Set were used, and the Official<br />

Hurricane Set takes precedence over HURDAT with regard to information<br />

contained in both data sets.<br />

2. Track Direction: Each landfall location will have different bounds on the<br />

limits <strong>of</strong> the storm direction depending on the regional coastline<br />

orientation. At each landfall point, the probabilistic data set scenarios use<br />

three equiprobable track directions, represented by the 16 2/3 rd , 50 th , and<br />

83 1/3 rd percentiles on the coastline-dependent smoothed direction<br />

distributions. The historical data used is information contained in NOAA<br />

Technical Report NWS 38, updated through the 1998 hurricane season<br />

with information from HURDAT. All hurricanes in the Official Hurricane Set<br />

from 1900 through 1998 were used.<br />

42


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Meteorological Standards<br />

3. Maximum One-Minute Sustained Wind Speed: The maximum one-minute<br />

sustained wind speed is the main parameter used to define hurricane<br />

intensity, and is one <strong>of</strong> the most critical items when considering loss<br />

sensitivity. The possible range in landfall values is from 74 mph to 180<br />

mph, although the model will run at lower values (weaker storms) to<br />

accommodate inland filling. The storm strength is driven directly from the<br />

coastline-dependent smoothed wind speed distributions generated from<br />

the information in the Commission’s November 1, <strong>2006</strong> Storm Set. All<br />

hurricanes in the Official Hurricane Set were used.<br />

4. Radius <strong>of</strong> Maximum Winds: This is the distance from the geometric center<br />

<strong>of</strong> the storm to the region <strong>of</strong> highest winds, typically within the eye wall <strong>of</strong><br />

a well-developed hurricane. This parameter, after landfall location and<br />

central pressure (storm strength), is the next most critical in terms <strong>of</strong> loss<br />

sensitivity. It can range from 4 to 60 miles, and is statistically dependent<br />

on coastline location and storm strength. The high end <strong>of</strong> this range,<br />

however, would only be applicable in the Northeastern U.S. / New<br />

England area. The historical data used is information contained in NOAA<br />

Technical Report NWS 38, updated through the 2004 hurricane season<br />

with information from the National Hurricane Center's Tropical Cyclone<br />

Reports and Advisories. All hurricanes in the Official Hurricane Set were<br />

used.<br />

5. Translational Speed: This is the speed <strong>of</strong> the movement <strong>of</strong> the entire<br />

storm system itself. It is generally responsible for the asymmetry <strong>of</strong> a<br />

hurricane’s wind field. It also has an effect on the distance which the<br />

highest winds are carried inland as the time-dependent filling weakens the<br />

storm. This parameter can range from about 4 mph to 50 mph, though the<br />

high end <strong>of</strong> this range would only apply in the Northeastern / New England<br />

region. The parameter is statistically dependent on coastline location and<br />

storm strength, and in <strong>Florida</strong>, averages about 12-14 mph. The historical<br />

data used is information contained in NOAA Technical Report NWS 38,<br />

updated through the 2004 hurricane season with information from the<br />

National Hurricane Center's Tropical Cyclone Reports. All hurricanes in<br />

the Official Hurricane Set were used.<br />

6. Filling Rate (inland decay rate): Overland attenuation (filling) is described<br />

by exponential decay <strong>of</strong> the hurricane central pressure deficit (difference<br />

between the background pressure and the storm central pressure). The<br />

filling rate is the parameter specifying the rate <strong>of</strong> this exponential decay.<br />

The historical data used is information contained in NOAA Technical<br />

Report NWS 38.<br />

7. Pr<strong>of</strong>ile Factor: This is a dimensionless shape parameter that varies the<br />

drop-<strong>of</strong>f <strong>of</strong> winds outward from the hurricane’s eye. Since an individual<br />

hurricane’s pr<strong>of</strong>ile may differ from the average, this parameter allows the<br />

user to best fit an actual storm’s pr<strong>of</strong>ile when modeling the specific event.<br />

43


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Meteorological Standards<br />

In the probabilistic data set, however, its default value <strong>of</strong> ‘1’ is used to<br />

generate an average pr<strong>of</strong>ile that is dependent on the radius <strong>of</strong> maximum<br />

winds, as per NWS-23.<br />

8. The model also considers air density, Coriolis, and gradient to sustained<br />

wind speed, among other variables.<br />

2. Describe the dependencies among variables in the wind field component and how<br />

they are represented in the model.<br />

The model considers the radius <strong>of</strong> maximum winds to be dependent on<br />

central pressure for hurricanes with central pressure < 930 mb.<br />

We have analyzed the dependence <strong>of</strong> the radius <strong>of</strong> maximum winds (Rmax)<br />

on central pressure (P0) using the empirical data taken from NWS 38 Tables<br />

1 and 2. For storms with P0 greater than 930 mbar, we have not found any<br />

statistically significant correlation between Rmax and P0. This result is<br />

consistent with the findings <strong>of</strong> NWS 38. Therefore, for storms with P0 greater<br />

than 930 mbar, we use Rmax as a function <strong>of</strong> landfall only, as given by NWS<br />

38 Figures 37 and 38.<br />

For stronger storms with P0 less than 930 mbar, we have found a statistically<br />

significant correlation between P0 and Rmax. This is consistent with the<br />

results <strong>of</strong> NWS 38. Therefore, below 930 mbar, we use a piecewise linear<br />

relationship to model the dependence <strong>of</strong> Rmax on P0. This information is<br />

reflected in Form M-2.<br />

Aside from this dependency, all variables in the wind field component <strong>of</strong> the<br />

model are considered to be independent.<br />

3. Describe the process for converting gradient winds to surface winds including the<br />

treatment <strong>of</strong> the inherent uncertainties in the conversion factor with respect to<br />

location <strong>of</strong> the site compared to the radius <strong>of</strong> maximum winds over time. Justify the<br />

variation <strong>of</strong> the gradient to surface winds conversion factor relative to hurricane<br />

intensity.<br />

The maximum one-minute sustained 10-meter wind speed, not the central<br />

pressure or the gradient wind speed, is used as input into the wind field<br />

model. The spatial and temporal variations in the wind field, including their<br />

uncertainties, are modeled at the surface (10-meter) level, based on historical<br />

data.<br />

Gradient winds are considered in the model only in terms <strong>of</strong> a gradient-level<br />

force balance that determines the relationship between central pressure and<br />

wind speed. This force balance includes the maximum rotational gradientlevel<br />

10-minute sustained wind speed. This is the only gradient-level wind<br />

44


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Meteorological Standards<br />

speed in the model, so spatial variation <strong>of</strong> the relationship between gradientlevel<br />

and surface (10-meter) level wind speed is not relevant.<br />

USWIND converts 10-minute sustained gradient-level wind speeds<br />

(considered to be at the 700 mb level, or approximately 10,000 feet) to 10-<br />

minute sustained 10-meter wind speeds by multiplying by 0.9.<br />

USWIND converts 10-minute sustained 10-meter wind speeds to one-minute<br />

sustained 10-meter wind speeds by dividing by 0.863, according to Simiu and<br />

Scanlan (1996), Figure 2.3.10.<br />

4. Describe how the wind speeds generated in the wind field model were converted<br />

from sustained to gust and identify the average time.<br />

USWIND converts one-minute sustained 10-meter wind speeds to peak gust<br />

10-meter wind speeds using a gust factor function that takes surface friction<br />

from land use and land cover into account (rougher terrain has a higher gust<br />

factor). The uncertainty on the gust factor depends on the input one-minute<br />

sustained wind speed (higher wind speeds have less uncertainty on the gust<br />

factor). The averaging interval for gust wind speeds is defined as 2 seconds.<br />

5. Describe how the asymmetric nature <strong>of</strong> hurricanes is considered in the model.<br />

The asymmetric nature <strong>of</strong> hurricanes is accommodated within the model’s<br />

wind speed equations, following NWS 23. The equations include a term<br />

corresponding to the translational speed <strong>of</strong> the hurricane, which depends on<br />

the geometrical relationship between the location analyzed and the hurricane<br />

track.<br />

6. Describe the stochastic hurricane tracks and discuss their appropriateness.<br />

Describe the historical data used as the basis for the model’s hurricane tracks.<br />

In the probabilistic database, three equally weighted track directions are<br />

simulated at each <strong>of</strong> the 10 nmi-spaced landfall segments used in the<br />

analysis. These three directions correspond to the 16 2/3rd, 50th, and 83<br />

1/3rd percentiles <strong>of</strong> the smoothed coastline-dependent track direction<br />

distributions. The direction distributions were developed from information<br />

available in the NOAA Technical Report NWS 38, updated through the 1998<br />

hurricane season with information on the HURDAT (storm track) file or other<br />

scientifically accepted publications.<br />

7. Describe how the coastline is segmented (or partitioned) in determining the<br />

parameters for hurricane frequency used in the model. Provide the hurricane<br />

frequency distribution by intensity for each segment.<br />

In the probabilistic analysis, the coast is divided into a series <strong>of</strong> 10 nautical<br />

mile (nmi) segments. The landfall frequency is a smooth curve developed<br />

along the entire coast using an adaptive smoothing procedure on the milepost<br />

45


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Meteorological Standards<br />

locations <strong>of</strong> the historic storm set landfalls. Distributions <strong>of</strong> the other modeling<br />

parameters were similarly developed. Frequencies, parameters, and<br />

distributions thus change smoothly from one segment to the next. For<br />

hurricane frequency distributions by intensity, see Form M-1.<br />

8. For hurricane characteristics modeled as random variables, describe the<br />

probability distributions.<br />

The joint probability distribution for landfall location, track direction, and<br />

maximum one-minute sustained wind speed is obtained from a Maximum<br />

Likelihood Estimation kernel smoothing technique applied to the historical<br />

data. Radius to maximum winds and translational speed are modeled using<br />

lognormal distributions, the parameters <strong>of</strong> which vary smoothly along the<br />

coast. Filling rate is modeled using a normal distribution.<br />

9. Identify any changes in the functional representation <strong>of</strong> hurricane characteristics<br />

during an individual storm event life cycle (e.g., discontinuous intensity reduction at<br />

the coastal boundary and inland).<br />

The EQECAT model has no changes in the functional representation <strong>of</strong><br />

hurricane characteristics during an individual storm event life cycle, although<br />

local wind speeds are modified according to frictional effects, <strong>of</strong>ten resulting<br />

in substantial changes in wind speeds over short distances, particularly near<br />

the coast.<br />

10. Describe how your model’s wind field is consistent with the inherent differences in<br />

wind fields for such diverse storms as Hurricane Charley, Hurricane Katrina, and<br />

Hurricane Wilma, for example.<br />

The parameters used to define a hurricane in the EQECAT wind field model<br />

provide enough control to capture a wide variety <strong>of</strong> storm characteristics.<br />

Obvious features such as the landfall location, storm track, and intensity <strong>of</strong><br />

the storm in terms <strong>of</strong> one-minute sustained winds are included, and further<br />

definition <strong>of</strong> the event is provided by the radius to maximum winds and pr<strong>of</strong>ile<br />

factor to describe the ‘width’ <strong>of</strong> the storm, and by the translational speed to<br />

describe the asymmetry between the right and left sides <strong>of</strong> the storm. All <strong>of</strong><br />

these parameters can vary widely from event to event.<br />

46


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Meteorological Standards<br />

M-3 Landfall Intensity<br />

<strong>Model</strong>s shall use maximum one-minute sustained 10-meter wind speed<br />

when defining hurricane landfall intensity. This applies both to the Base<br />

Hurricane Storm Set used to develop landfall strike probabilities as a<br />

function <strong>of</strong> coastal location and to the modeled winds in each hurricane<br />

which causes damage. The associated maximum one-minute sustained 10-<br />

meter wind speed shall be within the range <strong>of</strong> wind speeds (in statute miles<br />

per hour) categorized by the Saffir-Simpson scale.<br />

Saffir-Simpson Hurricane Scale:<br />

Category Winds (mph) Damage<br />

1 74 - 95 Minimal<br />

2 96 - 110 Moderate<br />

3 111 - 130 Extensive<br />

4 131 - 155 Extreme<br />

5 Over 155 Catastrophic<br />

USWIND uses maximum one-minute sustained 10-meter wind speed when<br />

defining hurricane landfall intensity.<br />

The USWIND pressure-wind speed relationship generates wind speeds which<br />

are in agreement with the Saffir-Simpson category definition. Wind speeds<br />

developed for historical hurricanes are also consistent with the observed values.<br />

Disclosures<br />

1. Define an “event” in the model. Discuss how storms that intensify or decay at or<br />

below the Category 1 level are accounted for in the model.<br />

The USWIND probabilistic database consists <strong>of</strong> hypothetical hurricane tracks<br />

modeled to accurately represent hurricane climatology in the North Atlantic<br />

basin. The database includes both hurricanes that make landfall and<br />

hurricanes that do not make landfall but pass close enough to the coast to<br />

generate damaging winds on land. Each event in the model is one complete<br />

hurricane track from genesis to decay.<br />

For any storm that makes landfall or close bypass at hurricane status<br />

(Category 1 or above), the entire track from genesis to decay is included in<br />

the model, including portions below Category 1 strength.<br />

47


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Meteorological Standards<br />

2. Describe how the model handles events with multiple landfalls and by-passing<br />

storms. Be specific with respect to how by-passing storms are handled in the model<br />

when the wind speeds are less than hurricane force winds.<br />

A hurricane with multiple landfalls is considered to be a single event. For any<br />

storm that makes landfall or close bypass at hurricane status (Category 1 or<br />

above), the entire track from genesis to decay is included in the model,<br />

including portions below Category 1 strength.<br />

3. Provide all model derived characteristics <strong>of</strong> the <strong>Florida</strong> hurricane in the stochastic<br />

storm set with the greatest over water intensity at the time <strong>of</strong> landfall.<br />

The <strong>Florida</strong> hurricane in the stochastic storm set with the greatest over water<br />

intensity at the time <strong>of</strong> landfall has a maximum one-minute sustained<br />

windspeed <strong>of</strong> 183 mph, a radius to maximum winds <strong>of</strong> 5.5 miles, a<br />

translational speed <strong>of</strong> 6.8 mph, and a filling rate parameter <strong>of</strong> 0.093.<br />

48


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Meteorological Standards<br />

M-4 Hurricane Probabilities<br />

A. <strong>Model</strong>ed probability distributions for hurricane intensity, forward speed,<br />

radii for maximum winds, and storm heading shall be consistent with<br />

historical hurricanes in the Atlantic basin.<br />

The modeled probability distributions for hurricane intensity, forward speed, radii<br />

for maximum winds, and landfall angle are consistent with historical hurricanes in<br />

the Atlantic basin.<br />

B. <strong>Model</strong>ed hurricane probabilities shall reflect the Base Hurricane Storm<br />

Set used for category 1 to 5 hurricanes and shall be consistent with<br />

those observed for each coastal segment <strong>of</strong> <strong>Florida</strong> and neighboring<br />

states (Alabama, Georgia, and Mississippi).<br />

<strong>Model</strong>ed hurricane probabilities reasonably reflect the Official Hurricane Set and<br />

the period 1900 through <strong>2006</strong> for category 1 to 5 hurricanes and are consistent<br />

with those observed for each coastal segment <strong>of</strong> <strong>Florida</strong>, Alabama, Georgia, and<br />

Mississippi. Probabilities were developed along the <strong>Florida</strong> coast and adjacent<br />

areas using smoothed distributions <strong>of</strong> hurricane frequency and wind speeddefined<br />

intensity, fit to the Commission’s Official Hurricane Set using scientific<br />

methods.<br />

Disclosures<br />

1. List assumptions used in creating the hurricane characteristic databases.<br />

NOAA Publication NWS-38 covers the period 1900-1984, and was the main<br />

source for compiling information on hurricane modeling parameters, (radius <strong>of</strong><br />

maximum winds, direction <strong>of</strong> motion, translation speed, etc.) Data for later<br />

storms (1985-2004) was obtained in specific reports or publications from the<br />

National Hurricane Center (including Tropical Cyclone Reports and<br />

Advisories), analyses from the Hurricane Research Division, or from other<br />

scientifically accepted publications. These publications include Powell, M.D.,<br />

D. Bowman, D. Gilhousen, S. Murillo, N. Carrasco, and R. St. Fluer, “Tropical<br />

Cyclone Winds at Landfall”, Bulletin <strong>of</strong> the American Meteorological Society<br />

85(6): 845-851 (2004); Franklin, J.L., M.L. Black, and K. Valde, “GPS<br />

dropwindsonde wind pr<strong>of</strong>iles in hurricanes and their operational implications”,<br />

Weather and Forecasting, 18(1): 32-44 (2003); and Houston, S.H., and M.D.<br />

Powell, “Surface wind fields for <strong>Florida</strong> Bay Hurricanes”, Journal <strong>of</strong> Coastal<br />

Research, 19: 503-513 (2003). Coastline-dependent landfall frequency and<br />

severity distributions for the state <strong>of</strong> <strong>Florida</strong> were developed from the<br />

Commission’s November 1, <strong>2006</strong> <strong>Florida</strong> storm set.<br />

Standard statistical techniques were used to develop the hurricane parameter<br />

and frequency distributions. The underlying assumption is that the period<br />

1900 through <strong>2006</strong> is representative in terms <strong>of</strong> hurricane climatology in<br />

<strong>Florida</strong> and adjacent areas.<br />

49


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Meteorological Standards<br />

2. If the model incorporates short term and long term variations in annual storm<br />

frequencies, describe how this is incorporated.<br />

The model considers only the long term view <strong>of</strong> storm frequencies.<br />

3. Provide a completed Form M-1, Annual Occurrence Rates.<br />

See Form M-1 at the end <strong>of</strong> this section.<br />

50


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Meteorological Standards<br />

M-5 Land Friction and Weakening<br />

A. The magnitude <strong>of</strong> land friction coefficients shall be consistent with<br />

currently accepted scientific literature relevant to current geographic<br />

surface roughness distributions and shall be implemented with<br />

appropriate geographic information system data.<br />

USWIND uses land friction to produce a reduction <strong>of</strong> wind speeds over<br />

land which are consistent with the accepted scientific literature and with<br />

geographic surface roughness. A smooth transition is used to reduce onshore<br />

marine-exposure wind speeds to inland frictionally reduced wind speeds. Wind<br />

speeds between adjacent ZIP Codes, counties, or territories, also exhibit a<br />

smooth transition. Appropriate geographic information system data have been<br />

used to develop the USWIND land friction database.<br />

The USWIND land friction database is derived from land use / land cover data<br />

from the five <strong>Florida</strong> water management districts at a resolution <strong>of</strong> approximately<br />

200 meters or finer. The list below shows the different classifications used:<br />

11 Residential, low density<br />

12 Residential, medium density<br />

13 Residential, high density<br />

14 Commercial and services<br />

1 URBAN AND BUILT-UP 15 Industrial<br />

16 Extractive<br />

17 Institutional<br />

18 Recreational<br />

19 Open land (Urban)<br />

21 Cropland and pastureland<br />

22 Tree crops<br />

2<br />

23 Feeding operations<br />

24 Nurseries and vineyards<br />

25 Specialty farms<br />

AGRICULTURE 26 Other open land (Rural)<br />

31 Herbaceous Rangeland<br />

3 RANGELAND 32 Shrub and Brush Rangeland<br />

33 Mixed Rangeland<br />

41 Upland coniferous forests<br />

4 UPLAND FORESTS<br />

42 Upland hardwood forests<br />

43 Upland hardwood forests<br />

44 Tree plantations<br />

51 Streams and waterways<br />

52 Lakes<br />

53 Reservoirs<br />

5 WATER<br />

54 Bays and estuaries<br />

55 Major springs<br />

56 Slough waters<br />

51


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Meteorological Standards<br />

6 WETLANDS<br />

7 BARREN LAND<br />

61 Wetland hardwood forests<br />

62 Wetland coniferous forests<br />

63 Wetland forested mixed<br />

64 Vegetated non-forested wetlands<br />

65 Non-vegetated wetland<br />

66 Cut over Wetlands<br />

69 Wetland shrub<br />

71 Beaches other than swimming beaches<br />

72 Sand other than beaches<br />

73 Exposed rocks<br />

74 Disturbed land<br />

75 Riverine sandbars<br />

81 Transportation<br />

8 TRANSPORTATION,<br />

COMMUNICATIONS AND<br />

82 Communications<br />

UTILITIES 83 Utilities<br />

9 SPECIAL<br />

CLASSIFICATIONS 91 Vegetation, special classification<br />

B. The hurricane overland weakening rate methodology used by the model<br />

shall be consistent with historical records.<br />

The hurricane overland weakening rate methodology used by USWIND for<br />

hurricanes in <strong>Florida</strong> is reasonable in comparison to historical records, and<br />

produces a result within twenty percent <strong>of</strong> the Kaplan-DeMaria filling rate.<br />

Disclosures<br />

1. Describe and justify the functional form <strong>of</strong> hurricane decay rates used by the model.<br />

Overland attenuation (filling) is handled by exponential decay formulas fit to<br />

data provided in NOAA Technical Report NWS 38, Chapter 10, Table 20. The<br />

basic form <strong>of</strong> this equation is:<br />

DP(t) = DP(0) exp [ -m * t ]<br />

where DP(0) is the hurricane central pressure deficit (difference in the<br />

ambient pressure <strong>of</strong> 1013 mb and the storm central pressure) at landfall; t is<br />

the time after landfall; and m is the decay rate parameter. The formula<br />

estimates the pressure deficit at any time t after landfall.<br />

52


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Meteorological Standards<br />

The decay parameter, m, is a function <strong>of</strong> the initial pressure deficit, and is<br />

independent <strong>of</strong> geographical region in <strong>Florida</strong>. The pressure dependence is<br />

caused by the observation that stronger storms tend to have a faster initial<br />

decay than weaker storms. The dependence <strong>of</strong> the decay parameter m on the<br />

pressure deficit DP(0) was statistically determined so that, for a given initial<br />

pressure deficit, the time dependence <strong>of</strong> hurricane wind speeds produced by<br />

the EQECAT model are within +/- 20% <strong>of</strong> the wind speeds determined from<br />

the Inland Wind Decay <strong>Model</strong> (IWDM). (The IWDM is described in the paper<br />

by Kaplan and DeMaria, Journal <strong>of</strong> Applied Meteorology, Volume 34, pp.<br />

2499 - 2512 (1995)).<br />

2. Describe the relevance <strong>of</strong> the gust factor used in the model.<br />

USWIND converts 10-minute sustained 10-meter wind speeds to one-minute<br />

sustained 10-meter wind speeds by dividing by 0.863.<br />

USWIND converts one-minute sustained 10-meter wind speeds to peak gust<br />

10-meter wind speeds using a gust factor function that takes surface friction<br />

from land use and land cover into account (rougher terrain has a higher gust<br />

factor). The uncertainty on the gust factor depends on the input one-minute<br />

sustained wind speed (higher wind speeds have less uncertainty on the gust<br />

factor). The gust factor is based on information in Krayer and Marshall, 1992:<br />

Gust factors applied to hurricane winds, Bulletin <strong>of</strong> the American<br />

Meteorological Society, Volume 73, pp. 613-617, and other scientifically<br />

accepted studies.<br />

As discussed in the vulnerability standards, the EQECAT model uses peak<br />

gust wind speed because damage is believed to be better correlated with<br />

peak gusts than with long-term sustained wind speeds.<br />

3. Identify all non-meteorological variables that affect the wind speed estimation (e.g.,<br />

surface roughness, topography, etc.)<br />

Surface roughness, as determined by land use and land cover data, affects<br />

the local wind speeds in the model.<br />

4. Provide the collection and publication dates <strong>of</strong> the land use and land cover data<br />

used in the model and justify their timeliness for <strong>Florida</strong>.<br />

In <strong>Florida</strong>, USWIND uses land use and land cover data distributed by the five<br />

<strong>Florida</strong> water management districts. The collection dates for this data are<br />

2000 for the South <strong>Florida</strong> district, 1999 for the Southwest <strong>Florida</strong> district, and<br />

1995 for the St. Johns River, Suwannee River, and Northwest <strong>Florida</strong><br />

districts. Publication dates are 2002 for the South and Southwest <strong>Florida</strong><br />

districts, 1999 for the Suwannee River district, and 1997 for the St. Johns<br />

River and Northwest <strong>Florida</strong> districts.<br />

53


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Meteorological Standards<br />

5. Provide a graphical representation <strong>of</strong> the modeled degradation rates for <strong>Florida</strong><br />

hurricanes over time compared to published wind observations. The model<br />

generated winds should be demonstrated to be consistent with the observed winds.<br />

Reference to the Kaplan-DeMaria decay rates alone is not acceptable.<br />

This Kaplan-DeMaria decay representation is provided in Figure 5 below.<br />

The degradation rates for two <strong>Florida</strong> hurricanes are shown in Figures 6a and<br />

6b.<br />

54


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Meteorological Standards<br />

990 985 980 975<br />

970 965 960 955<br />

950 945 940 935<br />

930 925 920 915<br />

910 905 900 895<br />

Figure 5. USWIND vs. Kaplan-DeMaria Inland Decay Rates<br />

The plots in the figure compare the USWIND decay rate (bold) with the Kaplan-DeMaria decay rate (thin) and Kapland-DeMaria +/-<br />

20% (dashed). Each plot is for a different central pressure at landfall (indicated in mb). In each plot the horizontal axis is time (first<br />

25 hours after landfall, with a tick mark every 2 hours); and the vertical axis is maximum one-minute sustained wind speed (ranging<br />

from 20 to 170 mph, with a tick mark every 10 mph). The large black diamonds indicate the large initial drop in wind speed due to<br />

frictional effects in the first 10 nautical miles after landfall.<br />

55


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Meteorological Standards<br />

Figure 6a. 1916-13 Hurricane<br />

Figure 6b. Hurricane Charley (2004)<br />

56


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Meteorological Standards<br />

6. The spatial distribution <strong>of</strong> model- generated winds should be demonstrated to be<br />

consistent with the observed winds.<br />

EQECAT regularly reviews modeled versus observed hurricane wind fields.<br />

Figure 6c below is a comparison <strong>of</strong> modeled (shading) and observed<br />

(numbers) surface winds in mph gust for Hurricane Wilma (2005).<br />

Figure 6c. Wind field for Hurricane Wilma (2005)<br />

7. Document any differences between the treatment in the model <strong>of</strong> decay rates for<br />

stochastic hurricanes compared to historical hurricanes affecting <strong>Florida</strong>.<br />

The treatment <strong>of</strong> decay rates for stochastic and historical hurricanes in the<br />

EQECAT model is the same, except that for historical hurricanes the storm<br />

intensity is fixed every six hours with the observed storm intensities.<br />

Specifically, the decay rate is a regionally-dependent parameter for stochastic<br />

hurricanes, whereas for historical hurricanes a decay rate is fitted for each<br />

six-hourly track segment and used to interpolate the intensity between the sixhourly<br />

observations.<br />

8. Provide a completed Form M-2, Maps <strong>of</strong> Maximum Winds.<br />

See Form M-2 at the end <strong>of</strong> this Section.<br />

57


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Meteorological Standards<br />

M-6 Logical Relationships <strong>of</strong> Hurricane Characteristics<br />

Disclosure<br />

A. The magnitude <strong>of</strong> asymmetry shall increase as the translation speed<br />

increases, all other factors held constant.<br />

The magnitude <strong>of</strong> asymmetry in USWIND increases as the translation speed<br />

increases, all other factors held constant.<br />

B. The mean wind speed shall decrease with increasing surface roughness<br />

(friction), all other factors held constant.<br />

The mean wind speed in USWIND decreases with increasing surface roughness<br />

(friction), all other factors held constant.<br />

1. Provide a completed Form M-3, Radius <strong>of</strong> Maximum Winds.<br />

See Form M-3 at the end <strong>of</strong> this section.<br />

58


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Meteorological Standards<br />

Form M-1: Annual Occurrence Rates<br />

A. Provide annual occurrence rates for landfall from the data set that the model generates by<br />

hurricane category (defined by wind speed in the Saffir-Simpson scale) for the entire state <strong>of</strong><br />

<strong>Florida</strong> and selected regions as defined in Figure 7 below. List the annual occurrence rate<br />

(probability <strong>of</strong> an event in a given year) per hurricane category. Annual occurrence rates<br />

should be rounded to two decimal places.<br />

See the tables below.<br />

B. The historical frequencies below have been derived from the Commission’s Official<br />

Hurricane Set. If hurricanes are used in addition to the Official Hurricane Set as specified<br />

in Standard M-1, then the historical frequencies should be modified.<br />

C. Describe model variations from the historical frequencies.<br />

<strong>Model</strong> variations from the historical frequencies are primarily due to the sparseness<br />

in the historical data. The development <strong>of</strong> the stochastic event set has included<br />

smoothing this data, resulting in what we believe is the best estimate <strong>of</strong> hurricane<br />

frequencies by location and intensity.<br />

D. Provide vertical bar graphs depicting distributions <strong>of</strong> hurricane frequencies by category by<br />

region <strong>of</strong> <strong>Florida</strong> (Figure 7 below) and for the neighboring states <strong>of</strong> Alabama/Mississippi<br />

and Georgia. For the neighboring states, statistics based on the closest milepost to the state<br />

boundaries used in the model are adequate.<br />

See Figure 8 below.<br />

<strong>Model</strong>ed Annual Occurrence Rates<br />

Entire <strong>State</strong> Region A – NW <strong>Florida</strong> Region B – SW <strong>Florida</strong><br />

Category Historical <strong>Model</strong>ed Historical <strong>Model</strong>ed Historical <strong>Model</strong>ed<br />

1 0.28 + 0.27 0.14 + 0.14 0.07 + 0.06<br />

2 0.13 0.15 0.05 + 0.06 0.02 0.03<br />

3 0.17 + 0.19 0.04 + 0.05 0.05 0.06<br />

4 0.04 0.03 0.00 0.00 0.02 0.01<br />

5 0.02 0.01 0.00 0.00 0.01 0.00<br />

Region C – SE <strong>Florida</strong> Region D – NE <strong>Florida</strong><br />

<strong>Florida</strong> By-Passing<br />

Hurricanes<br />

Category Historical <strong>Model</strong>ed Historical <strong>Model</strong>ed Historical <strong>Model</strong>ed<br />

1 0.07 0.06 0.00 0.01 0.00 0.02<br />

2 0.05 0.05 0.02 0.01 0.04 0.01<br />

3 0.08 0.08 0.00 0.00 0.02 0.01<br />

4 0.02 0.02 0.00 0.00 0.01 0.00<br />

5 0.01 0.00 0.00 0.00 0.00 0.00<br />

59


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Meteorological Standards<br />

(FORM M-1 CONTINUED)<br />

Region E – Georgia Region F – Alabama/Mississippi<br />

Category Historical <strong>Model</strong>ed Historical <strong>Model</strong>ed<br />

1 0.00 0.02 0.06 + 0.05<br />

2 0.04 0.01 0.03 0.03<br />

3 0.00 0.00 0.05 + 0.04<br />

4 0.00 0.00 0.00 0.01<br />

5 0.00 0.00 0.01 0.00<br />

Note: Except where specified, Number <strong>of</strong> Hurricanes does not include By-Passing Storms<br />

Note that in the above tables, entries marked with a (+) were modified to be consistent<br />

with the landfall counts in the Commission’s Official Hurricane Set.<br />

81.45 W 30.71 N<br />

87.55 W 30.27 N<br />

Figure 7. <strong>State</strong> <strong>of</strong> <strong>Florida</strong> and Neighboring <strong>State</strong>s by Region<br />

60


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Meteorological Standards<br />

0.30<br />

Annual Landfall/By-pass Frequency<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

SSI 1 - Historical<br />

SSI 1 - <strong>Model</strong>ed<br />

SSI 2 - Historical<br />

SSI 2 - <strong>Model</strong>ed<br />

SSI 3 - Historical<br />

SSI 3 - <strong>Model</strong>ed<br />

SSI 4 - Historical<br />

SSI 4 - <strong>Model</strong>ed<br />

SSI 5 - Historical<br />

SSI 5 - <strong>Model</strong>ed<br />

0.05<br />

-<br />

Entire FL<br />

(Excluding By-<br />

Passing<br />

Storms)<br />

Region A - NW<br />

<strong>Florida</strong><br />

Region B - SW<br />

<strong>Florida</strong><br />

Region C - SE<br />

<strong>Florida</strong><br />

Region D - NE<br />

<strong>Florida</strong><br />

By-Passing<br />

Storms<br />

GA<br />

AL/MS<br />

Figure 8. Hurricane Frequencies by Category by Region<br />

61


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Meteorological Standards<br />

Form M-2: Maps <strong>of</strong> Maximum Winds<br />

A. Provide a color contour map <strong>of</strong> the maximum winds for the modeled version <strong>of</strong> the Base<br />

Hurricane Storm Set.<br />

See Figure 9 below.<br />

B. Provide a color contour map <strong>of</strong> the maximum winds for a 100-year return period from the<br />

stochastic storm set.<br />

See Figure 10 below.<br />

C. Provide the maximum winds plotted on each contour map.<br />

Maximum winds in these maps are defined as the maximum one-minute sustained winds over the<br />

terrain as modeled and recorded at each location.<br />

The same color contours and increments should be used for both maps.<br />

Use the following seven isotach values:<br />

(1) 40 mph<br />

(2) 75 mph<br />

(3) 95 mph<br />

(4) 110 mph<br />

(5) 130 mph<br />

(6) 140 mph<br />

(7) 155 mph<br />

The maximum historical windspeed plotted is 155 mph; the maximum stochastic<br />

windspeed plotted is 127 mph.<br />

62


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Meteorological Standards<br />

(FORM M-2 CONTINUED)<br />

Figure 9. Contour Map - Maximum Winds For <strong>Model</strong>ed Version Of Official Hurricane Set<br />

Wind Speeds Are One-Minute Sustained Mph.<br />

63


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Meteorological Standards<br />

(FORM M-2 CONTINUED)<br />

Figure 10. Contour Map - Maximum Winds For 100-Year Return Period From Stochastic<br />

Storm Set. Wind Speeds Are One-Minute Sustained Mph.<br />

64


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Meteorological Standards<br />

Form M-3: Radius <strong>of</strong> Maximum Winds<br />

A. For the central pressures in the table below, provide ranges for radius <strong>of</strong> maximum winds<br />

used by the model to create the stochastic storm set.<br />

Central Pressure (mb)<br />

Range <strong>of</strong> Rmax (mi)<br />

900 4-24<br />

910 4-33<br />

920 5-42<br />

930 6-60<br />

940 6-60<br />

950 6-60<br />

955 6-60<br />

960 6-60<br />

965 6-60<br />

970 6-60<br />

975 6-60<br />

980 6-60<br />

985 6-60<br />

990 6-60<br />

B. Identify the other variables that influence Rmax.<br />

For a given hurricane, central pressure is the only variable that influences Rmax.<br />

C. Provide a representative scatter plot <strong>of</strong> Central Pressure (x-axis) versus Rmax (y-axis) to<br />

demonstrate relative populations and continuity <strong>of</strong> sampled hurricanes in the stochastic<br />

storm set. “Representative” means that the relative distribution <strong>of</strong> hurricane frequencies<br />

across both Central Pressure and Rmax ranges should be evident.<br />

A graphical representation <strong>of</strong> Rmax vs. Central Pressure is provided in Figure 11<br />

below.<br />

65


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Meteorological Standards<br />

Figure 11. Rmax vs. Central Pressure<br />

66


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Vulnerability Standards<br />

Vulnerability Standards<br />

V-1 Derivation <strong>of</strong> Vulnerability Functions<br />

A. Development <strong>of</strong> the vulnerability functions is to be based on a<br />

combination <strong>of</strong> the following: (1) historical data, (2) tests, (3) structural<br />

calculations, (4) expert opinion, or (5) site inspections. Any<br />

development <strong>of</strong> the vulnerability functions based on structural<br />

calculations or expert opinion shall be supported by tests, site<br />

inspections, or historical data.<br />

USWIND vulnerability functions are based on historically observed damage (in<br />

terms <strong>of</strong> both claims data and post-hurricane field surveys), experimental<br />

research conducted by Pr<strong>of</strong>essors Kishor Mehta and James McDonald at Texas<br />

Tech, and structural calculations performed by EQE / EQECAT engineers.<br />

The claims data analyzed is from two basic sources: (1) claims data from all<br />

major storms during the period 1954 - 1994 analyzed by Dr. Don Friedman and<br />

John Mangano while managing the Natural Hazard Research Service (NHRS)<br />

effort for The Travelers Insurance Company; and (2) claims data from Hurricanes<br />

Alicia (1983), Elena (1985), Gloria (1985), Juan (1985), Kate (1985), Hugo<br />

(1989), Bob (1991), Andrew (1992), Iniki (1992), Erin (1995), and Opal (1995)<br />

provided to EQECAT by the insurance companies assisting with the development<br />

<strong>of</strong> USWIND.<br />

In addition, EQECAT is currently analyzing claims data from Hurricanes Charley<br />

(2004), Frances (2004), Ivan (2004), Jeanne (2004), Katrina (2005), Rita (2005),<br />

and Wilma (2005).<br />

EQE / EQECAT teams have conducted post-disaster field surveys for several<br />

storms in the past few years, including Hurricanes Andrew (1992), Iniki (1992),<br />

Luis (1995), Marilyn (1995), Opal (1995), Georges (1998), Irene (1999), Lili<br />

(2002), Fabian (2003), Isabel (2003), Charley (2004), Frances (2004), Ivan<br />

(2004), Jeanne (2004), Katrina (2005), and Rita (2005); Typhoon Paka (1997);<br />

and the Oklahoma City (1999), Fort Worth (2000), and Midwest (2003) tornado<br />

outbreaks. In addition, the research <strong>of</strong> Pr<strong>of</strong>essors Mehta and McDonald<br />

incorporates a large amount <strong>of</strong> investigation into the effects <strong>of</strong> all major storms in<br />

roughly the last 25 years.<br />

B. The method <strong>of</strong> derivation <strong>of</strong> the vulnerability functions shall be<br />

theoretically sound.<br />

The method <strong>of</strong> derivation <strong>of</strong> the USWIND vulnerability functions is theoretically<br />

sound.<br />

67


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Vulnerability Standards<br />

C. Any modification factors/functions to the vulnerability functions or<br />

structural characteristics and their corresponding effects shall be<br />

clearly defined and be theoretically sound.<br />

Modification factors/functions to the vulnerability functions are applied in the<br />

secondary structural component <strong>of</strong> the model. The effects <strong>of</strong> particular structural<br />

characteristics are clearly defined and theoretically sound.<br />

D. Construction type and construction characteristics shall be used in the<br />

derivation and application <strong>of</strong> vulnerability functions.<br />

USWIND allows a user to account for the unique features <strong>of</strong> individual buildings,<br />

including construction type and construction characteristics. Such features<br />

modify the vulnerability functions.<br />

E. In the derivation and application <strong>of</strong> vulnerability functions, assumptions<br />

concerning building code revisions and building code enforcement<br />

shall be justified.<br />

When the user provides the year <strong>of</strong> construction for a building, USWIND takes<br />

into account the impact <strong>of</strong> design codes as applied during a particular period (or<br />

era) <strong>of</strong> construction. In addition, the Secondary Structural Modifiers also allow the<br />

user to input additional, more detailed information to account for the unique<br />

characteristics <strong>of</strong> individual buildings. Many <strong>of</strong> these features are <strong>of</strong>ten related to<br />

code enforcement: ro<strong>of</strong>-to-wall anchorage, foundation anchorage, and debris<br />

potential from nearby buildings, for example.<br />

USWIND’s capability to handle site-specific features also extends beyond those<br />

factors affected by codes or code enforcement. This capability acknowledges the<br />

fact that, among structural engineers trained in the analysis and design <strong>of</strong><br />

buildings, it is generally accepted that code enforcement is only one variable<br />

among many which affect building performance. Most <strong>of</strong> these features vary<br />

structure by structure, while code enforcement tends to vary more by region.<br />

How a building will respond in a windstorm, or for that matter in an earthquake or<br />

under ordinary conditions, will depend not just on the building code and how well<br />

it was enforced, but also on the building’s materials, configuration, and detailing;<br />

the quality <strong>of</strong> structural and architectural design; the skill, experience, and care<br />

exercised by the construction contractors; the degree to which the building’s<br />

structural and architectural systems have been maintained or modified over time;<br />

and the location and features <strong>of</strong> the local environment surrounding the building.<br />

It is easy to see that code enforcement is, in fact, only indirectly related to<br />

expected building performance. Pr<strong>of</strong>essional, conscientious building designers<br />

and contractors can construct a well designed, well built home regardless <strong>of</strong> how<br />

frequently a local building <strong>of</strong>ficial inspects the construction site.<br />

68


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Vulnerability Standards<br />

F. Vulnerability functions shall be separately derived for building<br />

structures, mobile homes, appurtenant structures, contents, and<br />

additional living expense.<br />

The USWIND vulnerability functions separately compute damages for building<br />

structures, mobile homes, appurtenant structures, contents, and additional living<br />

expense.<br />

G. The minimum wind speed that generates damage shall be reasonable.<br />

The USWIND vulnerability functions calculate damage for all peak gust wind<br />

speeds greater than or equal to 40 miles per hour.<br />

Disclosures<br />

1. Provide a flow chart documenting the process by which the vulnerability functions<br />

are derived and implemented.<br />

Figure 12 below summarizes the process by which EQECAT develops its<br />

vulnerability functions.<br />

Review claims data for consistency, errors<br />

Group data into construction classes<br />

Correct for under-insurance<br />

Calculate ground up loss for each claim<br />

Apply corrections for unreported data<br />

Associate a wind speed with each claim,<br />

from the best available information<br />

Perform regression analysis, sometimes<br />

involving merging with previously<br />

analyzed claims<br />

Validate vulnerability curves with actual<br />

insured losses<br />

Figure 12. Flowchart – Vulnerability Development<br />

2. Describe the nature and extent <strong>of</strong> actual insurance claims data used to develop the<br />

model’s vulnerability functions. Describe in detail what is included, such as,<br />

69


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Vulnerability Standards<br />

number <strong>of</strong> policies, number <strong>of</strong> insurers, date <strong>of</strong> loss, and number <strong>of</strong> units <strong>of</strong> dollar<br />

exposure, separated into personal lines, commercial, and mobile home.<br />

The primary set <strong>of</strong> claims data used to develop the vulnerability functions<br />

contains over 13 million policies from 6 insurers, with a total exposure <strong>of</strong><br />

about $2.2 trillion. By far the majority <strong>of</strong> this data is from personal lines, but<br />

about 175,000 <strong>of</strong> the policies are from commercial lines, and about 125,000<br />

<strong>of</strong> the policies are from mobile homes. The corresponding exposures are<br />

about $55 billion for commercial lines and about $8 billion for mobile homes.<br />

The data set includes claims from 18 hurricanes since 1983.<br />

In addition, the EQECAT vulnerability functions are based on a large body <strong>of</strong><br />

claims data from the Natural Hazard Research Service (NHRS), covering all<br />

major storms during the period 1954 – 1994.<br />

3. Summarize site inspections, including the source, and a brief description <strong>of</strong> the<br />

resulting use <strong>of</strong> these data in development, validation, or verification <strong>of</strong><br />

vulnerability functions.<br />

Site inspections are summarized in the EQECAT document ‘Secondary<br />

Structural Modifiers: Features and <strong>Model</strong> Description’, July 2003. The primary<br />

use <strong>of</strong> these site inspections was to calibrate and validate the secondary<br />

structural module <strong>of</strong> the s<strong>of</strong>tware.<br />

Following major windstorms, ABS Consulting/EQECAT engineers conduct<br />

reconnaissance field surveys <strong>of</strong> the affected areas to collect data. This<br />

information enable us to verify that the overall building performance <strong>of</strong><br />

different structures matches the damage functions in our model. In addition,<br />

these events <strong>of</strong>fer us the unique opportunity to gather evidence on failure<br />

modes <strong>of</strong> secondary features, which allows us to constantly enhance the<br />

mitigation measures component <strong>of</strong> the model.<br />

4. Describe research used in the development <strong>of</strong> the model’s vulnerability functions.<br />

Claims data from all major storms during the period 1954 – 1994 analyzed by<br />

Dr. Friedman and John Mangano while managing the Natural Hazard<br />

Research Service (NHRS) effort for the Travelers Insurance Company.<br />

Research conducted by Pr<strong>of</strong>essors Mehta and McDonald at Texas Tech over<br />

a 25-year period by investigating damage in all major hurricanes and<br />

tornadoes. Investigations by EQE / EQECAT <strong>of</strong> Hurricanes Andrew, Iniki,<br />

Luis, Marilyn, Opal, Charley, Frances, Ivan, Jeanne, Katrina, and Rita; and<br />

Typhoon Paka (investigations <strong>of</strong> Typhoon Paka and the 2004 and 2005<br />

hurricanes were used to validate rather than modify the vulnerability<br />

functions). Analysis <strong>of</strong> claims from Hurricanes Alicia, Elena, Gloria, Juan,<br />

Kate, Hugo, Bob, Andrew, Iniki, Erin, Opal, Charley, Frances, Ivan, Jeanne,<br />

Katrina, Rita, and Wilma provided by companies assisting with the<br />

development <strong>of</strong> USWIND (the 2004 and 2005 claims data were used to<br />

validate rather than modify the vulnerability functions in <strong>Florida</strong>).<br />

70


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Vulnerability Standards<br />

5. Describe the number <strong>of</strong> categories <strong>of</strong> the different vulnerability functions.<br />

Specifically, include descriptions <strong>of</strong> the structure types, lines <strong>of</strong> business, and<br />

coverages in which a unique vulnerability function is used.<br />

USWIND uses 96 basic construction types, 21 <strong>of</strong> which are residential types.<br />

They are characterized by four parameters: occupancy, number <strong>of</strong> stories,<br />

structural system, and exterior cladding strength. USWIND uses occupancies<br />

rather than line <strong>of</strong> business, because empirical evidence has shown that the<br />

former is more relevant to building performance. USWIND has distinct<br />

vulnerability functions for structure and contents, and describes time element<br />

losses as a function <strong>of</strong> direct damage and detailed occupancy type.<br />

For residential structures, the 21 structure types are as follows:<br />

9 residential ISO classes plus one curve for average residential ISO:<br />

• ISO Residential Class 1:Frame<br />

• ISO Residential Class 2:Joisted Masonry<br />

• ISO Residential Class 3:Non-combustible<br />

• ISO Residential Class 4:Masonry Non-combustible<br />

• ISO Residential Class 5:Modified Fire-resistive<br />

• ISO Residential Class 6:Fire-resistive<br />

• ISO Residential Class 7:Heavy Timber Joisted Masonry<br />

• ISO Residential Class 8:Super Non-combustible<br />

• ISO Residential Class 9:Super Masonry Non-combustible<br />

• ISO Residential Average<br />

9 engineering classifications:<br />

• Residential, Low-Rise, Reinforced-Masonry, Strong-Cladding<br />

• Residential, Low-Rise, Reinforced-Masonry, Weak-Cladding<br />

• Residential, Low-Rise, Reinforced-Masonry, Average-Cladding<br />

• Residential, Low-Rise, Timber, Strong-Cladding<br />

• Residential, Low-Rise, Timber, Weak-Cladding<br />

• Residential, Low-Rise, Timber, Average-Cladding<br />

• Residential, Low-Rise, Unreinforced-Masonry, Strong-Cladding<br />

• Residential, Low-Rise, Unreinforced-Masonry, Weak-Cladding<br />

• Residential, Low-Rise, Unreinforced-Masonry, Average-Cladding<br />

2 mobile home curves:<br />

• Residential, Low-Rise, Mobile Home - Tied Down<br />

• Residential, Low-Rise, Mobile Home - Not Tied Down<br />

71


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Vulnerability Standards<br />

6. Identify the one-minute average sustained wind speed at which the model begins to<br />

estimate damage.<br />

The model begins estimating damage at a peak gust wind speed <strong>of</strong> 40 mph.<br />

An equivalent one-minute average wind speed can be estimated, but will vary<br />

depending on terrain conditions and elevation. For open terrain and an<br />

elevation <strong>of</strong> 10 meters, 40 mph peak gusts equate approximately with a oneminute<br />

average wind speed <strong>of</strong> 35 mph. At other elevations and on different<br />

terrain, the one-minute average may be significantly different from this<br />

amount. For detail on this issue, the reader is referred to Simiu and Scanlan,<br />

1996, Wind Effects on Structures, 3rd ed., John Wiley and Sons, New York,<br />

section 2.3.6. Note that USWIND uses peak gust wind speed because<br />

damage is believed to be better correlated with peak gusts than with longterm<br />

sustained wind speeds. This approach is consistent with standard<br />

structural design philosophy: one designs for extreme, or peak, conditions,<br />

such as the momentary resting <strong>of</strong> a heavy piece <strong>of</strong> equipment on an<br />

inadequately strong patch <strong>of</strong> ro<strong>of</strong>. It is the load at that moment that causes<br />

the equipment to punch through the ro<strong>of</strong>, not the load averaged over the<br />

previous minute.<br />

Ted Fujita, <strong>of</strong> the University <strong>of</strong> Chicago, also pointed out (following Hurricanes<br />

Andrew and Iniki) that the gusts should be more important than the sustained<br />

wind when considering damage production. In his concluding remarks in an<br />

analysis <strong>of</strong> a videotape <strong>of</strong> a ro<strong>of</strong> being blown from a house during Hurricane<br />

Iniki, he states: "It is important to realize that the ro<strong>of</strong> can be blown away by 1<br />

to 2 sec winds rather than a sustained wind" (Storm Data, Sept. 1992, Vol.<br />

34, page 27).<br />

7. Describe how the duration <strong>of</strong> wind speeds at a particular location over the life <strong>of</strong> a<br />

hurricane is considered.<br />

The duration <strong>of</strong> wind speeds is not explicitly considered in the model,<br />

although duration effects are included in the claims data used to develop the<br />

vulnerability functions.<br />

8. Provide a completed Form V-1, One Hypothetical Event.<br />

Please see Form V-1 at the end <strong>of</strong> this section.<br />

72


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Vulnerability Standards<br />

V-2 Mitigation Measures<br />

A. <strong>Model</strong>ing <strong>of</strong> mitigation measures to improve a structure’s wind<br />

resistance and the corresponding effects on vulnerability shall be<br />

theoretically sound. These measures shall include fixtures or<br />

construction techniques that enhance:<br />

• Ro<strong>of</strong> strength<br />

• Ro<strong>of</strong> covering performance<br />

• Ro<strong>of</strong>-to-wall strength<br />

• Wall-to-floor-to-foundation strength<br />

• Opening protection<br />

• Window, door, and skylight strength.<br />

The USWIND model allows for modifications to the vulnerability curves in the<br />

secondary structural component <strong>of</strong> the model if additional knowledge about<br />

the construction characteristics is available. Such construction characteristics<br />

include ro<strong>of</strong> strength, ro<strong>of</strong> covering performance, ro<strong>of</strong>-to-wall strength, wall-t<strong>of</strong>loor-to-foundation<br />

strength, opening protection, and window, door, and<br />

skylight strength.<br />

Disclosures<br />

B. Application <strong>of</strong> mitigation measures shall be empirically justified both<br />

individually and in combination.<br />

The application <strong>of</strong> modifications to the vulnerability curves in the secondary<br />

structural component <strong>of</strong> USWIND is reasonable both individually and in<br />

combination.<br />

1. Provide a completed Form V-2, Mitigation Measures – Range <strong>of</strong> Changes in Damage.<br />

See Form V-2 at the end <strong>of</strong> this section.<br />

2. Provide a description <strong>of</strong> the mitigation measures used by the model that are not listed<br />

in Form V-2.<br />

A large number <strong>of</strong> mitigation measures relevant to residential structures<br />

including mobile homes are available in the model. These measures are<br />

provided as various options under about 30 different secondary structural<br />

features. There are both a number <strong>of</strong> features available that are not used in<br />

Form V-2, e.g. glazing extent, as well as a number <strong>of</strong> options within each<br />

feature, e.g. additional ro<strong>of</strong> pr<strong>of</strong>ile types beyond braced gable and hip.<br />

73


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Vulnerability Standards<br />

Form V-1: One Hypothetical Event<br />

A. Wind speeds for 336 ZIP Codes are provided in the file named “FormV1Input06.xls.” The<br />

wind speeds and ZIP Codes represent a hypothetical hurricane track. The modeler is<br />

instructed to model the sample exposure data provided in the file named<br />

“FormA2Input06.xls” against these wind speeds at the specified ZIP Codes and provide the<br />

damage ratios summarized by wind speed (mph) and construction type.<br />

The wind speeds provided are one-minute sustained 10-meter wind speeds. The sample<br />

exposure data provided consists <strong>of</strong> three structures (one <strong>of</strong> each construction type – wood<br />

frame, masonry, and mobile home) individually placed at the population centroid <strong>of</strong> each <strong>of</strong><br />

the ZIP Codes provided. Each ZIP Code is subjected to a specific wind speed. For<br />

completing Part A, Estimated Damage for each individual wind speed range is the sum <strong>of</strong><br />

loss to all structures in the ZIP Codes subjected to that individual wind speed range. Subject<br />

Exposure is all exposures in the ZIP Codes subjected to that individual wind speed range.<br />

For completing Part B, Estimated Damage is the sum <strong>of</strong> the loss to all structures <strong>of</strong> a specific<br />

type (wood frame, masonry, or mobile home) in all <strong>of</strong> the wind speed ranges. Subject<br />

Exposure is all exposures <strong>of</strong> that specific type in all <strong>of</strong> the ZIP Codes.<br />

One reference structure for each <strong>of</strong> the construction types should be placed at the population<br />

center <strong>of</strong> the ZIP Codes.<br />

Reference Frame Structure:<br />

One story<br />

Unbraced gable end ro<strong>of</strong><br />

Normal shingles (55mph)<br />

½” plywood deck<br />

6d nails, deck to ro<strong>of</strong> members<br />

Toe nail truss to wall anchor<br />

Wood framed exterior walls<br />

5/8” diameter anchors at 48” centers for<br />

wall/floor/foundation connections<br />

No shutters<br />

Standard glass windows<br />

No door covers<br />

No skylight covers<br />

Constructed in 1980<br />

Reference Mobile Home Structure:<br />

Tie downs<br />

Single unit<br />

Manufactured in 1980<br />

Reference Masonry Structure:<br />

One story<br />

Unbraced gable end ro<strong>of</strong><br />

Normal shingles (55mph)<br />

½” plywood deck<br />

6d nails, deck to ro<strong>of</strong> members<br />

Toe nail truss to wall anchor<br />

Masonry exterior walls<br />

No vertical wall reinforcing<br />

No shutters<br />

Standard glass windows<br />

No door covers<br />

No skylight covers<br />

Constructed in 1980<br />

B. Confirm that the structures used in completing the Form are identical to those in the above<br />

table. If additional non-structural assumptions are necessary to complete this Form (for<br />

example, regarding duration or surface roughness), the modeler should provide the reasons<br />

74


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Vulnerability Standards<br />

why the assumptions were necessary as well as a detailed description <strong>of</strong> how they were<br />

included.<br />

The structures used in completing the Form are identical to those in the above table.<br />

C. Provide a plot <strong>of</strong> the Form V-1, Part A data.<br />

75


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Vulnerability Standards<br />

Form V-1: One Hypothetical Event<br />

Part A<br />

Wind Speed (mph)<br />

Estimated Damage/<br />

Subject Exposure<br />

41 – 50 0.09%<br />

51 – 60 0.21%<br />

61 – 70 0.58%<br />

71 – 80 1.22%<br />

81 – 90 2.48%<br />

91 – 100 5.26%<br />

101 – 110 9.66%<br />

111 – 120 25.19%<br />

121 – 130 37.68%<br />

131 – 140 56.50%<br />

141 – 150 72.68%<br />

151 – 160 81.50%<br />

161 – 170 90.18%<br />

Part B<br />

Construction Type<br />

Estimated Damage/<br />

Subject Exposure<br />

Wood Frame 6.78%<br />

Masonry 5.98%<br />

Mobile Home 9.47%<br />

76


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Vulnerability Standards<br />

A plot <strong>of</strong> the Form V-1 Part A data is provided below<br />

100 00%<br />

90 00%<br />

80 00%<br />

70 00%<br />

60 00%<br />

% Damage<br />

50 00%<br />

40 00%<br />

30 00%<br />

20 00%<br />

10 00%<br />

0 00%<br />

41-50 51-60 61-70 71-80 81-90 91-100 101-110 111-120 121-130 131-140 141-150 151-160 161-170<br />

Wind Speed (1-minute MPH)<br />

77


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Vulnerability Standards<br />

Form V-2: Mitigation Measures – Range <strong>of</strong> Changes in Damage<br />

A. Provide the change in the zero deductible personal residential reference structure damage<br />

rate (not loss cost) for each individual mitigation measure listed in Form V-2 as well as for<br />

the combination <strong>of</strong> the four mitigation measures provided for the Mitigated Frame Structure<br />

and the Mitigated Masonry Structure below.<br />

B. If additional assumptions are necessary to complete this Form (for example, regarding<br />

duration or surface roughness), the modeler should provide the rationale for the assumptions<br />

as well as a detailed description <strong>of</strong> how they are included.<br />

C. Provide this Form on CD in both Excel and PDF format. The file name should include the<br />

abbreviated name <strong>of</strong> the modeler, the Standards year, and the Form name. A hard copy <strong>of</strong><br />

Form V-2 should be included in the submission.<br />

Reference Frame Structure:<br />

One story<br />

Unbraced gable end ro<strong>of</strong><br />

Normal shingles (55mph)<br />

½” plywood deck<br />

6d nails, deck to ro<strong>of</strong> members<br />

Toe nail truss to wall anchor<br />

Wood framed exterior walls<br />

5/8” diameter anchors at 48” centers for<br />

wall/floor/foundation connections<br />

No shutters<br />

Standard glass windows<br />

No door covers<br />

No skylight covers<br />

Constructed in 1980<br />

Mitigated Frame Structure:<br />

Rated shingles (110mph)<br />

8d nails, deck to ro<strong>of</strong> members<br />

Truss straps at ro<strong>of</strong><br />

Plywood Shutters<br />

Reference Masonry Structure:<br />

One story<br />

Unbraced gable end ro<strong>of</strong><br />

Normal shingles (55mph)<br />

½” plywood deck<br />

6d nails, deck to ro<strong>of</strong> members<br />

Toe nail truss to wall anchor<br />

Masonry exterior walls<br />

No vertical wall reinforcing<br />

No shutters<br />

Standard glass windows<br />

No door covers<br />

No skylight covers<br />

Constructed in 1980<br />

Mitigated Masonry Structure:<br />

Rated shingles (110mph)<br />

8d nails, deck to ro<strong>of</strong> members<br />

Truss straps at ro<strong>of</strong><br />

Plywood Shutters<br />

Reference and mitigated structures are $100,000 fully insured structures with a zero deductible<br />

policy as indicated under “Owners” Policy Type for Form A-6.<br />

Place the reference structure at the population centroid for ZIP Code 33921 located in Lee<br />

County.<br />

78


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Vulnerability Standards<br />

Form V-2: Mitigation Measures – Range <strong>of</strong> Changes in Damage<br />

ROOF<br />

STRENGTH<br />

ROOF<br />

COVERING<br />

ROOF-WALL<br />

STRENGTH<br />

WALL-FLOOR<br />

STRENGTH<br />

WALL-<br />

FOUNDATION<br />

STRENGTH<br />

OPENING<br />

PROTECTION<br />

PERCENTAGE CHANGES IN DAMAGE*<br />

(REFERENCE DAMAGE RATE - MITIGATED DAMAGE RATE) /<br />

INDIVIDUAL<br />

REFERENCE DAMAGE RATE * 100<br />

MITIGATION MEASURES<br />

FRAME STRUCTURE<br />

MASONRY STRUCTURE<br />

WIND SPEED (MPH)<br />

WIND SPEED (MPH)<br />

60 85 110 135 160 60 85 110 135 160<br />

REFERENCE STRUCTURE - - - - - - - - - -<br />

BRACED GABLE ENDS 15.4% 15.1% 13.0% 10.5% 5.2% 13.1% 13.5% 11.8% 9.6% 6.1%<br />

HIP ROOF 19.5% 18.9% 16.2% 13.3% 6.7% 17.3% 17.4% 15.2% 12.5% 8.1%<br />

RATED SHINGLES (110 MPH) 8.0% 8.0% 6.8% 5.5% 2.6% 5.2% 5.4% 4.7% 3.8% 2.4%<br />

MEMBRANE 2.7% 2.7% 2.3% 1.8% 0.9% 0.0% 0.0% 0.0% 0.0% 0.0%<br />

NAILING OF DECK 8d 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%<br />

CLIPS 19.5% 18.9% 16.2% 13.3% 6.7% 15.2% 15.5% 13.5% 11.1% 7.1%<br />

STRAPS 19.5% 18.9% 16.2% 13.3% 6.7% 15.2% 15.5% 13.5% 11.1% 7.1%<br />

TIES OR CLIPS 8.0% 8.0% 6.8% 5.5% 2.6% 5.2% 5.4% 4.7% 3.8% 2.4%<br />

STRAPS 8.0% 8.0% 6.8% 5.5% 2.6% 5.2% 5.4% 4.7% 3.8% 2.4%<br />

LARGER ANCHORS<br />

OR CLOSER SPACING<br />

0.0% 0.0% 0.0% 0.0% 0.0% - - - - -<br />

STRAPS 8.0% 8.0% 6.8% 5.5% 2.6% - - - - -<br />

VERTICAL REINFORCING - - - - - - - - - -<br />

WINDOW PLYWOOD 10.7% 10.6% 9.1% 7.3% 3.5% 10.5% 10.8% 9.5% 7.7% 4.9%<br />

SHUTTERS STEEL 10.7% 10.6% 9.1% 7.3% 3.5% 10.5% 10.8% 9.5% 7.7% 4.9%<br />

ENGINEERED 17.4% 17.0% 14.6% 11.9% 5.9% 17.3% 17.4% 15.2% 12.5% 8.1%<br />

DOOR AND SKYLIGHT COVERS 15.4% 15.1% 13.0% 10.5% 5.2% 10.5% 10.8% 9.5% 7.7% 4.9%<br />

WINDOW,<br />

DOOR,<br />

WINDOWS LAMINATED 10.7% 10.6% 9.1% 7.3% 3.5% 7.9% 8.1% 7.1% 5.8% 3.6%<br />

SKYLIGHT<br />

STRENGTH IMPACT GLASS 10.7% 10.6% 9.1% 7.3% 3.5% 7.9% 8.1% 7.1% 5.8% 3.6%<br />

MITIGATION MEASURES IN<br />

COMBINATION<br />

PERCENTAGE CHANGES IN DAMAGE*<br />

(REFERENCE DAMAGE RATE - MITIGATED DAMAGE RATE) /<br />

REFERENCE DAMAGE RATE * 100<br />

FRAME STRUCTURE<br />

MASONRY STRUCTURE<br />

WIND SPEED (MPH)<br />

WIND SPEED (MPH)<br />

60 85 110 135 160 60 85 110 135 160<br />

STRUCTURE MITIGATED STRUCTURE 25.7% 24.4% 21.1% 17.5% 9.0% 23.5% 23.1% 20.3% 16.8% 11.1%<br />

* Note: 8d nails vs. 6d nails: not currently distinguished in the model, as other aspects are deemed more important; nail spacing and contact with<br />

rafter are also important. Larger or closer spaced anchor bolts: not currently distinguished in the model, as other aspects are deemed more<br />

important; also difficult to ascertain vertical reinforcing for masonry walls: this feature is accounted for through the selection <strong>of</strong> the base<br />

structure; vertically reinforced masonry walls are considered by the EQECAT model as Reinforced Masonry (RM).<br />

79


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

Actuarial Standards<br />

A-1 <strong>Model</strong>ed Loss Costs<br />

<strong>Model</strong>ed loss costs shall reflect all damages from storms that reach<br />

hurricane strength and produce minimum damaging wind speeds or<br />

greater on land in <strong>Florida</strong>.<br />

Disclosure<br />

<strong>Model</strong>ed loss costs reflect all damages starting when damage is first caused in<br />

<strong>Florida</strong> from an event modeled as a hurricane at that point in time and will include<br />

all subsequent damage in <strong>Florida</strong> from that event.<br />

1. Describe how damage from model generated storms (landfalling and by-passing) is<br />

excluded or included in the calculation <strong>of</strong> loss costs for the state <strong>of</strong> <strong>Florida</strong>.<br />

All damage for any storm that makes landfall or close bypass at hurricane<br />

status (Category 1 or above) is included in the calculation <strong>of</strong> loss costs,<br />

including portions below Category 1 strength.<br />

80


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

A-2 Underwriting Assumptions<br />

A. When used in the modeling process or for verification purposes,<br />

adjustments, edits, inclusions, or deletions to insurance company input<br />

data used by the modeler shall be based upon accepted actuarial,<br />

underwriting, and statistical procedures.<br />

When used in the modeling process or for verification purposes, adjustments,<br />

edits, inclusions, or deletions to insurance company input data used by the<br />

modeler are based upon accepted actuarial, underwriting, and statistical<br />

procedures.<br />

B. For loss cost estimates derived from or validated with historical insured<br />

hurricane losses, the assumptions in the derivations concerning (1)<br />

construction characteristics, (2) policy provisions, (3) claim payment<br />

practices, and (4) relevant underwriting practices underlying those<br />

losses, as well as any actuarial modifications, shall be appropriate.<br />

Vulnerability functions in USWIND are based on claims data obtained from<br />

insurance companies. For each data set obtained, the following process is used<br />

to incorporate the data into new or existing vulnerability functions:<br />

1. Review claims data to ensure consistency, correct any errors through<br />

interactions with the insurance company that provided the data and<br />

determine all <strong>of</strong> the elements included within the claims data (e.g.,<br />

allocated loss adjustment expense, etc.).<br />

2. Group the data into appropriate construction classes, and ensure<br />

consistency between definitions <strong>of</strong> different insurers. This includes<br />

incorporating consideration <strong>of</strong> the relevant underwriting practices <strong>of</strong> the<br />

insurance company that provided the data.<br />

3. Correct insured values to include under-insurance, if any (e.g., 80%<br />

insured to value clause in many homeowner policies). This process in<br />

done by consulting with the insurance company that provided the data.<br />

4. Calculate ground up loss for each coverage, using the paid claim<br />

amount and the deductible.<br />

5. Apply corrections to account for unreported data, e.g. damage below<br />

the deductible. This correction is generally negligible for residential<br />

claims, which typically have low deductibles.<br />

6. Associate a wind speed to each location using the best available<br />

<strong>of</strong>ficial historical information.<br />

7. Perform regression analysis to derive the vulnerability functions by<br />

construction class and coverage. This process may involve merging<br />

the new data set with previously analyzed claims.<br />

81


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

8. Validate curves against loss experience from various insurance<br />

portfolios.<br />

Disclosures<br />

1. Identify the assumptions used to develop loss costs for unknown residential<br />

construction types.<br />

Unknown residential structures are handled one <strong>of</strong> two ways. We prefer that<br />

our engineers and data specialists work with the insurer to determine the<br />

most likely mix <strong>of</strong> known types comprising the unknown sites. This mix is then<br />

entered into a simple lookup table, and USWIND automatically calculates the<br />

weighted-average vulnerability function for the unknown sites.<br />

The alternative is to use the default residential structure type - a built-in<br />

vulnerability function we developed by fitting a smooth curve to all residential<br />

claims and exposure data, regardless <strong>of</strong> structure type. These data include<br />

several hundred thousand residential structures throughout the eastern US<br />

that have been subjected to hurricanes over the last 40 years.<br />

2. Describe how the modeled loss costs take into consideration storm surge and flood<br />

damage to the infrastructure.<br />

Storm surge and flood damage are not modeled explicitly in USWIND.<br />

However, to the extent that such perils affect Additional Living Expense (ALE)<br />

claims through damage to the infrastructure, they are implicitly included in the<br />

USWIND ALE vulnerability functions.<br />

3. Describe the assumptions included in model development and validation concerning<br />

insurance company claim payment practices.<br />

The claim payment practices <strong>of</strong> the insurance companies providing the claims<br />

data used to develop the vulnerability functions are implicit in both model<br />

development and validation.<br />

4. Identify depreciation assumptions and describe the methods and assumptions used<br />

to reduce insured losses on account <strong>of</strong> depreciation. Provide a sample calculation<br />

for determining the amount <strong>of</strong> depreciation and the actual cash value (ACV) losses.<br />

USWIND does not calculate a depreciation factor.<br />

82


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

5. Identify property value assumptions and describe the methods and assumptions used<br />

to determine the true property value and associated losses. Provide a sample<br />

calculation for determining the property value and guaranteed replacement cost<br />

losses.<br />

USWIND does not include a factor for under insurance and the impact <strong>of</strong> full<br />

replacement value coverage. This was a significant cost in the Northridge<br />

Earthquake and EQECAT was able to account for its impact in studies done<br />

for several large insurers. This factor was developed after an analysis <strong>of</strong><br />

actual claims. The assumption made is that the total insured value provided<br />

represents true property value, so no under insurance factor is necessary.<br />

6. Describe how loss adjustment expenses are considered within the loss cost<br />

estimates.<br />

Loss adjustment expenses are not considered.<br />

83


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

A-3 Loss Cost Projections<br />

A. Loss cost projections produced by hurricane loss projection models<br />

shall not include expenses, risk load, investment income, premium<br />

reserves, taxes, assessments, or pr<strong>of</strong>it margin.<br />

Loss cost projections produced do not include expenses, risk load, investment<br />

income, premium reserves, taxes, assessments or pr<strong>of</strong>it margin.<br />

B. Loss cost projections shall not make a prospective provision for<br />

economic inflation.<br />

The model does not make a prospective provision for economic inflation, with<br />

regard to either losses or policy limits.<br />

Disclosures<br />

1. Describe the method or methods used to estimate annual loss costs needed for<br />

ratemaking. Identify any source documents used and research performed.<br />

Overall <strong>Model</strong> Methodology<br />

USWIND modeling methodology can be segmented into four components: 1)<br />

definition <strong>of</strong> the hazard, 2) propagation <strong>of</strong> the hazard to the site, 3) damage<br />

estimation, and 4) loss estimation.<br />

1. Hazard definition<br />

The storm database used by USWIND is a combination <strong>of</strong> historical and<br />

stochastic storms. Wind speed probabilistic distributions are calculated using<br />

the probabilistic distributions <strong>of</strong> all important storm parameters. The<br />

proprietary wind speed equation was based upon the NOAA model as<br />

published in NWS 23 and NWS 38. The NOAA model was modified and<br />

generalized to properly simulate wind speeds for all categories <strong>of</strong> storms,<br />

from a weak SSI 1 through a strong SSI 5. The NOAA model was further<br />

modified to properly simulate storm decay and wind attenuation due to friction<br />

and filling as a storm moves inland from landfall point. The equation<br />

computes wind speeds using pressure, the filling rate, radius to maximum<br />

winds, the angle <strong>of</strong> attack, translation speed, the gradient to sustained winds,<br />

the gust factor, the storm pr<strong>of</strong>ile (attenuation <strong>of</strong> wind speed outward from the<br />

center), and the friction caused by local terrain and man-made structures.<br />

2. Propagation <strong>of</strong> the hazard to the site<br />

USWIND utilizes an embedded commercial GIS (Geographic Information<br />

System), MapInfo to compute the latitude and longitude <strong>of</strong> each site analyzed.<br />

The street address level, where such data is available, is used to geocode to<br />

the lat./long. coordinates. Failing the presence <strong>of</strong> a street address, the<br />

geocoding can be done at a ZIP Code, City or County centroid basis. Wind<br />

84


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

speed distributions at the site locations are computed taking local friction and<br />

distance to coast into account.<br />

3. Estimation <strong>of</strong> Damage<br />

USWIND provides the facility to define each <strong>of</strong> the property assets being<br />

analyzed in order to compute resulting damage. Damage can be calculated<br />

for Structure, Contents, Time Element (such as Additional Living Expense<br />

(ALE) or Business Interruption (BI)) and up to three additional user defined<br />

coverage types. Site information includes the latitude and longitude <strong>of</strong> the<br />

locations, the structure types (96 types), structure details such as number <strong>of</strong><br />

stories, insured value, cladding type and a class <strong>of</strong> occupancy type (12<br />

types). Damage is estimated using vulnerability functions associated with the<br />

structure definition and occupancy type and the distribution <strong>of</strong> peak gust wind<br />

speeds at each site. The vulnerability functions used by USWIND have been<br />

derived through three methods: empirical data, expert opinion, and<br />

engineering analysis.<br />

The probabilistic distribution <strong>of</strong> damage (for each coverage and site) is<br />

derived through the integration <strong>of</strong> the probabilistic distribution <strong>of</strong> wind speeds<br />

for the site with the probabilistic distributions <strong>of</strong> damage for given wind<br />

speeds. Damage distributions for each <strong>of</strong> the sites are aggregated into an<br />

overall portfolio distribution <strong>of</strong> damage.<br />

Since there can be a high degree <strong>of</strong> damage correlation for similar structure<br />

types within a geographic area, USWIND properly takes into account site and<br />

coverage level correlations when aggregating individual site damage into an<br />

overall portfolio damage amount.<br />

4. Estimation <strong>of</strong> Loss<br />

Insurance information in the form <strong>of</strong> insured values, limits, deductibles and<br />

facultative and/or treaty reinsurance are then integrated with the probabilistic<br />

distribution <strong>of</strong> computed damage for each site to determine the probabilistic<br />

distribution <strong>of</strong> “insured loss” amount.<br />

2. Identify the highest level <strong>of</strong> resolution for which loss costs can be provided. Identify<br />

the resolution used for the reported output ranges.<br />

Loss costs can be provided at many different geographical resolutions,<br />

including state, county, ZIP Code and site levels. The distance <strong>of</strong> a site to the<br />

closest coastline is used in the evaluation <strong>of</strong> wind speeds at the site level,<br />

according to NWS 23. Loss calculations for properties located in<br />

beach/coastal areas are handled accordingly. For the reported output ranges,<br />

all analyses were performed at the ZIP Code level.<br />

85


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

A-4 Demand Surge<br />

A. Demand surge shall be included in the model’s calculation <strong>of</strong> loss<br />

costs.<br />

Demand surge has been included in all analyses submitted for review by the<br />

Commission.<br />

B. The methods, data, and assumptions used in the estimation <strong>of</strong> demand<br />

surge shall be actuarially sound.<br />

The methods, data, and assumptions used in the estimation <strong>of</strong> demand surge are<br />

actuarially sound.<br />

Disclosures<br />

1. Describe how the model incorporates demand surge in the calculation <strong>of</strong> loss costs<br />

The USWIND model <strong>of</strong>fers the option to either include or exclude the<br />

increased loss resulting from the effect <strong>of</strong> demand surge which is observed<br />

following major cat events.<br />

Two indices are calculated to determine the magnitude <strong>of</strong> the demand surge<br />

at any given location subjected to a windspeed V. The Cat Index is a function<br />

<strong>of</strong> the storm intensity and the landfall milepost. It is determined using the<br />

building materials inventory available in the affected region and the building<br />

materials demand resulting from the storm damage. The Cat Inflation Index<br />

represents the factor by which repair cost increases in a cat event as a<br />

function <strong>of</strong> V.<br />

2. Provide citations to published papers, if any, that were used to develop how the<br />

model estimates demand surge.<br />

The demand surge algorithm used in USWIND is strictly based on EQECAT<br />

research.<br />

86


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

A-5 User Inputs<br />

All modifications, adjustments, assumptions, and defaults necessary to<br />

use the inputs in the model shall be actuarially sound and included with the<br />

model output. Treatment <strong>of</strong> missing values for user inputs required to run<br />

the model shall be actuarially sound and described with the model output.<br />

Any assumption or method used by EQECAT’s hurricane loss projection model<br />

that relates to a specific insurer’s inputs to the model, if any, for the purposes <strong>of</strong><br />

preparing the insurer’s rate filing shall be clearly identified. EQECAT will disclose<br />

any implicit assumptions relating to insurance to value, the prevalence <strong>of</strong><br />

appurtenant structures, or demographic risk characteristics.<br />

Disclosures<br />

1. Describe the methods used to distinguish among policy form types (e.g.,<br />

homeowners, dwelling property, mobile home, tenants, condo unit owners).<br />

USWIND has no pre-determined policy form types in it. The user must specify<br />

the format <strong>of</strong> the policy form in the input file. The model can accept a wide<br />

variety <strong>of</strong> combinations <strong>of</strong> deductible and limits. The primary assumption in<br />

the analysis <strong>of</strong> different policy forms is that the user has input the data<br />

correctly. USWIND has many reports which the user can use to validate the<br />

correctness <strong>of</strong> the data, but the responsibility for the correctness <strong>of</strong> the<br />

analysis resides with the user. The model can produce loss costs for different<br />

types <strong>of</strong> policies. All the elements <strong>of</strong> the loss are retained following an<br />

analysis. With a properly formatted input file, the user can produce reports<br />

which detail many breakdowns <strong>of</strong> the data, not just by Policy Type, but also<br />

by ZIP Code, county, state, line <strong>of</strong> business, branch, division, etc. The user<br />

has to select the correct identification codes for the various reports needed.<br />

2. Disclose, in a model output report, the specific type <strong>of</strong> input that is required to use<br />

the model or model output in a personal residential property insurance rate filing.<br />

Such input includes, but is not limited to, optional features <strong>of</strong> the model, type <strong>of</strong> data<br />

to be supplied by the model user and needed to derive loss projections from the<br />

model, and any variables that a model user is authorized to set in implementing the<br />

model. Include the model name and version number on the model output report. All<br />

items included in the output form submitted to the Commission should be clearly<br />

labeled and defined.<br />

The output reports on the next four pages provide an example <strong>of</strong> the<br />

information given. In the reports, ‘Multiple Layer Flag’, if ‘On’, indicates that<br />

policies having the same account number should be treated as layers <strong>of</strong> a<br />

single policy, and ‘Global Limits/Deductibles’, if other than ‘None Applied’,<br />

indicates that the limits and/or deductibles in the portfolio have been<br />

overridden with some user-specified global values.<br />

87


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

Geocode Statistics by <strong>State</strong><br />

for Portfolio case1<br />

Number <strong>of</strong> Building Contents Total Property Time Element Total<br />

Geocode Statistics Locations TIV TIV TIV TIV TIV<br />

$(Thousands) $(Thousands) $(Thousands) $(Thousands) $(Thousands)<br />

<strong>State</strong>: <strong>Florida</strong><br />

Postal Code 2 200 0 200 0 200<br />

<strong>Florida</strong> <strong>State</strong> Total 2 $200 $0 $200 $0 $200<br />

Total for All <strong>State</strong>s 2 $200 $0 $200 $0 $200<br />

Factors Used in Analysis:<br />

Peril Type:<br />

Multiple Layer Flag:<br />

Hurricane<br />

Off<br />

User ID = 1, Window ID = 1<br />

EQECAT: USWIND 5.11 Page 1 <strong>of</strong> 1 February 9, 2007 10:57AM<br />

88


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

Quality Factor by <strong>State</strong><br />

for Portfolio case1<br />

Number <strong>of</strong> Building Contents Total Property Time Element Total<br />

Quality Factor Locations TIV TIV TIV TIV TIV<br />

$(Thousands) $(Thousands) $(Thousands) $(Thousands) $(Thousands)<br />

<strong>State</strong>: <strong>Florida</strong><br />

50 2 200 0 200 0 200<br />

<strong>Florida</strong> <strong>State</strong> Total 2 $200 $0 $200 $0 $200<br />

Total for All <strong>State</strong>s 2 $200 $0 $200 $0 $200<br />

Factors Used in Analysis:<br />

Peril Type:<br />

Multiple Layer Flag:<br />

Hurricane<br />

Off<br />

User ID = 1, Window ID = 1<br />

EQECAT: USWIND 5.11 Page 1 <strong>of</strong> 1 February 9, 2007 10:57AM<br />

89


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

Structure Types by <strong>State</strong><br />

for Portfolio case1<br />

Number <strong>of</strong> Building Contents Total Property Time Element Total<br />

Structure Types Locations TIV TIV TIV TIV TIV<br />

$(Thousands) $(Thousands) $(Thousands) $(Thousands) $(Thousands)<br />

<strong>State</strong>: <strong>Florida</strong><br />

Commercial, Low-Rise, Unreinforced-Masonry, 1 100 0 100 0 100<br />

Average-Cladding<br />

Residential, Low-Rise, Timber, Average-Cladding 1 100 0 100 0 100<br />

<strong>Florida</strong> <strong>State</strong> Total 2 $200 $0 $200 $0 $200<br />

Total for All <strong>State</strong>s 2 $200 $0 $200 $0 $200<br />

Factors Used in Analysis:<br />

Peril Type:<br />

Multiple Layer Flag:<br />

Hurricane<br />

Off<br />

User ID = 1, Window ID = 1<br />

EQECAT: USWIND 5.11 Page 1 <strong>of</strong> 1 February 9, 2007 10:57AM<br />

90


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

Hurricane - Expected Annual Damage and Loss by <strong>State</strong><br />

for Portfolio case1<br />

Loss<br />

Total No. <strong>of</strong> Expected Annual Damage Expected Annual Gross Loss Expected Annual Expected Annual Net<br />

<strong>State</strong> TIV Bldgs. % Total % Total Fac. Cessions % Total<br />

$(Thousands) $(Thousands) TIV $(Thousands) TIV $(Thousands) $(Thousands) TIV<br />

<strong>Florida</strong> 200 2 0.99 0.4959 0.67 0.3374 0.00 0.67 0.3374<br />

Total for All <strong>State</strong>s $200 2 $0.99 0.4959% $0.67 0.3374% $0.00 $0.67 0.3374%<br />

Factors Used in Analysis:<br />

Demand Surge Factor:<br />

Region:<br />

Global Limits/Deductibles:<br />

Multiple Layer Flag:<br />

Demand Surge Not Included<br />

U.S. Mainland<br />

None Applied<br />

Off<br />

User ID = 1, Window ID = 2<br />

EQECAT: USWIND 5.11 Page 1 <strong>of</strong> 1 February 9, 2007 10:57AM<br />

91


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

3. Provide a copy <strong>of</strong> the input form used by a model user to provide input criteria to be<br />

used in the model. The modeler should demonstrate that the input form relates<br />

directly to the model output. Include the model name and version number on the<br />

input form. All items included in the input form submitted to the Commission should<br />

be clearly labeled and defined.<br />

An example USWIND input form is shown below. The field names are in the<br />

first column, and arranged into six groups (P for policy information, PC for<br />

policy coverage information, PF for policy facultative reinsurance, S for site<br />

information, and SC for site coverage information). The example below has<br />

five records <strong>of</strong> data (policy numbers FLP001 through FLP005).<br />

USWIND 5.11<br />

P PolNum FLP001 FLP002 FLP003 FLP004 FLP005<br />

P InsName<br />

P AcctNum<br />

P_AcctName<br />

P_Company C1 C1 C1 C1 C1<br />

P_Division NY NY FL FL NY<br />

P_Branch Mia Mia Mia Mia Mia<br />

P_LineBus HO HO MP MP HO<br />

P_PolTyp COMF COMF HO HO HO<br />

P PolStats IN IN IN IN IN<br />

P IncpDate 20020901 20021101 20021201 20020901 20021101<br />

P ExprDate 20030831 20031031 20031130 20030831 20031031<br />

P Producer 9912 4412 7413 1284 9912<br />

P TransID 99 99 99 99 99<br />

PC_PerlTyp Wind Wind Wind Wind Wind<br />

PC_CvgTyp Bldg Cont Time Time ALE<br />

PC_LmtAmt 500 333 111 222 67<br />

PC_LmtTyp CovSpec CovSpec CovSpec CovSpec CovSpec<br />

PC_DedAmt 1000 1000 1000 1000 1000<br />

PC_DedTyp CovSpec CovSpec CovSpec CovSpec CovSpec<br />

PC PolPrm 600 600 600 600 600<br />

PC AttcPnt 0 0 0 0 0<br />

PC ProRata 100 100 100 100 100<br />

PF CertNum<br />

PF_PerlTyp<br />

PF_CvgTyp<br />

PF_ReinApp<br />

PF_AttPnt<br />

PF_LayAmt<br />

PF CedPcnt<br />

PF ReinTyp<br />

PF AggLmt<br />

PF Reinsr<br />

PF Broker<br />

PF_CertSta<br />

PF_ReinPrm<br />

PF_TrtyNum<br />

S_Number 1 1 1 1 1<br />

S_Name<br />

S StrAddr 400 S Greenwood 2040 Whitfield 7400 Nw 19 2801 Rosselle 4586 Palm Ave<br />

S City Clearwater Sarasota Miami Jacksonville Hialeah<br />

92


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

S_County Pinellas Manatee Dade Duval Dade<br />

S_<strong>State</strong> FL FL FL FL FL<br />

S_Zip_5dg 34616 34243 33147 32205 33012<br />

S_WndStruc SC52 SC52 SC654 SC654 SC654<br />

S_WndOccpy OC1 OC1 OC1 OC1 OC1<br />

S YrBuilt 1968 1980 1934 1942 1960<br />

S NumStory 1 2 1 1 1<br />

S NumStruc 1 1 1 1 1<br />

SC PerlTyp Wind Wind Wind Wind Wind<br />

SC_CvgTyp Bldg Cont Time Time ALE<br />

SC_CovQual 50 50 50 50 50<br />

SC_TIV 600 350 150 250 75<br />

SC_LmtAmt 500 333 111 222 67<br />

SC_LmtTyp CovSpec CovSpec CovSpec CovSpec CovSpec<br />

SC_DedAmt 1000 1000 1000 1000 1000<br />

SC DedTyp CovSpec CovSpec CovSpec CovSpec CovSpec<br />

SC Prem 600 600 600 600 600<br />

SF CertNum<br />

SF PerlTyp<br />

SF_CvgTyp<br />

SF_ReinApp<br />

SF_AttPnt<br />

SF_LayAmt<br />

SF_CedPcnt<br />

SF_ReinTyp<br />

SF Reinsr<br />

SF Broker<br />

SF CertSta<br />

SF Prem<br />

SF TrtyNum<br />

The table below provides descriptions for each <strong>of</strong> the input data fields.<br />

Field Name Data Group Description<br />

P PolNum Policy Policy Number<br />

P InsName Policy Insured Name<br />

P AcctNum Policy Account Number<br />

P_AcctName Policy Account Name<br />

P_Company Policy Company<br />

P_Division Policy Division<br />

P_Branch Policy Branch<br />

P_LineBus Policy Line <strong>of</strong> Business<br />

P PolTyp Policy Policy Type<br />

P PolStats Policy Policy Status<br />

P IncpDate Policy Inception Date<br />

P ExprDate Policy Expiration Date<br />

P Producer Policy Producer<br />

P_TransID Policy Translation ID<br />

PC_PerlTyp Policy Coverage Peril Type<br />

PC_CvgTyp Policy Coverage Coverage Type<br />

PC_LmtAmt Policy Coverage Limit Amount<br />

PC_LmtTyp Policy Coverage Limit Type<br />

PC DedAmt Policy Coverage Deductible Amount<br />

PC DedTyp Policy Coverage Deductible Type<br />

PC PolPrm Policy Coverage Policy Premium<br />

PC AttcPnt Policy Coverage Attachment Point<br />

93


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

Field Name Data Group Description<br />

PC ProRata Policy Coverage Prorata<br />

PF_CertNum Policy Facultative Certificate Number<br />

PF_PerlTyp Policy Facultative Peril Type<br />

PF_CvgTyp Policy Facultative Coverage Type<br />

PF_ReinApp Policy Facultative Reinsurance Applies<br />

PF_AttPnt Policy Facultative Attachment Point<br />

PF LayAmt Policy Facultative Layer Amount<br />

PF CedPcnt Policy Facultative Ceded Percentage<br />

PF ReinTyp Policy Facultative Reinsurance Type<br />

PF AggLmt Policy Facultative Aggregate Limit<br />

PF Reinsr Policy Facultative Reinsurer<br />

PF_Broker Policy Facultative Broker<br />

PF_CertSta Policy Facultative Certificate Status<br />

PF_ReinPrm Policy Facultative Reinsurance Premium<br />

PF_TrtyNum Policy Facultative Treaty Number<br />

S_Number Site Site Number<br />

S Name Site Site Name<br />

S StrAddr Site Street Address<br />

S City Site City<br />

S County Site County<br />

S <strong>State</strong> Site <strong>State</strong><br />

S_Zip_5dg Site ZIP Code<br />

S_WndStruc Site Wind Structure Type<br />

S_WndOccpy Site Wind Occupancy Type<br />

S_YrBuilt Site Year Built<br />

S_NumStory Site Number <strong>of</strong> Stories<br />

S NumStruc Site Number <strong>of</strong> Structures<br />

SC PerlTyp Site Coverage Peril Type<br />

SC CvgTyp Site Coverage Coverage Type<br />

SC CovQual Site Coverage Coverage Quality<br />

SC TIV Site Coverage Total Insured Value<br />

SC_LmtAmt Site Coverage Limit Amount<br />

SC_LmtTyp Site Coverage Limit Type<br />

SC_DedAmt Site Coverage Deductible Amount<br />

SC_DedTyp Site Coverage Deductible Type<br />

SC_Prem Site Coverage Premium<br />

SF CertNum Site Facultative Certificate Number<br />

SF PerlTyp Site Facultative Peril Type<br />

SF CvgTyp Site Facultative Coverage Type<br />

SF ReinApp Site Facultative Reinsurance Applies<br />

SF AttPnt Site Facultative Attachment Point<br />

SF_LayAmt Site Facultative Layer Amount<br />

SF_CedPcnt Site Facultative Ceded Percentage<br />

SF_ReinTyp Site Facultative Reinsurance Type<br />

SF_Reinsr Site Facultative Reinsurer<br />

SF_Broker Site Facultative Broker<br />

SF CertSta Site Facultative Certificate Status<br />

SF Prem Site Facultative Reinsurance Premium<br />

SF TrtyNum Site Facultative Treaty Number<br />

94


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

4. Describe actions performed to ensure the validity <strong>of</strong> insurer data used for model<br />

inputs or validation/verification.<br />

Client data is extensively tested during the import process into the EQECAT<br />

system to confirm its accuracy. Field level validation is performed to confirm<br />

that every data element within each record falls within known ranges. Data<br />

not falling within known ranges is marked as an error or a warning in a log<br />

depending upon the severity <strong>of</strong> the problem. Child/parent and other key<br />

relationships are also checked. A summary log is displayed at the end <strong>of</strong><br />

import process denoting the number records which have warnings or errors.<br />

95


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

A-6 Logical Relationship to Risk<br />

A. Loss costs shall not exhibit an illogical relation to risk, nor shall loss<br />

costs exhibit a significant change when the underlying risk does not<br />

change significantly.<br />

EQECAT’s loss costs exhibit logical relation to risk. Loss costs produced by the<br />

model do not exhibit a significant change when the underlying risk does not<br />

change significantly.<br />

B. Loss costs produced by the model shall be positive and non-zero for all<br />

valid <strong>Florida</strong> ZIP Codes.<br />

Loss costs produced by the model are positive and non-zero for all valid <strong>Florida</strong><br />

ZIP Codes.<br />

C. Loss costs cannot increase as the quality <strong>of</strong> construction type,<br />

materials and workmanship increases, all other factors held constant.<br />

Loss costs do not increase as the quality <strong>of</strong> construction type, materials and<br />

workmanship increases, all other factors held constant.<br />

D. Loss costs cannot increase as the presence <strong>of</strong> fixtures or construction<br />

techniques designed for hazard mitigation increases, all other factors<br />

held constant.<br />

Loss costs do not increase with the presence <strong>of</strong> fixtures or construction<br />

techniques designed for hazard mitigation, all other factors held constant.<br />

E. Loss costs cannot increase as the quality <strong>of</strong> building codes and<br />

enforcement increases, all other factors held constant.<br />

Loss costs do not increase as the quality <strong>of</strong> building codes and enforcement<br />

increases, all other factors held constant.<br />

F. Loss costs shall decrease as deductibles increase, all other factors held<br />

constant.<br />

Loss costs decrease as deductibles increase, all other factors held constant.<br />

G. The relationship <strong>of</strong> loss costs for individual coverages, (e.g., structures<br />

and appurtenant structures, contents, and loss <strong>of</strong> use/additional living<br />

expense) shall be consistent with the coverages provided.<br />

Relationships among the loss costs for coverages A,B,C,D are consistent with<br />

the coverages provided.<br />

96


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

Disclosures<br />

1. Demonstrate that loss cost relationships by type <strong>of</strong> coverage (structures,<br />

appurtenant structures, contents, additional living expenses) are consistent with<br />

actual insurance data.<br />

Figure 13 below compares a representative sample <strong>of</strong> Hurricane Andrew<br />

claims data with the statewide weighted average zero deductible loss costs<br />

for wood frame and masonry. All values have been normalized to the<br />

corresponding coverage A value.<br />

1.0<br />

0.9<br />

Loss Relative to Cov A Loss<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

Representative Hurricane Andrew Claims<br />

<strong>State</strong>wide Wtd Ave Loss Cost - Frame<br />

<strong>State</strong>wide Wtd Ave Loss Cost - Masonry<br />

0.2<br />

0.1<br />

0.0<br />

Cov A Cov B Cov C Cov D<br />

Figure 13. Loss Cost Relationships by Coverage<br />

2. Demonstrate that loss cost relationships by construction type or vulnerability<br />

function (frame, masonry, and mobile home) are consistent with actual insurance<br />

data.<br />

Looking at a representative sample <strong>of</strong> Hurricane Andrew claims data, we<br />

found that among ZIP Codes having claims for wood frame, masonry, and<br />

mobile homes, the average ratio <strong>of</strong> the percentage loss for wood frame to the<br />

percentage loss for masonry was 2.2, and the average ratio <strong>of</strong> the percentage<br />

97


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

loss for mobile home to the percentage loss for masonry was 7.9. This<br />

relationship is consistent with the loss costs produced by the EQECAT model.<br />

3. Demonstrate that loss cost relationships among coverages, territories, and regions<br />

are consistent and reasonable.<br />

We have conducted several analyses to demonstrate how the loss cost<br />

(Average Annual Loss or AAL) relationships produced by USWIND are<br />

consistent with actual insurance data. Using our large empirical data set <strong>of</strong><br />

exposure loss information from historical storms, we have calculated<br />

expected ratios <strong>of</strong> loss rates between coverages and between structure types<br />

by peak gust wind speeds. We compared these ratios at various wind speeds<br />

to corresponding ratios for AAL. We looked at various different AAL ratios<br />

including the average and 75th percentile over all ZIP Codes for each<br />

corresponding group. The results highlighted how the AAL relationships are<br />

within the expectations derived from actual insurance data.<br />

As an example <strong>of</strong> the consistency <strong>of</strong> the loss cost relationships between<br />

structure types, the ratio <strong>of</strong> expected loss between Construction Type #1 and<br />

Construction Type #2 varied between 56% and 93% for gust wind speeds<br />

between 70 and 200 mph. The average ratio <strong>of</strong> AALs between these two<br />

construction types over all ZIP Codes was 57%, and the 75th percentile was<br />

68%.<br />

Demonstrating the consistency <strong>of</strong> the relationships between loss costs and<br />

territories, Figure 14 displays USWIND’s loss cost estimates. Depicted here<br />

are the loss costs for all construction types and all coverages. The horizontal<br />

axis lists all coastal counties starting with the north-eastern most county <strong>of</strong><br />

Nassau and ending with the western most county <strong>of</strong> Escambia. The chart<br />

below the graph in the figure illustrates the corresponding historical events by<br />

SSI category for these regions.<br />

The progression from north to south and then back up to the panhandle<br />

coincides with the historical storm activity. For example, the southeast region<br />

has historically seen the most frequent and most severe storms and therefore<br />

yields the highest loss costs.<br />

Please note that the erratic behavior <strong>of</strong> the graph in certain regions can be<br />

explained by the fact that counties have varying geographic area.<br />

USWIND produces loss costs that are highly correlated to historical data.<br />

98


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

Figure 14. Loss Costs for Coastal Counties<br />

4. Explain any anomalies or special circumstances that might preclude any <strong>of</strong> the<br />

above conditions from occurring.<br />

There are no such anomalies.<br />

5. Provide a completed Form A-1, Loss Costs.<br />

See Form A-1 at the end <strong>of</strong> this section.<br />

6. Provide a completed Form A-2, Zero Deductible Loss Costs by ZIP Code.<br />

See Form A-2 at the end <strong>of</strong> this section.<br />

7. Provide a completed Form A-3, Base Hurricane Storm Set Average Annual Zero<br />

Deductible <strong>State</strong>wide Loss Costs.<br />

See Form A-3 at the end <strong>of</strong> this section.<br />

8. Provide a completed Form A-4, Hurricane Andrew Percent <strong>of</strong> Losses.<br />

99


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

See Form A-4 at the end <strong>of</strong> this section.<br />

9. Provide a completed Form A-5, Distribution <strong>of</strong> Hurricanes by Size <strong>of</strong> Loss.<br />

See Form A-5 at the end <strong>of</strong> this section.<br />

100


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

A-7 Deductibles and Policy Limits<br />

A. The methods used in the development <strong>of</strong> mathematical distributions to<br />

reflect the effects <strong>of</strong> deductibles and policy limits shall be actuarially<br />

sound.<br />

The methods used in the development <strong>of</strong> mathematical distributions to reflect the<br />

effects <strong>of</strong> deductibles and policy limits are actuarially sound.<br />

B. The relationship among the modeled deductible loss costs shall be<br />

reasonable.<br />

USWIND estimates the damage distribution for a given site through the<br />

integration <strong>of</strong> the site hazard distribution and the corresponding vulnerability<br />

function as shown in Figure 15 below.<br />

Figure 15. Integration <strong>of</strong> Uncertainty on Hazard and Damage<br />

The loss distribution is estimated through the integration <strong>of</strong> the site damage<br />

distribution, taking into account deductibles and limits, as shown in Figure 16<br />

below.<br />

101


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

Damage<br />

PDF<br />

Loss = f(Damage, Deductible, Limit,...)<br />

Deductible<br />

Limit<br />

$ Dmg<br />

Loss<br />

Figure 16. Integration <strong>of</strong> Damage Distribution to Calculate Loss<br />

C. Deductible loss costs shall be calculated in accordance with s.<br />

627.701(5)(a), F.S.<br />

All loss costs have been calculated in accordance with s.627.701(5)(a), F.S.<br />

Disclosures<br />

1. Describe the methods used in the model to treat deductibles (both flat and<br />

percentage), policy limits, replacement costs, and insurance-to-value when<br />

projecting loss costs.<br />

The model assumes that the user has correctly input the replacement cost <strong>of</strong><br />

all coverages in the portfolio. The input replacement cost must include any<br />

adjustments for Insurance-to value, as the model does not make any<br />

corrections for this. The deductible is also a user input value. The user may<br />

input a flat deductible (i.e., a fixed dollar amount) or a percentage amount (a<br />

percentage <strong>of</strong> the TIV). Deductibles may be applied separately to each<br />

coverage, or applied to aggregated damage. The allowed aggregations are<br />

Blanket (i.e., all coverages subject to one deductible) or Property Damage /<br />

Business Interruption (PD/BI) (i.e. all real property coverages are subject to<br />

102


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

one deductible, and the Time Element coverage is subject to a different<br />

deductible). Limits are input by the user, in a manner similar to that for<br />

deductibles. Limits are input as a dollar amount, to be applied either to (a) all<br />

coverages separately, (b) all coverages in aggregate, or (c) two limits, one for<br />

real property, and one for Time Element. Internally, the program calculates<br />

the loss by integrating over the probability distribution function (PDF) <strong>of</strong> the<br />

damage.<br />

2. Provide an example <strong>of</strong> how insurer loss (loss net <strong>of</strong> deductibles) is calculated.<br />

Discuss data or documentation used to confirm or validate the method used by the<br />

model.<br />

Example:<br />

(A) (B) (C) (D)=(A)*(C) (E)=(D)-(B)<br />

Structure<br />

Value<br />

Policy<br />

Limit Deductible<br />

Damage<br />

Ratio<br />

Zero Deductible<br />

Loss<br />

Loss Net <strong>of</strong><br />

Deductible<br />

100,000 90,000 500 2% 2,000 1,500<br />

Consider the property in the example above with given value, limit, and<br />

deductible, subject to a wind speed with average damage ratio as given.<br />

Assume further that the vulnerability functions specify the range <strong>of</strong> possible<br />

outcomes as follows:<br />

Probability <strong>of</strong> Zero Damage = 0.50<br />

Probability <strong>of</strong> Damage Greater<br />

than Zero =<br />

Probability Distribution <strong>of</strong> Positive<br />

Damages =<br />

0.50<br />

{Lognormal with mean=4%<br />

and standard deviation=6%}<br />

truncated at 100%<br />

(Note: this functional distribution is only used for illustrative purposes and<br />

does not necessarily reflect the method contained within USWIND.)<br />

Then the average damage rate (mathematical expectation) is 0.5 x 4% = 2%,<br />

as specified, providing an expected damage amount (ground up loss) <strong>of</strong><br />

$100,000 x 2% = $2000.<br />

For any given property, the insurer loss is the greater <strong>of</strong> two quantities: (1)<br />

zero, and (2) the damage minus the deductible, but not greater than the policy<br />

limit. Because the damage is a random variable, i.e., it is associated with a<br />

probability distribution, so too is the insurer loss. However, we can calculate<br />

the average insurer loss (mathematical expectation) by the following<br />

expression:<br />

103


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

0.9+.005 1<br />

100,000 • [ ∫ (x-0.005) • f(x)dx + ∫ (0.9) • f(x)dx]<br />

0.005 0.9 + .005<br />

where f(x) is the probability density function defined above. In this case, the<br />

result comes out to be an expected insurer loss <strong>of</strong> $1752. This is substantially<br />

higher than $1500 because the expectation combines the probabilities <strong>of</strong><br />

high-loss outcomes, where the deductible is fully applied, with low-loss<br />

outcomes, where the deductible does not fully apply.<br />

The foregoing example illustrates the actuarial theory behind the application<br />

<strong>of</strong> deductibles and limits. USWIND implements this theory in loss cost<br />

calculations by a Latin Hypercube Sampling. For each property, one thousand<br />

instances <strong>of</strong> the random damage ratio are drawn from the model's probability<br />

distribution for damage ratio. The deductibles and limits are applied to each<br />

outcome and the results are averaged. Table 2 illustrates this process.<br />

TABLE 2.<br />

EXAMPLE DAMAGE TO LOSS SIMULATION<br />

Instance # Damage Ratio Ground Up Loss Insurer Loss<br />

1 0.00 0.00 0.00<br />

2 2% 2,000.00 1,500.00<br />

... ... ... ...<br />

999 0.37% 370.00 0.00<br />

1000 10% 10,000.00 9,500.00<br />

Total 2,000,765 1,751,942.00<br />

Average 2.001% 2,001.00 1.752.00<br />

The theoretical calculation presented above is standard in the actuarial<br />

literature. See, for example, chapter 3 <strong>of</strong> R. E. Beard, T. Pentikainen, and E.<br />

Pesonen's Risk Theory: the Stochastic Basis <strong>of</strong> Insurance (3rd Edition, New<br />

York: Chapman and Hall) or chapter 5 <strong>of</strong> R. V. Hogg and S. A. Klugman's<br />

Loss Distributions (New York: John Wiley and Sons).<br />

The implementation by way <strong>of</strong> simulation is standard in the simulation<br />

literature. See, for example, chapter 4 <strong>of</strong> R. Y. Rubenstein's Simulation and<br />

the Monte Carlo Method (New York: John Wiley and Sons) or chapter 5 <strong>of</strong> J.<br />

M. Hammersley and D. C. Handscomb's Monte Carlo Methods (New York:<br />

104


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

Barnes & Noble), or M.P. Bohn, et. al., “Application <strong>of</strong> the SSMRP<br />

Methodology to the Seismic Risk at the Zion Nuclear Plant,” prepared for the<br />

U.S. Nuclear Regulatory Commission, Lawrence Livermore National<br />

Laboratory.<br />

The specifics <strong>of</strong> the distributional models are based both on engineering<br />

studies <strong>of</strong> the variability <strong>of</strong> damage from winds and on extensive historical<br />

datasets detailing losses risk-by-risk.<br />

3. Describe how the model calculates annual deductibles.<br />

All results in this submission, where annual deductibles are required, were<br />

compiled through the post-processing <strong>of</strong> intermediate results generated by<br />

the standard EQECAT model. The handling <strong>of</strong> the annual deductibles was<br />

done according to the 627.701(5)(a) <strong>Florida</strong> Statutes.<br />

Using stratified sampling, for each year, a number <strong>of</strong> events are simulated<br />

from the hurricane frequency distribution. As each simulated year<br />

progresses, losses from each hurricane during that year are kept track <strong>of</strong> by<br />

policy and the corresponding effect on the remaining amount <strong>of</strong> the hurricane<br />

deductible evaluated. The results are used to quantify the annual deductible<br />

effects.<br />

105


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

A-8 Contents<br />

Disclosure<br />

A. The methods used in the development <strong>of</strong> contents loss costs shall be<br />

actuarially sound.<br />

The methods used in the development <strong>of</strong> contents loss costs are actuarially<br />

sound.<br />

B. The relationship between the modeled structure and contents loss costs<br />

shall be reasonable, based on the relationship between historical<br />

structure and contents losses.<br />

EQECAT’s model calculates damage to contents separately from damage to<br />

buildings and appurtenant structures. Content vulnerability curves in USWIND<br />

are based on claims data.<br />

Information regarding relationships among loss costs by coverage has been<br />

submitted in Forms A-1 and A-2.<br />

1. Describe the methods used in the model to calculate loss costs for contents coverage<br />

associated with personal residential structures (including mobile homes), tenants,<br />

and condo unit owners..<br />

Residential content vulnerability functions were developed by regressing<br />

historic content claims against peak gust wind speed, using claims data<br />

gathered and analyzed over the last 40 years. In USWIND, the user identifies<br />

the structure type containing the contents, choosing from one or a<br />

combination <strong>of</strong> the basic structure types available in USWIND. That is not to<br />

say that content vulnerability is the same as building vulnerability: there are<br />

two sets <strong>of</strong> vulnerability functions for each <strong>of</strong> the basic types, one set for<br />

contents and one set for buildings. The content vulnerability is a function <strong>of</strong><br />

the structure type, but it is not a direct function <strong>of</strong> the building vulnerability<br />

function. At this point, it would be helpful to clarify the distinction between<br />

“content vulnerability,” “building vulnerability,” and “structure type.” Structure<br />

type refers to the building’s structural system: whether the building is woodframe,<br />

masonry, concrete, etc.; whether the exterior wall material is strong or<br />

not; whether the windows are large or small; and so on. When we say<br />

building vulnerability, we mean the degree to which a building <strong>of</strong> a given<br />

structure type is estimated to be damaged at a given wind speed. A building<br />

with a concrete structure type is likely to be less vulnerable than a building<br />

with a timber structure type. Similarly, content vulnerability refers to the<br />

degree to which contents within a building <strong>of</strong> a given structure type are<br />

estimated to be damaged at a given wind speed. Contents in a building with a<br />

concrete structure type are less vulnerable to wind damage than contents in a<br />

building with a timber structure type. Building vulnerability and content<br />

vulnerability are both functions <strong>of</strong> structure type, but content vulnerability is<br />

not a function <strong>of</strong> building vulnerability.<br />

106


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

To the extent that both building damage and content damage increase at<br />

higher wind speeds, and to the extent that both building and content damage<br />

are generally higher in more vulnerable structure types, the two are positively<br />

correlated, but there is no direct functional dependency defined in USWIND<br />

between the content vulnerability function and the building vulnerability for the<br />

same structure type -- there is no magic factor applied to building damage to<br />

get content damage, nor should there be in the best designed model. To<br />

impose such a direct dependency would produce poorer vulnerability<br />

functions than are incorporated in USWIND. Regarding a minimum threshold,<br />

see our answer to question III.1: Content damage, like building damage, is<br />

estimated when peak gust wind speed (2 second averaging time) exceeds 40<br />

mph. Loss is calculated based on damage, deductible, limits, etc.<br />

Figure 17 below demonstrates the relationship between building and contents<br />

losses exhibited in a series <strong>of</strong> hypothetical storms run in the model.<br />

16,000<br />

14,000<br />

12,000<br />

Contents Loss ($1,000s)<br />

10,000<br />

8,000<br />

6,000<br />

4,000<br />

2,000<br />

0<br />

0 5,000 10,000 15,000 20,000 25,000 30,000 35,000<br />

Building Loss ($1,000s)<br />

Figure 17. Relationship Between Building and Contents Losses<br />

107


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

A-9 Additional Living Expense (ALE)<br />

A. The methods used in the development <strong>of</strong> Additional Living Expense<br />

(ALE) loss costs shall be actuarially sound.<br />

The methods used in the development <strong>of</strong> Additional Living Expense (ALE) loss<br />

costs are actuarially sound.<br />

B. ALE loss cost derivations shall consider the estimated time required to<br />

repair or replace the property.<br />

ALE loss cost derivations consider the estimated time required to repair or<br />

replace the property.<br />

C. The relationship between the modeled structure and ALE loss costs<br />

shall be reasonable, based on the relationship between historical<br />

structure and ALE losses.<br />

EQECAT’s model calculates damage to additional living expenses (ALE) as a<br />

function <strong>of</strong> building and content damage. ALE vulnerability curves in USWIND<br />

are based on claims data.<br />

Information regarding relationships among loss costs by coverage has been<br />

submitted in Form A-1.<br />

D. ALE loss costs produced by the model shall appropriately consider ALE<br />

claims arising from damage to the infrastructure.<br />

Disclosures<br />

ALE vulnerability curves in USWIND are based on claims data.<br />

1. Describe the methods used to develop loss cost for additional living expense<br />

coverage. <strong>State</strong> whether the model considers both direct and indirect loss to the<br />

structure. For example, direct loss is for expenses paid to house policyholders in an<br />

apartment while their home is being repaired. Indirect loss is for expenses incurred<br />

for loss <strong>of</strong> power (e.g., food spoilage).<br />

USWIND estimates time element costs as a function <strong>of</strong> building damage,<br />

content damage, and occupancy. For additional living expense (ALE) costs,<br />

USWIND uses its residential occupancy time-element vulnerability function.<br />

The program first determines the greater <strong>of</strong> building or content damage (as<br />

percentages <strong>of</strong> the coverage value) and then evaluates the residential timeelement<br />

vulnerability function at this x-value. There is no minimum threshold<br />

at which ALE loss is calculated. That is to say, if a site experiences significant<br />

structure or content damage, some time-element cost is estimated to occur.<br />

The size <strong>of</strong> the storm, even if it is “merely” a category 1 event, is irrelevant to<br />

the policyholder and the insurer; all that matters is whether the home is<br />

occupiable under the terms <strong>of</strong> the policy. Nor would a threshold structure<br />

damage make sense: even if the structure experiences minimal damage,<br />

108


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

such as just a few broken windows, significant damage to contents can result<br />

in significant time-element costs. It is for this reason that USWIND uses both<br />

structure and content damage, as well as occupancy, in determining timeelement<br />

costs. (Occupancies other than residential only come into play in<br />

other insurance lines <strong>of</strong> business, and so are not discussed here, although<br />

they are incorporated in USWIND.)<br />

We recognize that the ideal model would also include explicit consideration <strong>of</strong><br />

lifeline functionality, for example, whether electrical power and water are<br />

available at the insured’s home. Unfortunately, proper analysis <strong>of</strong> lifeline<br />

functionality is a complex issue. Merely to begin such an analysis requires<br />

detailed information on the lifeline facilities, such as the locations, structural<br />

characteristics, and links between utility elements like local water mains,<br />

pumping stations, power plants, etc. Suffice it to say this type <strong>of</strong> data is tightly<br />

controlled by the multitude <strong>of</strong> public utilities involved, and is generally<br />

unavailable at the local level. The reader should not infer from this that<br />

USWIND underestimates time-element costs by an amount equal to lifelinerelated<br />

effects. There is a strong positive correlation between local lifeline<br />

damage and damage to a policyholder’s home. That correlation results from a<br />

common cause: higher wind speeds generally result in higher damage to<br />

homes, power lines, and even underground water mains, which can<br />

experience damage from uprooted trees. The historical data that go into<br />

USWIND’s time-element vulnerability functions therefore account for lifeline<br />

damage, if only in an indirect, average way, because they are based on<br />

damage that is correlated with lifeline damage.<br />

2. <strong>State</strong> the minimum threshold at which ALE loss is calculated (e.g., loss is estimated<br />

for structure damage greater than 20% or only for category 3, 4, 5 events). Provide<br />

documentation <strong>of</strong> validation test results to verify the approach used.<br />

The minimum threshold at which ALE is calculated is the point at which either<br />

building or contents damage becomes nonzero (i.e., at 40 mph gust).<br />

A simple validation test looked at a representative sample <strong>of</strong> claims data from<br />

Hurricane Andrew, and found that only 0.21% <strong>of</strong> the total dollar value <strong>of</strong> ALE<br />

claims came from policies having no corresponding building or content claim.<br />

In many <strong>of</strong> these cases, building or content damage may have occurred<br />

below the level <strong>of</strong> the deductible.<br />

109


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

A-10 Output Ranges<br />

A. Output ranges shall be logical and any deviations supported.<br />

The output ranges produced by the model are logical and any deviations are<br />

supported.<br />

B. All other factors held constant, output ranges produced by the model<br />

shall reflect lower loss costs for:<br />

1. masonry construction versus frame construction,<br />

The output ranges produced by the model reflect lower loss costs for masonry<br />

construction versus frame construction, subject to the discussion in Disclosure 1<br />

below.<br />

2. residential risk exposure versus mobile home risk exposure,<br />

The output ranges produced by the model reflect lower loss costs for residential<br />

risk exposure versus mobile home risk exposure.<br />

3. in general, for inland counties versus coastal counties, and<br />

The output ranges produced by the model reflect lower loss costs, in general, for<br />

inland counties versus coastal counties.<br />

4. in general, for northern counties versus southern counties.<br />

The output ranges produced by the model reflect lower loss costs, in general, for<br />

northern counties versus southern counties.<br />

Disclosures<br />

1. Provide an explanation for all anomalies in the loss costs that are not consistent<br />

with the requirements <strong>of</strong> this Standard.<br />

All the loss costs shown in Form A-6 are consistent with the requirements <strong>of</strong><br />

this standard, except:<br />

• <strong>State</strong>wide weighted average loss costs for masonry are higher than the<br />

corresponding statewide weighted average loss costs for frame for all<br />

coverage types, policy types, and deductibles except appurtenant<br />

structures for owners. This is due to the masonry exposures generally<br />

being more heavily weighted than the frame exposures in areas having<br />

higher levels <strong>of</strong> hazard.<br />

• Weighted average loss costs for masonry renters are higher than the<br />

corresponding weighted average loss costs for frame renters for certain<br />

coverage types, policy types, and deductibles for Gulf and Walton<br />

counties. Weighted average loss costs for masonry condos are higher<br />

than the corresponding weighted average loss costs for frame condos for<br />

certain coverage types, policy types, and deductibles for Brevard,<br />

Madison, Miami-Dade, and Pasco counties. All <strong>of</strong> these situations are due<br />

110


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

to the masonry exposures in these counties being more heavily weighted<br />

than the frame exposures in areas having higher levels <strong>of</strong> hazard.<br />

2. Provide an explanation <strong>of</strong> the differences in the output ranges between the prior<br />

year and the current year submission.<br />

The following change was made to WORLDCATenterprise / USWIND<br />

between the submission last year (USWIND Version 5.10 /<br />

WORLDCATenterprise Version 3.8) and the current submission (USWIND<br />

Version 5.11 / WORLDCATenterprise Version 3.9):<br />

1. The probabilistic hurricane database was regenerated to be consistent<br />

with the Commission’s November 1, <strong>2006</strong> storm set, and to additionally<br />

include the <strong>2006</strong> hurricane season.<br />

3. Provide justification for changes from the prior submission <strong>of</strong> greater than ten<br />

percent in weighted average loss costs for any county, specifically by county.<br />

Weighted average loss costs for certain coverage types, policy types, and<br />

deductibles have changed by more than 10% in a number <strong>of</strong> counties, due to<br />

the regeneration <strong>of</strong> the probabilistic hurricane database and the inclusion <strong>of</strong><br />

demand surge.<br />

4. Provide justification for changes from the prior submission <strong>of</strong> ten percent or less in<br />

the weighted average loss costs for any county, in the aggregate.<br />

Weighted average loss costs for certain coverage types, policy types, and<br />

deductibles in many counties have changed by less than 10%, attributable to<br />

the regeneration <strong>of</strong> the probabilistic hurricane database and the inclusion <strong>of</strong><br />

demand surge.<br />

5. Provide a completed Form A-6, Output Ranges.<br />

See Form A-6.<br />

6. Provide a completed Form A-7, Percentage Change in Output Ranges.<br />

See Form A-7.<br />

7. Provide a completed Form A-8, Percentage Change in Output Ranges by County.<br />

See Form A-8.<br />

111


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

Form A-1: Loss Costs<br />

A. Provide the expected annual loss costs by construction type and coverage for each ZIP Code<br />

in the sample data set named “FormA2Input06.xls.” Loss costs should be rounded to six<br />

decimal places. There are 1,479 ZIP Codes and three construction types; therefore, the<br />

completed file should have 4,437 records in total. The following is a description <strong>of</strong> the<br />

requested file layout. Follow the instructions on Form A-1 below and in the <strong>Submission</strong><br />

Data description. Note that fields 2-9 are the exposure fields from the sample data set.<br />

Fields 10-13 are for the loss costs (net <strong>of</strong> deductibles).<br />

B. If there are ZIP Codes in the sample data set that the model does not recognize as “valid,”<br />

provide a list in the submission document <strong>of</strong> such ZIP Codes and provide either a) the new<br />

ZIP Code to which the original one was mapped, or b) an indication that the insured values<br />

from this ZIP Code were not modeled.<br />

Loss cost data should be provided for all ZIP Codes given in the sample data set. That is, if<br />

no losses were modeled, the record should still be included in the completed file with loss<br />

cost <strong>of</strong> zero, and if a ZIP Code was mapped to a new one, the resulting loss costs should be<br />

reported with the original ZIP Code.<br />

C. Provide the results on CD in both Excel and PDF format using the following file layout. The<br />

file name should include the abbreviated name <strong>of</strong> the modeler, the Standards year, and the<br />

Form name.<br />

No. Field Name Description<br />

Exposure Fields from Sample Data Set<br />

1 Analysis Date Date <strong>of</strong> Analysis – YYYY/MM/DD<br />

2 County Code FIPS County Code<br />

3 ZIP Code 5-digit ZIP Code<br />

4 Construction Type Use the following: 1 = Wood Frame, 2 = Masonry, 3 = Mobile Home<br />

5 Annual Deductible 1% (<strong>of</strong> the Structure Value) policy deductible for each<br />

record (i.e., 0.01*$100,000)<br />

6 Structure Value $100,000 for each record<br />

7 Appurtenant Structures Value $10,000 for each record<br />

8 Contents Value $50,000 for each record<br />

9 Additional Living Expense Value $20,000 for each record<br />

Loss Costs (net <strong>of</strong> deductibles)<br />

10 Structure Loss Cost Projected expected annual loss cost for structure divided by the structure<br />

value modeled for each record ($100,000)<br />

11 Appurtenant Structures Loss Cost Projected expected annual loss cost for appurtenant structures divided by the<br />

appurtenant structures value modeled for each record ($10,000)<br />

12 Contents Loss Cost Projected expected annual loss cost for contents divided by the contents value<br />

modeled for each record ($50,000)<br />

13 Additional Living Expense Loss Cost Projected expected annual loss cost for additional living expense divided by<br />

the additional living expense value modeled for each record ($20,000)<br />

112


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

All deductibles are a percentage <strong>of</strong> the Structure Value and are policy-level deductibles;<br />

however, for reporting purposes, the policy deductible should be pro-rated to the individual<br />

coverage losses in proportion to the loss. The default all-other perils deductible is $500.<br />

Example<br />

Assume that a model analyzing Wood Frame properties in ZIP Code 33102 (Miami-Dade<br />

County) estimated the following:<br />

Field Name<br />

Value<br />

Analysis Date 1999/11/15<br />

County Code Miami-Dade County = 86<br />

ZIP Code 33102<br />

Construction Type Wood Frame = 1<br />

Annual Deductible 1% = 0.01*$100,000 = $1,000<br />

Structure Value $100,000<br />

Appurtenant Structures Value $10,000<br />

Contents Value $50,000<br />

Additional Living Expense Value $20,000<br />

Structure Loss Cost* $10,000<br />

Appurtenant Structures Loss Cost* $1,000<br />

Contents Loss Cost* $2,500<br />

Additional Living Expense Loss Cost* $500<br />

*Represents first dollar losses (i.e., prior to application <strong>of</strong> deductibles)<br />

The $1,000 hurricane deductible would be applied as follows:<br />

Annual Deductible 1% = 0.01*$100,000=$1,000<br />

Structure Loss Cost<br />

$10,000-[($10,000÷$14,000)x$1,000]=$9,285.71<br />

Appurtenant Structures Loss Cost $1,000-[($1,000÷$14,000)x$1,000]=$928.57<br />

Contents Loss Cost<br />

$2,500-[($2,500÷$14,000)x$1,000]=$2,321.43<br />

Additional Living Expense Loss Cost $500-[($500÷$14,000)x$1,000]=$464.29<br />

The reported Form A-1 data are shown below:<br />

Field Name<br />

Value<br />

Analysis Date 1999/11/15<br />

County Code Miami-Dade County = 86<br />

ZIP Code 33102<br />

Construction Type Wood Frame = 1<br />

Annual Deductible 1% = 0.01<br />

Structure Value $100,000<br />

Appurtenant Structures Value $10,000<br />

Contents Value $50,000<br />

Additional Living Expense Value $20,000<br />

Structure Loss Cost $9,285.71÷$100,000 = 0.092857<br />

Appurtenant Structures Loss Cost $928.57÷$10,000 = 0.092857<br />

Contents Loss Cost $2,321.43÷$50,000 = 0.046429<br />

Additional Living Expense Loss Cost $464.29÷$20,000 = 0.023214<br />

113


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

Based on the above information, the data should be reported in the following format:<br />

1999/11/15,86,33102,1,0.01,100000,10000,50000,20000,0.092857,0.092857,0.046429,0.023214<br />

This information is provided in the files <strong>2006</strong>FormA1_EQECAT.xls and<br />

<strong>2006</strong>FormA1_EQECAT.pdf.<br />

114


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

Form A-2: Zero Deductible Loss Costs by ZIP Code<br />

Provide a map color-coded by ZIP Code (with a minimum <strong>of</strong> 6 value ranges) displaying zero<br />

deductible loss costs for frame, masonry, and mobile home.<br />

Thematic maps displaying zero deductible loss costs by 5-digit ZIP Code for<br />

frame, masonry, and mobile home are provided in Figures 18 to 20.<br />

Figure 18. Ground-up Loss Costs for Frame Structures<br />

115


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

(FORM A-2 CONTINUED)<br />

Figure 19. Ground-up Loss Costs for Masonry Structures<br />

116


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

(FORM A-2 CONTINUED)<br />

Figure 20. Ground-up Loss Costs for Mobile Home Structures<br />

117


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

Form A-3: Base Hurricane Storm Set Average Annual Zero Deductible<br />

<strong>State</strong>wide Loss Costs<br />

A. Provide the monetary contribution to the average annual personal residential zero<br />

deductible statewide loss costs from each specific hurricane in the Base Hurricane Storm Set<br />

for the 2002 <strong>Florida</strong> Hurricane Catastrophe Fund’s aggregate exposure data found in the<br />

file named “hlpm2002.exe”. Additional storms that are included in the model’s Base<br />

Hurricane Storm Set should be included.<br />

B. Provide this Form on CD in both an Excel and a PDF format. The file name should include<br />

e abbreviated name <strong>of</strong> the modeler, the Standards year, and the Form name. A hard copy <strong>of</strong><br />

Form A-3 should be included in the submission.<br />

Date Year Name Contribution<br />

8/2/1901 1901 NoName 4 723<br />

9/9/1903 1903 NoName 3 19,783<br />

6/14/1906 1906 NoName 2 13,799<br />

9/19/1906 1906 NoName 6 8,403<br />

10/8/1906 1906 NoName 8 11,846<br />

9/13/1909 1909 NoName 8 3,064<br />

10/9/1910 1910 NoName 5 27,677<br />

8/9/1911 1911 NoName 1 3,537<br />

8/23/1911 1911 NoName 2 -<br />

9/11/1912 1912 NoName 3 310<br />

8/31/1915 1915 NoName 4 904<br />

6/29/1916 1916 NoName 1 2,099<br />

10/12/1916 1916 NoName 13 4,054<br />

11/11/1916 1916 NoName 14 393<br />

9/21/1917 1917 NoName 3 8,115<br />

9/2/1919 1919 NoName 2 32,302<br />

10/20/1921 1921 NoName 6 60,748<br />

9/13/1924 1924 NoName 4 787<br />

10/14/1924 1924 NoName 7 3,184<br />

11/29/1925 1925 NoName 2 3,908<br />

7/22/1926 1926 NoName 1 22,107<br />

9/11/1926 1926 NoName 6 259,706<br />

10/14/1926 1926 NoName 10 9,926<br />

8/3/1928 1928 NoName 1 12,183<br />

9/6/1928 1928 NoName 4 203,601<br />

9/22/1929 1929 NoName 2 40,968<br />

8/26/1932 1932 NoName 3 3,597<br />

7/25/1933 1933 NoName 5 2,917<br />

8/31/1933 1933 NoName 12 57,841<br />

8/29/1935 1935 NoName 2 58,372<br />

10/30/1935 1935 NoName 6 13,007<br />

7/27/1936 1936 NoName 5 9,101<br />

8/7/1939 1939 NoName 2 5,236<br />

8/5/1940 1940 NoName 3 -<br />

10/3/1941 1941 NoName 5 77,025<br />

10/12/1944 1944 NoName 11 68,931<br />

6/20/1945 1945 NoName 1 6,639<br />

9/12/1945 1945 NoName 9 41,455<br />

10/5/1946 1946 NoName 5 5,941<br />

9/4/1947 1947 NoName 4 171,262<br />

10/9/1947 1947 NoName 8 7,390<br />

118<br />

Date Year Name Contribution<br />

9/18/1948 1948 NoName 7 10,647<br />

10/3/1948 1948 NoName 8 3,193<br />

8/23/1949 1949 NoName 2 50,584<br />

8/20/1950 1950 Baker 1,201<br />

9/1/1950 1950 Easy 48,583<br />

10/13/1950 1950 King 36,259<br />

9/23/1953 1953 Florence 1,857<br />

9/21/1956 1956 Flossy 3,156<br />

8/29/1960 1960 Donna 74,719<br />

9/14/1960 1960 Ethel 12<br />

8/20/1964 1964 Cleo 22,264<br />

8/28/1964 1964 Dora 14,921<br />

10/8/1964 1964 Isbell 16,230<br />

8/27/1965 1965 Betsy 32,200<br />

6/4/1966 1966 Alma 4,923<br />

9/21/1966 1966 Inez 2,557<br />

10/13/1968 1968 Gladys 8,540<br />

8/14/1969 1969 Camille 242<br />

6/14/1972 1972 Agnes 464<br />

9/13/1975 1975 Eloise 5,469<br />

8/25/1979 1979 David 23,730<br />

8/29/1979 1979 Frederic 4,279<br />

8/28/1985 1985 Elena 15,354<br />

11/15/1985 1985 Kate 1,880<br />

10/9/1987 1987 Floyd 227<br />

8/16/1992 1992 Andrew 140,436<br />

7/31/1995 1995 Erin 7,045<br />

9/27/1995 1995 Opal 10,010<br />

7/16/1997 1997 Danny 1,028<br />

8/31/1998 1998 Earl 1,091<br />

9/15/1998 1998 Georges 3,126<br />

10/12/1999 1999 Irene 14,707<br />

8/9/2004 2004 Charley 65,929<br />

8/25/2004 2004 Frances 58,288<br />

9/2/2004 2004 Ivan 28,135<br />

9/13/2004 2004 Jeanne 52,402<br />

7/5/2005 2005 Dennis 9,163<br />

8/23/2005 2005 Katrina 9,816<br />

9/18/2005 2005 Rita 830<br />

10/15/2005 2005 Wilma 68,428


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

Form A-4: Hurricane Andrew Percent <strong>of</strong> Losses<br />

A. Provide the percentage <strong>of</strong> personal residential zero deductible losses, rounded to four<br />

decimal places, from Hurricane Andrew for each affected ZIP Code. Include all ZIP Codes<br />

where losses are equal to or greater than $500,000.<br />

See the table below.<br />

B. Provide a map color-coded by ZIP Code depicting the percentage <strong>of</strong> total losses from<br />

Hurricane Andrew below latitude 27 o N using the following interval coding:<br />

Red Over 5%<br />

Light Red 2% to 5%<br />

Pink 1% to 2%<br />

Light Pink 0.5% to 1%<br />

Light Blue 0.2% to 0.5%<br />

Medium Blue 0.1% to 0.2%<br />

Blue Below 0.1%<br />

See the figure below.<br />

C. Provide this Form on CD in both an Excel and a PDF format. The file name should include<br />

the abbreviated name <strong>of</strong> the modeler, the Standards year, and the Form name. A hard copy<br />

<strong>of</strong> Form A-4 should be included in the submission.<br />

Rather than using directly a published wind field for Hurricane Andrew, the winds underlying<br />

the loss cost calculations must be produced by the model being evaluated and should be the one<br />

most emulated by the model. Use the 2002 <strong>Florida</strong> Hurricane Catastrophe Fund’s aggregate<br />

exposure data found in the file named “hlpm2002.exe”.<br />

119


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

(FORM A-4 CONTINUED)<br />

Zip Code<br />

Hurricane Andrew Losses by ZIP Code<br />

Zero Deductible Loss<br />

Monetary Contribution<br />

($1000s)<br />

120<br />

Percent <strong>of</strong> Zero<br />

Deductible Losses (%)<br />

33004 5,955 0.04%<br />

33009 19,837 0.13%<br />

33010 34,421 0.23%<br />

33012 44,264 0.29%<br />

33013 34,653 0.23%<br />

33014 27,610 0.18%<br />

33015 26,788 0.18%<br />

33016 25,833 0.17%<br />

33018 24,308 0.16%<br />

33019 20,027 0.13%<br />

33020 15,221 0.10%<br />

33021 28,845 0.19%<br />

33023 28,473 0.19%<br />

33024 25,386 0.17%<br />

33025 19,363 0.13%<br />

33026 17,989 0.12%<br />

33027 31,612 0.21%<br />

33028 17,214 0.11%<br />

33029 32,341 0.22%<br />

33030 71,225 0.47%<br />

33031 66,669 0.44%<br />

33032 124,140 0.83%<br />

33033 89,402 0.59%<br />

33034 25,399 0.17%<br />

33035 13,638 0.09%<br />

33036 572 0.00%<br />

33037 8,106 0.05%<br />

33039 1,772 0.01%<br />

33054 11,073 0.07%<br />

33055 22,005 0.15%<br />

33056 15,361 0.10%<br />

33060 5,215 0.03%<br />

33062 8,285 0.06%<br />

33063 7,181 0.05%<br />

33064 8,996 0.06%<br />

33065 5,945 0.04%<br />

33066 2,114 0.01%<br />

33067 7,463 0.05%<br />

33068 5,745 0.04%<br />

33069 1,880 0.01%<br />

33070 1,442 0.01%<br />

33071 9,249 0.06%


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

Zip Code<br />

Hurricane Andrew Losses by ZIP Code<br />

Zero Deductible Loss<br />

Monetary Contribution<br />

($1000s)<br />

121<br />

Percent <strong>of</strong> Zero<br />

Deductible Losses (%)<br />

33073 3,885 0.03%<br />

33076 6,823 0.05%<br />

33101 1,373 0.01%<br />

33109 27,245 0.18%<br />

33114 2,308 0.02%<br />

33116 719 0.00%<br />

33125 89,703 0.60%<br />

33126 61,434 0.41%<br />

33127 26,902 0.18%<br />

33128 3,791 0.03%<br />

33129 101,358 0.67%<br />

33130 17,588 0.12%<br />

33131 17,369 0.12%<br />

33132 4,877 0.03%<br />

33133 540,997 3.60%<br />

33134 356,220 2.37%<br />

33135 73,870 0.49%<br />

33136 8,035 0.05%<br />

33137 39,857 0.27%<br />

33138 66,060 0.44%<br />

33139 120,346 0.80%<br />

33140 132,389 0.88%<br />

33141 46,257 0.31%<br />

33142 47,076 0.31%<br />

33143 761,852 5.07%<br />

33144 99,405 0.66%<br />

33145 192,175 1.28%<br />

33146 337,006 2.24%<br />

33147 33,798 0.22%<br />

33148 541 0.00%<br />

33149 335,875 2.24%<br />

33150 20,808 0.14%<br />

33152 594 0.00%<br />

33154 38,674 0.26%<br />

33155 358,307 2.38%<br />

33156 1,507,696 10.03%<br />

33157 1,309,238 8.71%<br />

33158 374,677 2.49%<br />

33160 29,741 0.20%<br />

33161 40,680 0.27%<br />

33162 23,252 0.15%<br />

33165 384,280 2.56%<br />

33166 38,289 0.25%


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

Zip Code<br />

Hurricane Andrew Losses by ZIP Code<br />

Zero Deductible Loss<br />

Monetary Contribution<br />

($1000s)<br />

122<br />

Percent <strong>of</strong> Zero<br />

Deductible Losses (%)<br />

33167 12,968 0.09%<br />

33168 20,499 0.14%<br />

33169 16,624 0.11%<br />

33170 78,421 0.52%<br />

33172 30,440 0.20%<br />

33173 394,209 2.62%<br />

33174 86,297 0.57%<br />

33175 363,327 2.42%<br />

33176 1,203,642 8.01%<br />

33177 496,958 3.31%<br />

33178 58,410 0.39%<br />

33179 22,654 0.15%<br />

33180 26,342 0.18%<br />

33181 22,820 0.15%<br />

33182 51,502 0.34%<br />

33183 287,461 1.91%<br />

33184 85,840 0.57%<br />

33185 144,511 0.96%<br />

33186 863,199 5.74%<br />

33187 237,751 1.58%<br />

33189 256,642 1.71%<br />

33190 43,239 0.29%<br />

33193 286,142 1.90%<br />

33196 563,623 3.75%<br />

33301 10,563 0.07%<br />

33304 6,203 0.04%<br />

33305 6,015 0.04%<br />

33306 2,137 0.01%<br />

33308 15,633 0.10%<br />

33309 6,062 0.04%<br />

33311 7,266 0.05%<br />

33312 17,358 0.12%<br />

33313 5,464 0.04%<br />

33314 5,325 0.04%<br />

33315 4,579 0.03%<br />

33316 10,395 0.07%<br />

33317 14,185 0.09%<br />

33319 7,535 0.05%<br />

33321 7,242 0.05%<br />

33322 10,047 0.07%<br />

33323 5,900 0.04%<br />

33324 13,042 0.09%<br />

33325 10,767 0.07%


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

Zip Code<br />

Hurricane Andrew Losses by ZIP Code<br />

Zero Deductible Loss<br />

Monetary Contribution<br />

($1000s)<br />

123<br />

Percent <strong>of</strong> Zero<br />

Deductible Losses (%)<br />

33326 12,257 0.08%<br />

33327 14,373 0.10%<br />

33328 14,149 0.09%<br />

33330 10,960 0.07%<br />

33331 17,168 0.11%<br />

33332 6,225 0.04%<br />

33334 6,232 0.04%<br />

33351 4,699 0.03%<br />

33401 682 0.00%<br />

33404 781 0.01%<br />

33405 1,387 0.01%<br />

33406 1,056 0.01%<br />

33407 636 0.00%<br />

33408 1,564 0.01%<br />

33409 575 0.00%<br />

33410 1,554 0.01%<br />

33411 2,272 0.02%<br />

33412 700 0.00%<br />

33414 3,102 0.02%<br />

33415 1,000 0.01%<br />

33417 592 0.00%<br />

33418 2,262 0.02%<br />

33426 1,687 0.01%<br />

33428 6,302 0.04%<br />

33431 4,678 0.03%<br />

33432 6,890 0.05%<br />

33433 9,093 0.06%<br />

33434 4,848 0.03%<br />

33435 2,461 0.02%<br />

33436 4,214 0.03%<br />

33437 6,375 0.04%<br />

33441 3,752 0.02%<br />

33442 3,755 0.02%<br />

33444 2,054 0.01%<br />

33445 4,285 0.03%<br />

33446 4,195 0.03%<br />

33455 1,315 0.01%<br />

33458 1,871 0.01%<br />

33460 1,533 0.01%<br />

33461 1,080 0.01%<br />

33462 3,224 0.02%<br />

33463 2,225 0.01%<br />

33467 3,940 0.03%


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

Zip Code<br />

Hurricane Andrew Losses by ZIP Code<br />

Zero Deductible Loss<br />

Monetary Contribution<br />

($1000s)<br />

124<br />

Percent <strong>of</strong> Zero<br />

Deductible Losses (%)<br />

33469 1,209 0.01%<br />

33470 931 0.01%<br />

33477 1,289 0.01%<br />

33480 7,583 0.05%<br />

33483 3,508 0.02%<br />

33484 3,223 0.02%<br />

33486 5,141 0.03%<br />

33487 4,957 0.03%<br />

33496 8,869 0.06%<br />

33498 3,891 0.03%<br />

33901 826 0.01%<br />

33903 1,148 0.01%<br />

33904 3,218 0.02%<br />

33905 859 0.01%<br />

33907 843 0.01%<br />

33908 3,798 0.03%<br />

33909 638 0.00%<br />

33912 4,015 0.03%<br />

33913 605 0.00%<br />

33914 3,050 0.02%<br />

33917 1,229 0.01%<br />

33919 2,554 0.02%<br />

33921 1,083 0.01%<br />

33924 663 0.00%<br />

33928 2,157 0.01%<br />

33931 1,842 0.01%<br />

33936 1,368 0.01%<br />

33950 1,081 0.01%<br />

33952 825 0.01%<br />

33957 3,689 0.02%<br />

33971 584 0.00%<br />

33972 566 0.00%<br />

33990 1,680 0.01%<br />

33991 740 0.00%<br />

34102 19,545 0.13%<br />

34103 7,794 0.05%<br />

34104 8,552 0.06%<br />

34105 8,663 0.06%<br />

34108 13,106 0.09%<br />

34109 8,959 0.06%<br />

34110 6,437 0.04%<br />

34112 12,591 0.08%<br />

34113 10,316 0.07%


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

Zip Code<br />

Hurricane Andrew Losses by ZIP Code<br />

Zero Deductible Loss<br />

Monetary Contribution<br />

($1000s)<br />

Percent <strong>of</strong> Zero<br />

Deductible Losses (%)<br />

34114 10,070 0.07%<br />

34116 5,862 0.04%<br />

34117 3,115 0.02%<br />

34119 9,185 0.06%<br />

34120 4,057 0.03%<br />

34134 7,704 0.05%<br />

34135 5,912 0.04%<br />

34138 1,277 0.01%<br />

34139 2,238 0.01%<br />

34140 1,106 0.01%<br />

34145 91,024 0.61%<br />

34223 782 0.01%<br />

34224 597 0.00%<br />

34231 704 0.00%<br />

34238 538 0.00%<br />

34275 539 0.00%<br />

34287 622 0.00%<br />

34292 602 0.00%<br />

34293 1,025 0.01%<br />

34952 542 0.00%<br />

34957 504 0.00%<br />

34990 706 0.00%<br />

34996 512 0.00%<br />

34997 972 0.01%<br />

125


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

(FORM A-4 CONTINUED)<br />

Hurricane Andrew % <strong>of</strong> Loss for FHCF2002 Portfolio by Zip Code<br />

126


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

Form A-5: Distribution <strong>of</strong> Hurricanes by Size <strong>of</strong> Loss<br />

A. Provide a detailed explanation <strong>of</strong> how the Expected Annual Hurricane Losses and Return<br />

Times are calculated.<br />

Due to the large number <strong>of</strong> stochastic storm simulations, the standard output from<br />

USWIND does not include event specific results. USWIND can produce event<br />

specific results using a ‘Reduced Set’ <strong>of</strong> approximately 50,000 stochastic events,<br />

and it is the results from this set that are presented.<br />

The table is based on the EQECAT ‘Reduced Set’ <strong>of</strong> approximately 50,000<br />

stochastic events, <strong>of</strong> which 29,804 affect the 2002 FHCF exposure data provided<br />

by the Commission. Each <strong>of</strong> the 29,804 hurricanes has an annual frequency<br />

defined in the model, and a modeled result for Personal Residential Zero<br />

Deductible statewide loss using the FHCF exposure data. When the 29,804<br />

hurricanes are sorted in descending order <strong>of</strong> loss, the exceedance frequency for<br />

each loss is given by the sum <strong>of</strong> all hurricane frequencies with losses at or above<br />

that level.<br />

Each row <strong>of</strong> the table represents a range <strong>of</strong> losses. We calculated the average loss<br />

for each range as the sum <strong>of</strong> all losses (from the 29,804 hurricanes) falling within<br />

the range divided by the number <strong>of</strong> such losses (the number <strong>of</strong> losses is provided<br />

in the ‘No. <strong>of</strong> storms’ column).<br />

We calculated the expected annual hurricane loss for each range by summing the<br />

product <strong>of</strong> loss and annual frequency over all hurricanes with losses falling within<br />

the range.<br />

We calculated the return time in years for each range by first interpolating the<br />

exceedance frequency to the value corresponding to the average loss for the range<br />

(this was done linearly between the adjacent hurricane losses, from among the<br />

29,804 hurricanes). Taking this exceedance frequency to be λ, we calculated the<br />

return time in years as 1/ (1 – exp(-λ)).<br />

B. Complete Form A-5 showing the Distribution <strong>of</strong> Hurricanes by Size <strong>of</strong> Loss. For the<br />

Expected Annual Hurricane Losses column, provide personal residential, zero deductible<br />

statewide loss costs based on the 2002 <strong>Florida</strong> Hurricane Catastrophe Fund’s aggregate<br />

exposure data found in the file named “hlpm2002.exe.”<br />

See the completed form below.<br />

127


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

C. In the column, Return Time (Years), provide the return time associated with the average loss<br />

within the ranges indicated on a cumulative basis.<br />

For example, if the average loss is $4,705 million for the range $4,501 million to $5,000<br />

million, provide the return time associated with a loss that is $4,705 million or greater.<br />

For each loss range in millions ($1,001-$1,500, $1,501-$2,000, $2,001-$2,500) the average<br />

loss within that range should be identified and then the return time associated with that loss<br />

calculated. The return time is then the reciprocal <strong>of</strong> the probability <strong>of</strong> the loss equaling or<br />

exceeding this average loss size.<br />

The probability <strong>of</strong> equaling or exceeding the average <strong>of</strong> each range should be smaller as the<br />

ranges increase (and the average losses within the ranges increase). Therefore, the return<br />

time associated with each range and average loss within that range should be larger as the<br />

ranges increase. Return times should be based on cumulative probabilities.<br />

A return time for an average loss <strong>of</strong> $4,705 million within the $4,501-$5,000 million range<br />

should be lower than the return time for an average loss <strong>of</strong> $5,455 million associated with a<br />

$5,001- $6,000 million range.<br />

D. Provide a graphical comparison <strong>of</strong> the current submission Return Times to the prior year’s<br />

submission Return Times. Return Time (Years) should be shown on the y-axis on a log 10<br />

sacle with Losses in Billions shown on the x-axis. The legend should indicate the<br />

corresponding submission with a solid line representing the current year and a dotted line<br />

representing the prior year.<br />

See the figure below.<br />

E. Provide this Form on CD in both an Excel and a PDF format. The file name should include<br />

the abbreviated name <strong>of</strong> the modeler, the Standards year, and the Form name. A hard copy<br />

<strong>of</strong> Form A-5 should be included in the submission.<br />

128


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

Form A-5: Distribution <strong>of</strong> Hurricanes by Size <strong>of</strong> Loss<br />

LOSS RANGE<br />

(MILLIONS)<br />

TOTAL<br />

LOSS<br />

AVERAGE<br />

LOSS<br />

(MILLIONS)<br />

NUMBER OF<br />

HURRICANES<br />

EXPECTED<br />

ANNUAL<br />

HURRICANE<br />

LOSSES*<br />

RETURN<br />

TIME<br />

(YEARS)<br />

$ - to $ 500 $ 1,305,166 $ 129 10,095 $ 52.3 2<br />

$ 501 to $ 1,000 $ 2,075,212 $ 729 2,847 $ 76.9 3<br />

$ 1,001 to $ 1,500 $ 2,185,111 $ 1,235 1,769 $ 78.9 3<br />

$ 1,501 to $ 2,000 $ 2,175,661 $ 1,741 1,250 $ 79.2 4<br />

$ 2,001 to $ 2,500 $ 2,122,878 $ 2,242 947 $ 77.6 4<br />

$ 2,501 to $ 3,000 $ 2,141,499 $ 2,742 781 $ 70.4 5<br />

$ 3,001 to $ 3,500 $ 2,083,786 $ 3,241 643 $ 72.7 6<br />

$ 3,501 to $ 4,000 $ 2,213,475 $ 3,745 591 $ 78.6 6<br />

$ 4,001 to $ 4,500 $ 2,250,276 $ 4,246 530 $ 68.1 7<br />

$ 4,501 to $ 5,000 $ 2,188,623 $ 4,737 462 $ 63.2 7<br />

$ 5,001 to $ 6,000 $ 4,018,585 $ 5,482 733 $ 112.2 8<br />

$ 6,001 to $ 7,000 $ 3,986,777 $ 6,504 613 $ 107.0 10<br />

$ 7,001 to $ 8,000 $ 4,175,219 $ 7,482 558 $ 104.6 11<br />

$ 8,001 to $ 9,000 $ 3,682,583 $ 8,466 435 $ 98.7 13<br />

$ 9,001 to $ 10,000 $ 3,591,076 $ 9,500 378 $ 72.2 14<br />

$ 10,001 to $ 11,000 $ 3,660,349 $ 10,488 349 $ 76.8 16<br />

$ 11,001 to $ 12,000 $ 3,154,015 $ 11,469 275 $ 73.2 18<br />

$ 12,001 to $ 13,000 $ 3,664,286 $ 12,506 293 $ 75.2 20<br />

$ 13,001 to $ 14,000 $ 3,210,060 $ 13,488 238 $ 62.9 22<br />

$ 14,001 to $ 15,000 $ 3,155,983 $ 14,477 218 $ 59.3 24<br />

$ 15,001 to $ 16,000 $ 3,499,812 $ 15,486 226 $ 61.4 27<br />

$ 16,001 to $ 17,000 $ 2,934,177 $ 16,484 178 $ 52.6 30<br />

$ 17,001 to $ 18,000 $ 2,989,551 $ 17,483 171 $ 46.2 32<br />

$ 18,001 to $ 19,000 $ 2,740,575 $ 18,517 148 $ 46.0 35<br />

$ 19,001 to $ 20,000 $ 2,669,928 $ 19,489 137 $ 43.5 38<br />

$ 20,001 to $ 21,000 $ 2,598,515 $ 20,461 127 $ 33.0 41<br />

$ 21,001 to $ 22,000 $ 2,709,103 $ 21,501 126 $ 33.8 43<br />

$ 22,001 to $ 23,000 $ 2,651,566 $ 22,471 118 $ 28.7 46<br />

$ 23,001 to $ 24,000 $ 2,513,469 $ 23,490 107 $ 34.9 49<br />

$ 24,001 to $ 25,000 $ 2,371,765 $ 24,451 97 $ 38.0 53<br />

$ 25,001 to $ 26,000 $ 2,654,713 $ 25,526 104 $ 36.2 58<br />

$ 26,001 to $ 27,000 $ 2,570,007 $ 26,495 97 $ 30.3 63<br />

$ 27,001 to $ 28,000 $ 2,633,347 $ 27,431 96 $ 21.3 66<br />

$ 28,001 to $ 29,000 $ 2,591,733 $ 28,481 91 $ 31.6 71<br />

$ 29,001 to $ 30,000 $ 2,062,566 $ 29,465 70 $ 26.1 75<br />

$ 30,001 to $ 35,000 $ 10,825,066 $ 32,410 334 $ 113.4 92<br />

$ 35,001 to $ 40,000 $ 8,723,458 $ 37,280 234 $ 104.3 128<br />

$ 40,001 to $ 45,000 $ 6,928,395 $ 42,505 163 $ 71.5 181<br />

$ 45,001 to $ 50,000 $ 7,148,847 $ 47,343 151 $ 59.6 241<br />

$ 50,001 to $ 55,000 $ 5,286,962 $ 52,346 101 $ 53.2 339<br />

$ 55,001 to $ 60,000 $ 3,572,957 $ 57,628 62 $ 26.2 439<br />

$ 60,001 to $ 65,000 $ 3,434,256 $ 62,441 55 $ 28.8 561<br />

$ 65,001 to $ 70,000 $ 3,779,468 $ 67,490 56 $ 26.1 713<br />

$ 70,001 to $ 75,000 $ 2,980,639 $ 72,699 41 $ 20.8 931<br />

$ 75,001 to $ 80,000 $ 2,317,866 $ 77,262 30 $ 22.2 1,236<br />

$ 80,001 to $ 90,000 $ 3,737,164 $ 84,936 44 $ 21.0 1,984<br />

$ 90,001 to $ 100,000 $ 2,439,652 $ 93,833 26 $ 10.7 2,956<br />

$ 100,001 to $ Maximum $ 14,542,810 $ 149,926 97 $ 40.2 11,551<br />

TOTAL: 27,292 $ 2,721.4<br />

*Personal residential zero deductible statewide loss using 2002 FHCF exposure data – file name: hlpm2002.exe.<br />

129


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

(Form A-5 Continued)<br />

100,000<br />

10,000<br />

Current submission<br />

Previous submission<br />

Return TIme (Years)<br />

1,000<br />

100<br />

10<br />

1<br />

$- $20 $40 $60 $80 $100 $120 $140 $160<br />

2002 FHCF Loss ($Billion)<br />

Current <strong>Submission</strong> Return Times vs. Prior Year’s <strong>Submission</strong> Return Times<br />

130


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

Form A-6: Output Ranges<br />

A. Provide output ranges in the format shown in the file named “<strong>2006</strong>FormA6.xls” by using an<br />

automated program or script. A hard copy <strong>of</strong> the output range spreadsheets should be<br />

included in the submission. Provide the output ranges on CD in both Excel and PDF format<br />

as specified. The file name should include the abbreviated name <strong>of</strong> the modeler, the<br />

Standards year, and the Form name.<br />

B. Provide loss costs by county. Within each county, loss costs should be shown separately per<br />

$1,000 <strong>of</strong> exposure for personal residential, tenants, condo unit owners, and mobile home;<br />

for each major deductible option; and by construction type. For each <strong>of</strong> these categories<br />

using ZIP Code centroids, the output range should show the highest loss cost, the lowest loss<br />

cost, and the weighted average loss cost based on the 2002 <strong>Florida</strong> Hurricane Catastrophe<br />

Fund aggregate exposure data provided to each modeler in the file named “hlpm2002.exe”.<br />

A file named “02FHCFWts.xls” has also been provided for use in determining the weighted<br />

average loss costs. Include the statewide range <strong>of</strong> loss costs (i.e., low, high, and weighted<br />

average). For each <strong>of</strong> the loss costs provided, identify what that loss cost represents by line<br />

<strong>of</strong> business, deductible option, construction type, and coverages included, i.e., structure,<br />

contents, appurtenant structures, or additional living expenses as specified.<br />

C. If a modeler has loss costs for a ZIP Code for which there is no exposure, then the modeler<br />

should give the loss costs zero weight (i.e., assume the exposure in that ZIP Code is zero).<br />

Provide a list in the submission document <strong>of</strong> those ZIP Codes where this occurs.<br />

D. If the modeler does not have loss costs for a ZIP Code for which there is some exposure, the<br />

modeler should not assume such loss costs are zero, but should use only the exposures for<br />

which it has loss costs in calculating the weighted average loss costs. Provide a list in the<br />

submission document <strong>of</strong> the ZIP Codes where this occurs.<br />

E. All anomalies in loss costs that are not consistent with the requirements <strong>of</strong> Standard A-10<br />

and have been explained in Disclosure A-10.1 should be shaded.<br />

Output ranges should be computed assuming an average structure.<br />

<strong>Model</strong>ers should indicate if per diem is used in producing loss costs for Coverage D (ALE) in the<br />

output ranges. If a per diem rate is used in the submission, a rate <strong>of</strong> $150.00 per day per policy<br />

should be used.<br />

The following ZIP Codes have loss costs in USWIND but are not in the 2002<br />

FHCF exposure:<br />

3304400041, 00042, 00043, 00045, 00053, 00087, 00097, 00098, 3<strong>2006</strong>, 32026,<br />

32723, 32745, 32896, 33336, 33542, 33563, 33575, 34637, 34638, 34692,<br />

34714, and 34715.<br />

131


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

The following ZIP Codes are in the 2002 FHCF exposure but do not have loss<br />

costs in USWIND:<br />

32151, 32230, 32335, 32573, 32574, 32575, 32576, 32581, 32582, 32589,<br />

32590, 32592, 32593, 32594, 32595, 32596, 32597, 32598, 32613, 33044,<br />

33188, 33192, and 33651<br />

The Form A-6 results appear in the files <strong>2006</strong>FormA6_EQECAT.xls and<br />

<strong>2006</strong>FormA6_EQECAT.pdf.<br />

132


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

Output Range Specifications<br />

“Owners” Policy Type<br />

Coverage A: Structure<br />

• Amount <strong>of</strong> Insurance = $100,000<br />

• Replacement Cost Included Subject to Coverage “A” Limit<br />

• Ordinance or Law Not Included<br />

Coverage B: Appurtenant Structures<br />

• Amount <strong>of</strong> Insurance = 10% <strong>of</strong> Coverage “A” Amount<br />

• Replacement Cost Included Subject to Coverage “B” Limit<br />

• Ordinance or Law Not Included<br />

Coverage C: Contents<br />

• Amount <strong>of</strong> Insurance = 50% <strong>of</strong> Coverage “A” Amount<br />

• Replacement Cost Included Subject to Coverage “C” Limit<br />

Coverage D: Additional Living Expense<br />

• Amount <strong>of</strong> Insurance = 20% <strong>of</strong> Coverage “A” Amount<br />

• Time Limit = 12 Months<br />

• Per Diem = $150.00/day per policy, if used<br />

‣ Loss Costs per $1,000 should be related to the Coverage “A” Amount.<br />

‣ For weighting the Coverage “D” Loss Costs, use the file named “02FHCFWts.xls”<br />

for distribution for Coverage “D.”<br />

‣ Loss Costs for the various deductibles should be determined based on annual<br />

deductibles.<br />

‣ All-other perils deductible should be $500.<br />

‣ Explain any deviations and differences from the prescribed format above.<br />

‣ Specify the model name and version number reflecting the release date as a footnote<br />

on each page <strong>of</strong> the output.<br />

133


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

Output Range Specifications<br />

“Tenants” Policy Type<br />

Coverage C: Contents<br />

• Amount <strong>of</strong> Insurance = $25,000<br />

• Replacement Cost Included Subject to Coverage “C” Limit<br />

Coverage D: Additional Living Expense<br />

• Amount <strong>of</strong> Insurance = 40% <strong>of</strong> Coverage “C” Amount<br />

• Time Limit = 12 Months<br />

• Per Diem = $150.00/day per policy, if used<br />

‣ Loss Costs per $1,000 should be related to the Coverage “C” Amount.<br />

‣ For weighting the Coverage “D” Loss Costs, use the file named “02FHCFWts.xls”<br />

for distribution for Coverage “D.”<br />

‣ Loss Costs for the various deductibles should be determined based on annual<br />

deductibles.<br />

‣ All-other perils deductible should be $500.<br />

‣ For weighting the Coverage “C” Loss Costs, use the file named “02FHCFWts.xls”<br />

for distribution for Coverage “C.”<br />

‣ Explain any deviations and differences from the prescribed format above.<br />

‣ Specify the model name and version number reflecting the release date as a footnote<br />

on each page <strong>of</strong> the output.<br />

134


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

Output Range Specifications<br />

“Condo Unit Owners” Policy Type<br />

Coverage A: Structure<br />

• Amount <strong>of</strong> Insurance = 10% <strong>of</strong> Coverage “C” Amount<br />

• Replacement Cost Included Subject to Coverage “A” Limit<br />

Coverage C: Contents<br />

• Amount <strong>of</strong> Insurance = $50,000<br />

• Replacement Cost Included Subject to Coverage “C” Limit<br />

Coverage D: Additional Living Expense<br />

• Amount <strong>of</strong> Insurance = 40% <strong>of</strong> Coverage “C” Amount<br />

• Time Limit = 12 Months<br />

• Per Diem = $150.00/day per policy, if used<br />

‣ Loss Costs per $1,000 should be related to the Coverage “C” Amount.<br />

‣ For weighting the Coverage “D” Loss Costs, use the file named “02FHCFWts.xls”<br />

for distribution for Coverage “D.”<br />

‣ Loss Costs for the various deductibles should be determined based on annual<br />

deductibles.<br />

‣ All-other perils deductible should be $500.<br />

‣ For weighting the Coverage “C” Loss Costs, use the file named “02FHCFWts.xls”<br />

for distribution for Coverage “C.”<br />

‣ Explain any deviations and differences from the prescribed format above.<br />

‣ Specify the model name and version number reflecting the release date as a footnote<br />

on each page <strong>of</strong> the output.<br />

135


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

Output Range Specifications<br />

“Mobile Home Owners” Policy Type<br />

Coverage A: Structure<br />

• Amount <strong>of</strong> Insurance = $50,000<br />

• Replacement Cost Included Subject to Coverage “A” Limit<br />

Coverage B: Appurtenant Structures<br />

• Amount <strong>of</strong> Insurance = 10% <strong>of</strong> Coverage “A” Amount<br />

• Replacement Cost Included Subject to Coverage “B” Limit<br />

Coverage C: Contents<br />

• Amount <strong>of</strong> Insurance = 50% <strong>of</strong> Coverage “A” Amount<br />

• Replacement Cost Included Subject to Coverage “C” Limit<br />

Coverage D: Additional Living Expense<br />

• Amount <strong>of</strong> Insurance = 20% <strong>of</strong> Coverage “A” Amount<br />

• Time Limit = 12 Months<br />

• Per Diem = $150.00/day per policy, if used<br />

‣ Loss Costs per $1,000 should be related to the Coverage “A” Amount<br />

‣ For weighting the Coverage “D” Loss Costs, use the file named “02FHCFWts.xls”<br />

for distribution for Coverage “D.”<br />

‣ Loss Costs for the various deductibles should be determined based on annual<br />

deductibles.<br />

‣ All-other perils deductible should be $500.<br />

‣ Explain any deviations and differences from the prescribed format above.<br />

‣ Specify the model name and version number reflecting the release date as a footnote<br />

on each page <strong>of</strong> the output.<br />

136


Output Range Loss Costs<br />

Form A-6 (2002 FHCF Exposure) LOSS COSTS PER $1,000<br />

Personal Residential -- Owners -- FRAME<br />

$0 $0 $0 DEDUCTIBLE $0 DEDUCTIBLE $500 $1,000 $2,500 1% 2% 5%<br />

DEDUCTIBLE DEDUCTIBLE APPURTENANT ADDITIONAL DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE<br />

COUNTY LOSS COSTS STRUCTURE CONTENTS STRUCTURE LIVING EXPENSE TOTAL* TOTAL* TOTAL* TOTAL* TOTAL* TOTAL*<br />

ALACHUA LOW 0 514 0.059 0.051 0.064 0.478 0.384 0.220 0 381 0 259 0.102<br />

HIGH 0.711 0.090 0.071 0.075 0.684 0.559 0.348 0 557 0 398 0.178<br />

WGHTD AVE 0 578 0.069 0.058 0.068 0.550 0.447 0.261 0.445 0 310 0.130<br />

BAKER LOW 0 333 0.033 0.033 0.050 0.294 0.224 0.118 0 224 0.143 0 049<br />

HIGH 0.497 0.056 0.050 0.062 0.463 0.367 0.210 0 367 0 251 0 098<br />

WGHTD AVE 0.477 0.053 0.048 0.061 0.444 0.352 0.198 0 350 0 236 0 092<br />

BAY LOW 1 364 0.211 0.136 0.095 1.436 1.230 0.832 1 230 0 940 0.484<br />

HIGH 5 844 1.866 0.584 0.424 8.092 7.704 6.804 7.704 7 069 5.792<br />

WGHTD AVE 4 555 1.294 0.429 0.308 6.004 5.653 4.865 5 653 5 094 4 015<br />

BRADFORD LOW 0 513 0.057 0.051 0.062 0.478 0.374 0.217 0 378 0 256 0.100<br />

HIGH 0 535 0.060 0.053 0.066 0.497 0.394 0.226 0 394 0 268 0.107<br />

WGHTD AVE 0 524 0.059 0.053 0.064 0.490 0.385 0.224 0 389 0 263 0.103<br />

BREVARD LOW 1.472 0.281 0.147 0.111 1.661 1.466 1.082 1.466 1.188 0.730<br />

HIGH 5 631 1.776 0.563 0.423 7.669 7.286 6.458 7 286 6.700 5 534<br />

WGHTD AVE 3 296 0.870 0.327 0.239 4.235 3.946 3.326 3 946 3 504 2 683<br />

BROWARD LOW 4.705 0.943 0.471 0.267 5.620 5.164 4.116 5.164 4.420 3 017<br />

HIGH 12.448 3.973 1.245 1.015 17.656 17.083 15.663 17 083 16 096 13 934<br />

WGHTD AVE 6 962 1.758 0.692 0.466 9.011 8.511 7.333 8 511 7 681 6 015<br />

CALHOUN LOW 1 206 0.173 0.121 0.090 1.238 1.046 0.684 1 046 0.780 0 380<br />

HIGH 1.462 0.232 0.146 0.100 1.552 1.335 0.915 1 335 1 029 0 543<br />

WGHTD AVE 1 243 0.182 0.125 0.091 1.285 1.090 0.718 1 090 0 818 0.404<br />

CHARLOTTE LOW 2 213 0.475 0.221 0.151 2.611 2.350 1.813 2 350 1 964 1 287<br />

HIGH 5 508 1.815 0.551 0.451 7.763 7.436 6.705 7.436 6 919 5 884<br />

WGHTD AVE 4 212 1.206 0.405 0.326 5.618 5.315 4.655 5 315 4 846 3 946<br />

CITRUS LOW 0 922 0.139 0.092 0.083 0.958 0.811 0.541 0 811 0 613 0 311<br />

HIGH 1.465 0.282 0.147 0.117 1.670 1.483 1.120 1.483 1 220 0.782<br />

WGHTD AVE 1.110 0.183 0.110 0.095 1.190 1.027 0.721 1 027 0 804 0.453<br />

CLAY LOW 0.440 0.048 0.044 0.057 0.407 0.320 0.180 0 320 0 215 0 082<br />

HIGH 0 568 0.065 0.057 0.066 0.533 0.425 0.245 0.425 0 291 0.115<br />

WGHTD AVE 0.488 0.055 0.049 0.060 0.458 0.361 0.206 0 361 0 247 0 096<br />

COLL ER LOW 2.709 0.521 0.271 0.165 3.107 2.781 2.091 2.781 2 286 1.421<br />

HIGH 7 841 2.685 0.784 0.604 11.184 10.738 9.689 10.738 10 001 8.470<br />

WGHTD AVE 5 372 1.604 0.533 0.388 7.259 6.880 6.021 6 880 6 272 5 073<br />

COLUMBIA LOW 0 384 0.040 0.038 0.059 0.343 0.263 0.142 0 265 0.173 0 060<br />

HIGH 0.480 0.053 0.048 0.064 0.442 0.347 0.197 0 348 0 234 0 090<br />

WGHTD AVE 0.402 0.042 0.041 0.060 0.366 0.281 0.154 0 280 0.185 0 067<br />

DESOTO LOW 2 031 0.418 0.203 0.142 2.357 2.106 1.598 2.106 1.740 1.110<br />

HIGH 2.101 0.430 0.210 0.145 2.449 2.202 1.695 2 202 1 837 1.199<br />

WGHTD AVE 2 035 0.418 0.203 0.142 2.361 2.111 1.603 2.111 1.744 1.115<br />

DIXIE LOW 0 653 0.081 0.065 0.071 0.631 0.512 0.310 0 512 0 362 0.156<br />

HIGH 1 281 0.234 0.128 0.109 1.400 1.225 0.880 1 228 0 979 0 584<br />

WGHTD AVE 0 865 0.131 0.087 0.082 0.887 0.746 0.497 0.746 0 560 0 291<br />

*Includes contents and A L.E. <strong>Model</strong> USWIND 5.11 / WORLDCATenterprise 3.9 137


Output Range Loss Costs<br />

Form A-6 (2002 FHCF Exposure) LOSS COSTS PER $1,000<br />

Personal Residential -- Owners -- FRAME<br />

$0 $0 $0 DEDUCTIBLE $0 DEDUCTIBLE $500 $1,000 $2,500 1% 2% 5%<br />

DEDUCTIBLE DEDUCTIBLE APPURTENANT ADDITIONAL DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE<br />

COUNTY LOSS COSTS STRUCTURE CONTENTS STRUCTURE LIVING EXPENSE TOTAL* TOTAL* TOTAL* TOTAL* TOTAL* TOTAL*<br />

DUVAL LOW 0.438 0.048 0.044 0.056 0.405 0.316 0.180 0 318 0 215 0 081<br />

HIGH 0 906 0.153 0.091 0.083 0.976 0.841 0.597 0 841 0 662 0 388<br />

WGHTD AVE 0 549 0.070 0.054 0.063 0.533 0.433 0.267 0.433 0 310 0.140<br />

ESCAMBIA LOW 1.198 0.176 0.120 0.084 1.246 1.058 0.700 1 058 0.797 0 392<br />

HIGH 7 667 2.582 0.767 0.578 10.905 10.473 9.450 10.473 9.757 8 246<br />

WGHTD AVE 4 664 1.311 0.447 0.308 6.156 5.802 5.002 5 802 5 236 4.117<br />

FLAGLER LOW 0.744 0.101 0.075 0.073 0.737 0.620 0.387 0 616 0.448 0 207<br />

HIGH 1 386 0.294 0.139 0.111 1.619 1.454 1.108 1.456 1 209 0 803<br />

WGHTD AVE 1 079 0.193 0.104 0.091 1.181 1.014 0.726 1 024 0 802 0.476<br />

FRANKLIN LOW 1 862 0.356 0.186 0.129 2.103 1.859 1.373 1 859 1 507 0 927<br />

HIGH 4 388 1.257 0.439 0.309 5.800 5.448 4.665 5.448 4 891 3 826<br />

WGHTD AVE 3 544 0.929 0.361 0.243 4.528 4.207 3.511 4 207 3.711 2.789<br />

GADSDEN LOW 0 606 0.066 0.061 0.069 0.557 0.439 0.245 0.439 0 293 0.109<br />

HIGH 0.761 0.090 0.076 0.075 0.727 0.587 0.346 0 587 0.408 0.166<br />

WGHTD AVE 0 677 0.076 0.068 0.072 0.632 0.504 0.289 0 504 0 343 0.133<br />

GILCHRIST LOW 0 553 0.064 0.055 0.067 0.513 0.415 0.242 0.413 0 286 0.114<br />

HIGH 0 639 0.079 0.064 0.071 0.614 0.497 0.300 0.497 0 350 0.150<br />

WGHTD AVE 0 611 0.075 0.061 0.070 0.583 0.473 0.283 0.475 0 332 0.139<br />

GLADES LOW 2.146 0.371 0.215 0.142 2.354 2.060 1.461 2 060 1 626 0 897<br />

HIGH 2.461 0.423 0.246 0.154 2.710 2.386 1.715 2 386 1 901 1 092<br />

WGHTD AVE 2.413 0.413 0.242 0.152 2.650 2.329 1.667 2 329 1 851 1 054<br />

GULF LOW 1 670 0.284 0.167 0.109 1.815 1.580 1.112 1 580 1 241 0 687<br />

HIGH 5 291 1.623 0.529 0.379 7.206 6.825 5.959 6 825 6 213 5 001<br />

WGHTD AVE 4.752 1.342 0.420 0.329 6.286 5.930 5.131 5 930 5 364 4 264<br />

HAM LTON LOW 0 337 0.033 0.034 0.055 0.293 0.221 0.115 0 221 0.140 0 047<br />

HIGH 0 371 0.038 0.037 0.056 0.330 0.254 0.137 0 254 0.166 0 059<br />

WGHTD AVE 0 346 0.035 0.035 0.056 0.304 0.230 0.121 0 230 0.148 0 050<br />

HARDEE LOW 1 666 0.282 0.167 0.122 1.826 1.597 1.149 1 597 1 272 0.741<br />

HIGH 1.741 0.305 0.174 0.127 1.911 1.672 1.200 1 672 1 329 0.775<br />

WGHTD AVE 1 681 0.286 0.168 0.124 1.844 1.614 1.161 1 614 1 285 0.749<br />

HENDRY LOW 2 234 0.403 0.223 0.145 2.479 2.183 1.576 2.183 1.744 1 014<br />

HIGH 2 679 0.473 0.268 0.162 2.949 2.600 1.913 2 600 2 097 1 266<br />

WGHTD AVE 2 382 0.421 0.237 0.151 2.634 2.321 1.674 2 321 1 853 1 071<br />

HERNANDO LOW 0 985 0.150 0.099 0.086 1.023 0.866 0.578 0 866 0 655 0 335<br />

HIGH 1 620 0.339 0.162 0.125 1.886 1.687 1.296 1 687 1.404 0 926<br />

WGHTD AVE 1 267 0.229 0.122 0.103 1.393 1.217 0.883 1 217 0 974 0 582<br />

HIGHLANDS LOW 1 541 0.239 0.154 0.115 1.622 1.390 0.939 1 390 1 061 0 551<br />

HIGH 1 964 0.327 0.196 0.137 2.144 1.877 1.338 1 877 1.486 0 852<br />

WGHTD AVE 1.741 0.281 0.175 0.125 1.869 1.619 1.126 1 619 1 260 0 691<br />

HILLSBOROUGH LOW 1 333 0.222 0.133 0.105 1.433 1.238 0.862 1 238 0 964 0 530<br />

HIGH 3.477 0.919 0.348 0.297 4.567 4.307 3.759 4 307 3 915 3.190<br />

WGHTD AVE 2 038 0.450 0.211 0.163 2.464 2.247 1.813 2 247 1 934 1 393<br />

HOLMES LOW 1 061 0.150 0.106 0.082 1.083 0.912 0.590 0 912 0 676 0 324<br />

HIGH 1 301 0.200 0.130 0.090 1.370 1.173 0.792 1.173 0 895 0.457<br />

WGHTD AVE 1 285 0.196 0.128 0.090 1.346 1.151 0.773 1.151 0 875 0.444<br />

*Includes contents and A L.E. <strong>Model</strong> USWIND 5.11 / WORLDCATenterprise 3.9 138


Output Range Loss Costs<br />

Form A-6 (2002 FHCF Exposure) LOSS COSTS PER $1,000<br />

Personal Residential -- Owners -- FRAME<br />

$0 $0 $0 DEDUCTIBLE $0 DEDUCTIBLE $500 $1,000 $2,500 1% 2% 5%<br />

DEDUCTIBLE DEDUCTIBLE APPURTENANT ADDITIONAL DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE<br />

COUNTY LOSS COSTS STRUCTURE CONTENTS STRUCTURE LIVING EXPENSE TOTAL* TOTAL* TOTAL* TOTAL* TOTAL* TOTAL*<br />

INDIAN RIVER LOW 2 525 0.514 0.252 0.158 2.931 2.629 1.996 2 629 2.174 1 374<br />

HIGH 7.141 2.207 0.714 0.561 9.931 9.521 8.565 9 521 8 848 7.472<br />

WGHTD AVE 5 654 1.627 0.565 0.413 7.600 7.214 6.335 7 214 6 592 5 360<br />

JACKSON LOW 0 827 0.103 0.083 0.076 0.804 0.658 0.400 0 658 0.467 0 200<br />

HIGH 1 093 0.154 0.109 0.084 1.112 0.935 0.604 0 935 0 692 0 330<br />

WGHTD AVE 0 969 0.128 0.097 0.081 0.965 0.801 0.503 0 801 0 581 0 263<br />

JEFFERSON LOW 0 515 0.055 0.052 0.064 0.472 0.369 0.204 0 369 0 245 0 090<br />

HIGH 0 579 0.064 0.058 0.067 0.535 0.422 0.237 0.422 0 284 0.106<br />

WGHTD AVE 0 520 0.056 0.052 0.064 0.476 0.373 0.207 0 373 0 248 0 091<br />

LAFAYETTE LOW 0.474 0.052 0.047 0.062 0.436 0.343 0.192 0 339 0 230 0 089<br />

HIGH 0.493 0.054 0.049 0.064 0.457 0.358 0.204 0 356 0 243 0 094<br />

WGHTD AVE 0.485 0.054 0.049 0.064 0.447 0.354 0.204 0 352 0 243 0 094<br />

LAKE LOW 0.768 0.095 0.077 0.076 0.745 0.607 0.367 0 607 0.429 0.183<br />

HIGH 1 203 0.177 0.120 0.100 1.240 1.049 0.691 1 049 0.786 0 391<br />

WGHTD AVE 1 036 0.147 0.104 0.091 1.054 0.884 0.572 0 884 0 655 0 317<br />

LEE LOW 2 335 0.452 0.234 0.152 2.677 2.391 1.796 2 391 1 963 1 227<br />

HIGH 6 648 2.216 0.665 0.543 9.253 8.862 7.982 8 862 8 241 7 026<br />

WGHTD AVE 4 908 1.334 0.415 0.358 6.474 6.140 5.400 6.140 5 615 4 590<br />

LEON LOW 0.485 0.050 0.049 0.064 0.438 0.339 0.183 0 339 0 221 0 078<br />

HIGH 0.728 0.085 0.073 0.074 0.689 0.553 0.325 0 553 0 383 0.154<br />

WGHTD AVE 0 620 0.068 0.062 0.069 0.573 0.454 0.256 0.454 0 306 0.116<br />

LEVY LOW 0 683 0.088 0.068 0.072 0.668 0.549 0.334 0 546 0 393 0.172<br />

HIGH 1 685 0.372 0.169 0.132 1.983 1.775 1.385 1.767 1.493 0 999<br />

WGHTD AVE 0 896 0.133 0.086 0.084 0.919 0.778 0.525 0.778 0 592 0 314<br />

LIBERTY LOW 0 878 0.107 0.088 0.079 0.848 0.692 0.416 0 692 0.488 0 205<br />

HIGH 1.145 0.160 0.114 0.088 1.164 0.978 0.632 0 978 0.724 0 344<br />

WGHTD AVE 1.107 0.153 0.111 0.087 1.121 0.939 0.602 0 939 0 691 0 325<br />

MADISON LOW 0 391 0.040 0.039 0.057 0.346 0.271 0.145 0 269 0.176 0 063<br />

HIGH 0.463 0.052 0.046 0.062 0.430 0.338 0.190 0 341 0 226 0 088<br />

WGHTD AVE 0.430 0.045 0.043 0.059 0.390 0.302 0.164 0 302 0.198 0 072<br />

MANATEE LOW 1.473 0.250 0.147 0.112 1.597 1.384 0.973 1 384 1 086 0 603<br />

HIGH 4 398 1.252 0.440 0.375 5.937 5.658 5.057 5 658 5 231 4.405<br />

WGHTD AVE 3 236 0.804 0.315 0.257 4.147 3.895 3.363 3 895 3 515 2 809<br />

MARION LOW 0 650 0.079 0.065 0.071 0.625 0.503 0.297 0 504 0 353 0.146<br />

HIGH 0 997 0.151 0.100 0.089 1.029 0.869 0.581 0 869 0 656 0 342<br />

WGHTD AVE 0 833 0.113 0.082 0.081 0.834 0.692 0.442 0 692 0 507 0 241<br />

MARTIN LOW 3.169 0.635 0.317 0.185 3.668 3.294 2.490 3 294 2.718 1 697<br />

HIGH 8 681 2.723 0.868 0.647 12.064 11.560 10.361 11 560 10.719 8 949<br />

WGHTD AVE 6 610 1.940 0.673 0.471 8.943 8.492 7.449 8.492 7.756 6 276<br />

MIAMI-DADE LOW 4.745 0.996 0.474 0.263 5.701 5.237 4.172 5 237 4.482 3 042<br />

HIGH 13 848 4.483 1.385 1.161 19.835 19.249 17.791 19 249 18 234 15 970<br />

WGHTD AVE 8.776 2.419 0.881 0.628 11.791 11.260 9.981 11 260 10 363 8.486<br />

MONROE LOW 10 050 3.352 1.005 0.797 14.486 14.032 12.913 14 032 13 255 11 510<br />

HIGH 13 918 4.427 1.392 1.102 19.811 19.206 17.679 19 206 18.150 15.751<br />

WGHTD AVE 11.156 3.880 1.185 0.885 16.151 15.645 14.385 15 645 14.770 12 816<br />

NASSAU LOW 0.419 0.046 0.042 0.055 0.388 0.303 0.171 0 303 0 207 0 078<br />

HIGH 0.784 0.125 0.078 0.075 0.825 0.701 0.478 0.701 0 537 0 288<br />

WGHTD AVE 0.705 0.107 0.068 0.071 0.726 0.611 0.408 0 611 0.461 0 240<br />

*Includes contents and A L.E. <strong>Model</strong> USWIND 5.11 / WORLDCATenterprise 3.9 139


Output Range Loss Costs<br />

Form A-6 (2002 FHCF Exposure) LOSS COSTS PER $1,000<br />

Personal Residential -- Owners -- FRAME<br />

$0 $0 $0 DEDUCTIBLE $0 DEDUCTIBLE $500 $1,000 $2,500 1% 2% 5%<br />

DEDUCTIBLE DEDUCTIBLE APPURTENANT ADDITIONAL DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE<br />

COUNTY LOSS COSTS STRUCTURE CONTENTS STRUCTURE LIVING EXPENSE TOTAL* TOTAL* TOTAL* TOTAL* TOTAL* TOTAL*<br />

OKALOOSA LOW 1.478 0.241 0.148 0.096 1.591 1.377 0.952 1 377 1 068 0 571<br />

HIGH 6.777 2.194 0.678 0.515 9.492 9.082 8.121 9 082 8.405 7 018<br />

WGHTD AVE 5.187 1.570 0.501 0.371 7.044 6.688 5.877 6 688 6.115 4 977<br />

OKEECHOBEE LOW 2.178 0.367 0.218 0.140 2.369 2.067 1.455 2 067 1 624 0 897<br />

HIGH 2.454 0.419 0.245 0.153 2.698 2.374 1.705 2 374 1 891 1 083<br />

WGHTD AVE 2.185 0.368 0.218 0.141 2.377 2.075 1.461 2 075 1 630 0 902<br />

ORANGE LOW 0 985 0.131 0.098 0.087 0.981 0.814 0.512 0 814 0 592 0 269<br />

HIGH 1 349 0.212 0.135 0.102 1.425 1.222 0.832 1 222 0 937 0.492<br />

WGHTD AVE 1.162 0.167 0.117 0.096 1.190 1.003 0.656 1 003 0.748 0 366<br />

OSCEOLA LOW 1 055 0.142 0.106 0.092 1.056 0.879 0.555 0 879 0 640 0 294<br />

HIGH 1.792 0.297 0.179 0.124 1.929 1.673 1.166 1 673 1 305 0.714<br />

WGHTD AVE 1 301 0.190 0.128 0.103 1.344 1.143 0.761 1.143 0 863 0.438<br />

PALM BEACH LOW 2 964 0.538 0.296 0.175 3.330 2.958 2.168 2 958 2 390 1.409<br />

HIGH 11 274 3.533 1.127 0.891 15.859 15.309 13.959 15 309 14 365 12 340<br />

WGHTD AVE 7.137 1.895 0.712 0.496 9.394 8.912 7.782 8 912 8.116 6 511<br />

PASCO LOW 1.113 0.174 0.111 0.094 1.167 0.995 0.673 0 995 0.759 0 399<br />

HIGH 2 632 0.654 0.263 0.211 3.317 3.078 2.590 3 078 2.728 2 094<br />

WGHTD AVE 1 637 0.327 0.158 0.128 1.882 1.683 1.293 1 683 1.400 0 929<br />

P NELLAS LOW 1 685 0.348 0.169 0.128 1.964 1.759 1.352 1.759 1.465 0 967<br />

HIGH 3 927 1.087 0.393 0.329 5.238 4.963 4.372 4 963 4 541 3.743<br />

WGHTD AVE 2 939 0.726 0.291 0.237 3.741 3.496 2.987 3.496 3.131 2.464<br />

POLK LOW 1 097 0.153 0.110 0.094 1.111 0.930 0.600 0 930 0 687 0 327<br />

HIGH 1.490 0.233 0.149 0.114 1.558 1.334 0.911 1 334 1 022 0 551<br />

WGHTD AVE 1 319 0.203 0.132 0.105 1.387 1.187 0.807 1.187 0 910 0.479<br />

PUTNAM LOW 0 600 0.070 0.060 0.066 0.565 0.452 0.264 0.452 0 312 0.126<br />

HIGH 0.798 0.102 0.080 0.077 0.786 0.647 0.404 0 647 0.467 0 211<br />

WGHTD AVE 0 653 0.080 0.065 0.070 0.626 0.507 0.303 0 507 0 356 0.149<br />

SAINT JOHNS LOW 0 513 0.060 0.051 0.061 0.485 0.388 0.227 0 388 0 267 0.110<br />

HIGH 1.173 0.228 0.117 0.100 1.319 1.159 0.858 1.159 0 940 0 587<br />

WGHTD AVE 0.777 0.122 0.077 0.076 0.807 0.697 0.467 0 684 0 524 0 288<br />

SA NT LUCIE LOW 2.712 0.511 0.271 0.163 3.069 2.730 2.014 2.730 2 216 1 324<br />

HIGH 7 620 2.544 0.762 0.577 10.724 10.274 9.218 10 274 9 531 8 005<br />

WGHTD AVE 4 651 1.204 0.465 0.303 5.956 5.558 4.666 5 558 4 924 3.710<br />

SANTA ROSA LOW 1.111 0.157 0.111 0.080 1.139 0.960 0.622 0 960 0.712 0 338<br />

HIGH 7 562 2.540 0.756 0.570 10.738 10.309 9.297 10 309 9 599 8.107<br />

WGHTD AVE 4 286 1.237 0.427 0.295 5.704 5.368 4.613 5 368 4 833 3.793<br />

SARASOTA LOW 2 529 0.556 0.253 0.187 3.114 2.878 2.384 2 878 2 525 1 881<br />

HIGH 5 098 1.593 0.510 0.433 6.967 6.670 6.012 6 670 6 204 5 284<br />

WGHTD AVE 3 846 1.045 0.364 0.306 5.076 4.806 4.224 4 806 4 392 3 598<br />

SEMINOLE LOW 1 020 0.138 0.102 0.088 1.024 0.854 0.542 0 854 0 624 0 290<br />

HIGH 1 278 0.195 0.128 0.099 1.347 1.154 0.785 1.154 0 884 0.466<br />

WGHTD AVE 1 094 0.156 0.109 0.091 1.118 0.941 0.613 0 941 0.700 0 340<br />

SUMTER LOW 0 926 0.128 0.093 0.086 0.932 0.777 0.497 0.777 0 571 0 271<br />

HIGH 1 011 0.148 0.101 0.089 1.038 0.874 0.574 0 874 0 654 0 324<br />

WGHTD AVE 0 950 0.134 0.095 0.086 0.963 0.805 0.520 0 805 0 596 0 287<br />

*Includes contents and A L.E. <strong>Model</strong> USWIND 5.11 / WORLDCATenterprise 3.9 140


Output Range Loss Costs<br />

Form A-6 (2002 FHCF Exposure) LOSS COSTS PER $1,000<br />

Personal Residential -- Owners -- FRAME<br />

$0 $0 $0 DEDUCTIBLE $0 DEDUCTIBLE $500 $1,000 $2,500 1% 2% 5%<br />

DEDUCTIBLE DEDUCTIBLE APPURTENANT ADDITIONAL DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE<br />

COUNTY LOSS COSTS STRUCTURE CONTENTS STRUCTURE LIVING EXPENSE TOTAL* TOTAL* TOTAL* TOTAL* TOTAL* TOTAL*<br />

SUWANNEE LOW 0 354 0.036 0.036 0.057 0.316 0.240 0.126 0 237 0.153 0 052<br />

HIGH 0.481 0.054 0.048 0.064 0.444 0.351 0.200 0 350 0 237 0 093<br />

WGHTD AVE 0 379 0.039 0.038 0.059 0.342 0.261 0.139 0 258 0.170 0 061<br />

TAYLOR LOW 0 506 0.056 0.051 0.063 0.469 0.369 0.208 0 369 0 249 0 095<br />

HIGH 0 634 0.079 0.063 0.072 0.613 0.490 0.299 0.491 0 351 0.151<br />

WGHTD AVE 0 607 0.072 0.061 0.069 0.575 0.462 0.271 0.462 0 320 0.131<br />

UNION LOW 0.484 0.054 0.048 0.062 0.450 0.352 0.202 0 355 0 236 0 093<br />

HIGH 0 513 0.058 0.051 0.065 0.480 0.385 0.220 0 379 0 264 0.104<br />

WGHTD AVE 0.489 0.055 0.049 0.063 0.461 0.359 0.207 0 361 0 245 0 097<br />

VOLUSIA LOW 0 819 0.103 0.082 0.078 0.808 0.669 0.422 0 669 0.487 0 221<br />

HIGH 2 201 0.571 0.220 0.167 2.761 2.517 2.085 2 538 2 223 1 650<br />

WGHTD AVE 1 370 0.261 0.133 0.109 1.541 1.360 1.014 1 360 1.108 0.703<br />

WAKULLA LOW 0 918 0.115 0.092 0.082 0.896 0.736 0.449 0.736 0 524 0 226<br />

HIGH 1 085 0.160 0.109 0.092 1.116 0.942 0.622 0 942 0.707 0 354<br />

WGHTD AVE 0 951 0.123 0.095 0.084 0.939 0.776 0.482 0.776 0 559 0 248<br />

WALTON LOW 1.110 0.157 0.111 0.081 1.140 0.962 0.626 0 962 0.716 0 343<br />

HIGH 6 281 2.054 0.628 0.464 8.788 8.391 7.467 8 391 7.740 6.415<br />

WGHTD AVE 4 682 1.341 0.406 0.329 6.221 5.881 5.116 5 881 5 339 4 283<br />

WASH NGTON LOW 1 399 0.218 0.140 0.095 1.482 1.274 0.870 1 274 0 980 0 511<br />

HIGH 2 204 0.446 0.220 0.135 2.550 2.284 1.727 2 284 1 884 1.188<br />

WGHTD AVE 1.471 0.236 0.147 0.098 1.574 1.360 0.941 1 360 1 056 0 565<br />

<strong>State</strong>wide LOW 0 333 0.033 0.033 0.050 0.293 0.220 0.113 0 220 0.139 0 047<br />

HIGH 13 918 4.483 1.392 1.161 19.835 19.249 17.791 19 249 18 234 15 970<br />

WGHTD AVE 2 855 0.671 0.269 0.206 3.538 3.296 2.784 3 296 2 930 2 260<br />

*Includes contents and A L.E. <strong>Model</strong> USWIND 5.11 / WORLDCATenterprise 3.9 141


Output Range Loss Costs<br />

Form A-6 (2002 FHCF Exposure) LOSS COSTS PER $1,000<br />

PERSONAL RESIDENTIAL -Owners -- MASONRY<br />

0% 0% $0 DEDUCTIBLE $0 DEDUCTIBLE $500 $1,000 $2,500 1% 2% 5%<br />

DEDUCTIBLE DEDUCTIBLE APPURTENANT ADDITIONAL DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE<br />

COUNTY LOSS COSTS STRUCTURE CONTENTS STRUCTURE LIVING EXPENSE TOTAL* TOTAL* TOTAL* TOTAL* TOTAL* TOTAL*<br />

ALACHUA LOW 0 346 0 044 0.035 0 062 0 313 0 242 0.129 0 240 0.155 0.054<br />

HIGH 0.479 0 067 0.048 0 071 0.453 0 359 0 209 0 357 0.244 0.097<br />

WGHTD AVE 0 391 0 051 0.039 0 065 0 365 0 286 0.156 0 285 0.189 0.070<br />

BAKER LOW 0 223 0 025 0.022 0 049 0.193 0.141 0 068 0.141 0.085 0.025<br />

HIGH 0 338 0 042 0.034 0 059 0 307 0 234 0.125 0 236 0.153 0.053<br />

WGHTD AVE 0 326 0 040 0.032 0 058 0 295 0 225 0.118 0 224 0.143 0.049<br />

BAY LOW 0 942 0.153 0.094 0 083 0 970 0 808 0 512 0 808 0.590 0.273<br />

HIGH 4 381 1 526 0.438 0 334 6.137 5 809 5 081 5 809 5.292 4.296<br />

WGHTD AVE 3 234 0 992 0.313 0 228 4 270 3 983 3 367 3 983 3.543 2.735<br />

BRADFORD LOW 0 348 0 043 0.034 0 060 0 318 0 240 0.130 0 242 0.157 0.054<br />

HIGH 0 362 0 045 0.036 0 063 0 329 0 251 0.134 0 251 0.163 0.057<br />

WGHTD AVE 0 354 0 044 0.036 0 062 0 324 0 245 0.133 0 247 0.159 0.054<br />

BREVARD LOW 1 033 0 214 0.103 0 096 1.150 0 995 0.707 0 995 0.784 0.455<br />

HIGH 4.194 1.469 0.419 0 334 5 810 5 501 4 830 5 501 5.025 4.109<br />

WGHTD AVE 2 676 0 803 0.265 0 212 3 523 3 279 2.769 3 279 2.914 2.254<br />

BROWARD LOW 3 322 0.702 0.332 0 201 3 901 3 522 2 697 3 522 2.930 1.894<br />

HIGH 9 630 3 369 0.963 0 806 13 897 13 398 12 200 13 398 12.560 10.800<br />

WGHTD AVE 4 974 1 287 0.433 0 318 6 282 5 864 4 923 5 864 5.195 3.934<br />

CALHOUN LOW 0 832 0.128 0.083 0 081 0 833 0 683 0.419 0 683 0.488 0.214<br />

HIGH 1 012 0.170 0.101 0 088 1 049 0 878 0 564 0 878 0.648 0.309<br />

WGHTD AVE 0 857 0.133 0.086 0 082 0 862 0.709 0.438 0.709 0.508 0.225<br />

CHARLOTTE LOW 1 561 0 362 0.156 0.126 1 823 1 613 1 201 1 613 1.314 0.820<br />

HIGH 4.186 1 513 0.419 0 364 6 007 5.732 5.137 5.732 5.309 4.486<br />

WGHTD AVE 3 084 0 971 0.308 0 256 4.166 3 916 3 392 3 916 3.542 2.847<br />

CITRUS LOW 0 626 0.100 0.063 0 075 0 632 0 519 0 323 0 519 0.374 0.170<br />

HIGH 1 023 0 215 0.102 0.100 1.158 1 011 0.740 1 011 0.813 0.499<br />

WGHTD AVE 0.733 0.126 0.073 0 082 0.764 0 639 0.420 0 639 0.478 0.241<br />

CLAY LOW 0 295 0 036 0.030 0 055 0 266 0 201 0.105 0 201 0.128 0.043<br />

HIGH 0 384 0 049 0.038 0 063 0 352 0 270 0.146 0 270 0.176 0.061<br />

WGHTD AVE 0 327 0 041 0.033 0 057 0 300 0 227 0.120 0 227 0.148 0.050<br />

COLLIER LOW 1 898 0 389 0.190 0.135 2.142 1 878 1 350 1 878 1.495 0.871<br />

HIGH 5 974 2 241 0.597 0.486 8 667 8 289 7.426 8 289 7.680 6.454<br />

WGHTD AVE 3 930 1 235 0.368 0 291 5 281 4 966 4 281 4 966 4.478 3.557<br />

COLUMBIA LOW 0 257 0 030 0.026 0 058 0 223 0.164 0 082 0.164 0.102 0.031<br />

HIGH 0 326 0 040 0.033 0 061 0 291 0 221 0.117 0 222 0.142 0.048<br />

WGHTD AVE 0 270 0 032 0.027 0 058 0 239 0.176 0 090 0.175 0.110 0.035<br />

DESOTO LOW 1.425 0 314 0.143 0.119 1 631 1.430 1 042 1.430 1.148 0.691<br />

HIGH 1.484 0 327 0.148 0.121 1.715 1 515 1.125 1 515 1.232 0.764<br />

WGHTD AVE 1.434 0 316 0.143 0.120 1 645 1.443 1 056 1.443 1.162 0.703<br />

DIXIE LOW 0.438 0 059 0.044 0 067 0.414 0 322 0.184 0 327 0.221 0.084<br />

HIGH 0 894 0.176 0.089 0 097 0 971 0 826 0 571 0 829 0.642 0.362<br />

WGHTD AVE 0 508 0 077 0.051 0 071 0.494 0.401 0 241 0 398 0.281 0.123<br />

*Includes contents and A L.E. <strong>Model</strong> USWIND 5.11 / WORLDCATenterprise 3.9 142


Output Range Loss Costs<br />

Form A-6 (2002 FHCF Exposure) LOSS COSTS PER $1,000<br />

PERSONAL RESIDENTIAL -Owners -- MASONRY<br />

0% 0% $0 DEDUCTIBLE $0 DEDUCTIBLE $500 $1,000 $2,500 1% 2% 5%<br />

DEDUCTIBLE DEDUCTIBLE APPURTENANT ADDITIONAL DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE<br />

COUNTY LOSS COSTS STRUCTURE CONTENTS STRUCTURE LIVING EXPENSE TOTAL* TOTAL* TOTAL* TOTAL* TOTAL* TOTAL*<br />

DUVAL LOW 0 296 0 036 0.030 0 054 0 266 0 201 0.105 0 201 0.129 0.043<br />

HIGH 0 621 0.114 0.062 0 075 0 654 0 550 0 375 0 550 0.421 0.230<br />

WGHTD AVE 0 356 0 049 0.035 0 059 0 335 0 260 0.149 0 263 0.178 0.068<br />

ESCAMBIA LOW 0 824 0.128 0.082 0 074 0 831 0 684 0.420 0 684 0.489 0.213<br />

HIGH 5 808 2.147 0.581 0.457 8 398 8 030 7.183 8 030 7.433 6.221<br />

WGHTD AVE 3 601 1.119 0.348 0 240 4 803 4 502 3 844 4 502 4.034 3.145<br />

FLAGLER LOW 0 505 0 074 0.050 0 069 0.486 0 395 0 229 0 392 0.272 0.111<br />

HIGH 0 975 0 224 0.097 0 095 1.127 0 995 0.736 0 996 0.809 0.516<br />

WGHTD AVE 0.727 0.136 0.072 0 080 0.768 0 644 0.436 0 651 0.490 0.266<br />

FRANKL N LOW 1 303 0 270 0.130 0.110 1.450 1 257 0 894 1 257 0.991 0.579<br />

HIGH 3 217 0 997 0.322 0 235 4 269 3 976 3 351 3 976 3.529 2.709<br />

WGHTD AVE 2 347 0 654 0.235 0.178 2 973 2.722 2 207 2.722 2.351 1.709<br />

GADSDEN LOW 0.411 0 050 0.041 0 066 0 368 0 279 0.145 0 279 0.177 0.058<br />

HIGH 0 519 0 067 0.052 0 071 0.483 0 376 0 206 0 376 0.248 0.090<br />

WGHTD AVE 0.461 0 057 0.046 0 069 0.420 0 323 0.172 0 323 0.209 0.072<br />

GILCHRIST LOW 0 367 0 047 0.037 0 064 0 334 0 260 0.141 0 259 0.170 0.059<br />

HIGH 0.432 0 058 0.043 0 067 0.409 0 320 0.181 0 320 0.215 0.082<br />

WGHTD AVE 0.414 0 055 0.041 0 066 0 388 0 302 0.168 0 302 0.202 0.075<br />

GLADES LOW 1.486 0 272 0.149 0.121 1 590 1 355 0 909 1 355 1.028 0.526<br />

HIGH 1.722 0 316 0.172 0.130 1 860 1 599 1 093 1 599 1.230 0.654<br />

WGHTD AVE 1 699 0 310 0.170 0.129 1 831 1 572 1 071 1 572 1.206 0.637<br />

GULF LOW 1.163 0 210 0.116 0 094 1 242 1 055 0.704 1 055 0.798 0.407<br />

HIGH 3 933 1 319 0.393 0 296 5.412 5 092 4 395 5 092 4.596 3.658<br />

WGHTD AVE 3 243 1 014 0.314 0 236 4 320 4 035 3.429 4 035 3.602 2.807<br />

HAMILTON LOW 0 224 0 025 0.022 0 054 0.192 0.139 0 067 0.139 0.084 0.024<br />

HIGH 0 248 0 029 0.025 0 055 0 218 0.160 0 081 0.161 0.100 0.031<br />

WGHTD AVE 0 229 0 026 0.023 0 055 0.197 0.143 0 070 0.143 0.087 0.026<br />

HARDEE LOW 1.153 0 207 0.115 0.106 1 240 1 059 0.726 1 059 0.815 0.440<br />

HIGH 1 203 0 225 0.120 0.109 1 293 1.104 0.754 1.104 0.848 0.458<br />

WGHTD AVE 1.163 0 209 0.116 0.107 1 251 1 069 0.732 1 069 0.822 0.444<br />

HENDRY LOW 1 559 0 301 0.156 0.123 1.705 1.467 1 009 1.467 1.133 0.613<br />

HIGH 1 863 0 351 0.186 0.135 2 003 1.723 1 215 1.723 1.359 0.765<br />

WGHTD AVE 1.718 0 319 0.170 0.129 1 859 1 599 1 093 1 599 1.230 0.654<br />

HERNANDO LOW 0 676 0.109 0.068 0 078 0 687 0 565 0 355 0 565 0.410 0.190<br />

HIGH 1.134 0 259 0.113 0.107 1 309 1.151 0 856 1.151 0.936 0.592<br />

WGHTD AVE 0 922 0.187 0.092 0 094 1 015 0 873 0 615 0 873 0.684 0.394<br />

HIGHLANDS LOW 1 065 0.175 0.106 0.103 1 096 0 912 0 580 0 912 0.667 0.313<br />

HIGH 1 366 0 243 0.137 0.117 1.462 1 249 0 847 1 249 0.955 0.509<br />

WGHTD AVE 1 238 0 215 0.124 0.111 1 308 1.108 0.737 1.108 0.835 0.428<br />

H LLSBOROUGH LOW 0 920 0.163 0.092 0 093 0 967 0 813 0 536 0 813 0.609 0.306<br />

HIGH 2 579 0.737 0.258 0 236 3.405 3.194 2.767 3.194 2.887 2.337<br />

WGHTD AVE 1 337 0 304 0.135 0.124 1 574 1.405 1 086 1.405 1.173 0.796<br />

HOLMES LOW 0.728 0.109 0.073 0 074 0.721 0 587 0 354 0 587 0.414 0.176<br />

HIGH 0 897 0.146 0.090 0 079 0 920 0.765 0.484 0.765 0.559 0.256<br />

WGHTD AVE 0 890 0.143 0.089 0 079 0 909 0.755 0.475 0.755 0.549 0.251<br />

*Includes contents and A L.E. <strong>Model</strong> USWIND 5.11 / WORLDCATenterprise 3.9 143


Output Range Loss Costs<br />

Form A-6 (2002 FHCF Exposure) LOSS COSTS PER $1,000<br />

PERSONAL RESIDENTIAL -Owners -- MASONRY<br />

0% 0% $0 DEDUCTIBLE $0 DEDUCTIBLE $500 $1,000 $2,500 1% 2% 5%<br />

DEDUCTIBLE DEDUCTIBLE APPURTENANT ADDITIONAL DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE<br />

COUNTY LOSS COSTS STRUCTURE CONTENTS STRUCTURE LIVING EXPENSE TOTAL* TOTAL* TOTAL* TOTAL* TOTAL* TOTAL*<br />

NDIAN RIVER LOW 1.767 0 384 0.177 0.129 2 021 1.777 1 291 1.777 1.425 0.845<br />

HIGH 5.407 1 824 0.541 0.447 7 617 7 270 6.492 7 270 6.719 5.631<br />

WGHTD AVE 4.443 1 388 0.416 0 336 6 014 5 687 4 966 5 687 5.175 4.193<br />

JACKSON LOW 0 563 0 076 0.056 0 071 0 535 0.423 0 239 0.423 0.286 0.108<br />

HIGH 0.754 0.114 0.075 0 077 0.749 0 611 0 370 0 611 0.432 0.185<br />

WGHTD AVE 0 663 0 094 0.066 0 074 0 643 0 516 0 301 0 516 0.356 0.143<br />

JEFFERSON LOW 0 346 0 041 0.035 0 062 0 309 0 232 0.119 0 232 0.146 0.047<br />

HIGH 0 394 0 048 0.039 0 065 0 356 0 271 0.141 0 271 0.173 0.057<br />

WGHTD AVE 0 350 0 042 0.035 0 062 0 313 0 236 0.121 0 236 0.149 0.048<br />

LAFAYETTE LOW 0 320 0 039 0.032 0 060 0 287 0 218 0.114 0 216 0.139 0.047<br />

HIGH 0 330 0 040 0.033 0 062 0 300 0 227 0.120 0 225 0.147 0.050<br />

WGHTD AVE 0 326 0 040 0.033 0 061 0 293 0 223 0.120 0 222 0.146 0.050<br />

LAKE LOW 0 522 0 070 0.052 0 071 0.494 0 389 0 219 0 389 0.261 0.099<br />

HIGH 0 820 0.128 0.082 0 090 0 822 0 673 0.414 0 673 0.481 0.213<br />

WGHTD AVE 0.742 0.114 0.074 0 085 0.739 0 602 0 368 0 602 0.429 0.188<br />

LEE LOW 1 636 0 338 0.164 0.126 1 844 1 613 1.161 1 613 1.285 0.753<br />

HIGH 5 060 1 857 0.506 0.436 7.166 6 837 6.138 6 837 6.336 5.380<br />

WGHTD AVE 2 888 0 836 0.281 0 220 3.764 3 501 2 946 3 501 3.104 2.378<br />

LEON LOW 0 326 0 038 0.033 0 062 0 287 0 213 0.107 0 213 0.132 0.041<br />

HIGH 0.493 0 063 0.049 0 070 0.458 0 356 0.194 0 356 0.234 0.083<br />

WGHTD AVE 0.425 0 052 0.042 0 067 0 383 0 292 0.153 0 292 0.187 0.063<br />

LEVY LOW 0.466 0 065 0.047 0 068 0.444 0 352 0.199 0 350 0.240 0.093<br />

HIGH 1.174 0 283 0.118 0.112 1 381 1 217 0 921 1 211 1.002 0.643<br />

WGHTD AVE 0 559 0 086 0.055 0 073 0 557 0.454 0 284 0.454 0.327 0.153<br />

L BERTY LOW 0 602 0 080 0.060 0 074 0 569 0.448 0 251 0.448 0.300 0.111<br />

HIGH 0.785 0.116 0.078 0 080 0.775 0 630 0 378 0 630 0.443 0.185<br />

WGHTD AVE 0.761 0.111 0.076 0 079 0.749 0 607 0 361 0 607 0.425 0.175<br />

MADISON LOW 0 264 0 031 0.026 0 056 0 232 0.173 0 086 0.171 0.107 0.034<br />

HIGH 0 312 0 039 0.031 0 060 0 283 0 214 0.113 0 217 0.137 0.047<br />

WGHTD AVE 0 290 0 034 0.029 0 058 0 257 0.191 0 097 0.191 0.120 0.038<br />

MANATEE LOW 1 017 0.182 0.102 0 098 1 077 0 909 0 604 0 909 0.685 0.347<br />

HIGH 3 277 1 010 0.328 0 290 4.468 4 234 3.748 4 234 3.887 3.239<br />

WGHTD AVE 2 217 0 580 0.221 0.189 2 827 2 626 2 220 2 626 2.334 1.814<br />

MARION LOW 0.440 0 058 0.044 0 068 0.411 0 319 0.174 0 319 0.213 0.077<br />

HIGH 0 680 0.109 0.068 0 081 0 684 0 560 0 353 0 560 0.405 0.193<br />

WGHTD AVE 0 558 0 081 0.056 0 074 0 544 0.437 0 261 0.437 0.306 0.129<br />

MART N LOW 2 222 0.477 0.222 0.150 2 536 2 233 1 614 2 233 1.785 1.048<br />

HIGH 6 572 2 255 0.657 0 509 9 264 8 829 7 841 8 829 8.131 6.734<br />

WGHTD AVE 4 947 1 568 0.498 0 366 6.728 6 349 5 505 6 349 5.750 4.596<br />

MIAMI-DADE LOW 3 349 0.747 0.335 0.198 3 959 3 574 2.736 3 574 2.974 1.910<br />

HIGH 10 669 3.766 1.067 0 917 15 526 15.018 13.781 15 018 14.153 12.303<br />

WGHTD AVE 6.195 1.777 0.548 0.425 8.189 7.744 6.714 7.744 7.016 5.584<br />

MONROE LOW 7 691 2.784 0.769 0 623 11 218 10.821 9 876 10 821 10.159 8.743<br />

HIGH 10 680 3.700 1.068 0 851 15 387 14.852 13 551 14 852 13.942 11.985<br />

WGHTD AVE 9 561 3 514 0.977 0.764 13 961 13.472 12 280 13.472 12.640 10.845<br />

NASSAU LOW 0 282 0 035 0.029 0 053 0 255 0.191 0.101 0.192 0.124 0.041<br />

HIGH 0 532 0 090 0.053 0 068 0 547 0.452 0 292 0.452 0.334 0.163<br />

WGHTD AVE 0.436 0 067 0.043 0 062 0.430 0 347 0 214 0 347 0.248 0.113<br />

*Includes contents and A L.E. <strong>Model</strong> USWIND 5.11 / WORLDCATenterprise 3.9 144


Output Range Loss Costs<br />

Form A-6 (2002 FHCF Exposure) LOSS COSTS PER $1,000<br />

PERSONAL RESIDENTIAL -Owners -- MASONRY<br />

0% 0% $0 DEDUCTIBLE $0 DEDUCTIBLE $500 $1,000 $2,500 1% 2% 5%<br />

DEDUCTIBLE DEDUCTIBLE APPURTENANT ADDITIONAL DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE<br />

COUNTY LOSS COSTS STRUCTURE CONTENTS STRUCTURE LIVING EXPENSE TOTAL* TOTAL* TOTAL* TOTAL* TOTAL* TOTAL*<br />

OKALOOSA LOW 1 020 0.175 0.102 0 083 1 069 0 899 0 584 0 899 0.668 0.322<br />

HIGH 5.140 1 832 0.514 0.406 7 315 6 969 6.184 6 969 6.414 5.315<br />

WGHTD AVE 3 838 1 286 0.377 0 286 5 285 4 987 4 333 4 987 4.522 3.640<br />

OKEECHOBEE LOW 1 510 0 270 0.151 0.120 1 607 1 366 0 908 1 366 1.031 0.519<br />

HIGH 1.712 0 312 0.171 0.129 1 845 1 586 1 081 1 586 1.217 0.644<br />

WGHTD AVE 1 516 0 271 0.152 0.120 1 613 1 371 0 912 1 371 1.036 0.522<br />

ORANGE LOW 0 673 0 096 0.067 0 080 0 653 0 524 0 307 0 524 0.363 0.146<br />

HIGH 0 926 0.152 0.093 0 091 0 952 0.792 0 505 0.792 0.581 0.277<br />

WGHTD AVE 0.797 0.122 0.080 0 087 0.795 0 649 0 396 0 649 0.462 0.201<br />

OSCEOLA LOW 0.719 0.104 0.072 0 085 0 699 0 563 0 331 0 563 0.390 0.159<br />

HIGH 1 239 0 218 0.124 0.108 1 305 1.103 0.727 1.103 0.827 0.414<br />

WGHTD AVE 0 923 0.146 0.092 0 094 0 940 0.778 0.491 0.778 0.566 0.262<br />

PALM BEACH LOW 2 067 0 399 0.207 0.143 2 279 1 979 1 378 1 979 1.543 0.844<br />

HIGH 8 590 2 948 0.859 0 695 12 255 11.781 10 663 11.781 10.995 9.372<br />

WGHTD AVE 5 272 1.483 0.477 0 359 6 869 6.460 5 539 6.460 5.806 4.553<br />

PASCO LOW 0.759 0.124 0.076 0 084 0.775 0 641 0.406 0 641 0.468 0.220<br />

HIGH 1 960 0 520 0.196 0.178 2.478 2 285 1 910 2 285 2.012 1.554<br />

WGHTD AVE 1 284 0 290 0.126 0.117 1.499 1 335 1 025 1 335 1.110 0.745<br />

PINELLAS LOW 1.173 0 262 0.117 0.107 1 351 1.189 0 884 1.189 0.967 0.610<br />

HIGH 2 896 0 867 0.290 0 253 3 884 3 658 3.191 3 658 3.323 2.705<br />

WGHTD AVE 2.103 0 552 0.210 0.185 2 672 2.475 2 085 2.475 2.194 1.699<br />

POLK LOW 0.755 0.114 0.075 0 086 0.748 0 608 0 368 0 608 0.430 0.184<br />

HIGH 1 027 0.172 0.103 0.101 1 052 0 876 0 566 0 876 0.646 0.317<br />

WGHTD AVE 0 903 0.148 0.091 0 094 0 927 0.771 0.493 0.771 0.566 0.269<br />

PUTNAM LOW 0.408 0 052 0.041 0 063 0 377 0 291 0.158 0 291 0.191 0.067<br />

HIGH 0 544 0 076 0.054 0 071 0 524 0.417 0 242 0.417 0.287 0.115<br />

WGHTD AVE 0.443 0 060 0.044 0 066 0.416 0 329 0.182 0 323 0.219 0.081<br />

SAINT JOHNS LOW 0 350 0 045 0.035 0 059 0 324 0 250 0.137 0 250 0.165 0.059<br />

HIGH 0 825 0.173 0.082 0 088 0 918 0.792 0 567 0.792 0.627 0.373<br />

WGHTD AVE 0 569 0 099 0.056 0 072 0 588 0.488 0 319 0.488 0.362 0.189<br />

SAINT LUCIE LOW 1 897 0 380 0.190 0.134 2.103 1 829 1 283 1 829 1.433 0.795<br />

HIGH 5.759 2.120 0.576 0.461 8 231 7 848 6 981 7 848 7.235 6.020<br />

WGHTD AVE 3.447 0 971 0.346 0 241 4.432 4.102 3 393 4.102 3.595 2.672<br />

SANTA ROSA LOW 0.764 0.115 0.076 0 071 0.760 0 620 0 374 0 620 0.438 0.183<br />

HIGH 5.728 2.109 0.573 0.450 8 262 7 897 7 060 7 897 7.307 6.111<br />

WGHTD AVE 3.167 1 000 0.306 0 226 4 235 3 955 3 350 3 955 3.523 2.721<br />

SARASOTA LOW 1 802 0.426 0.180 0.147 2 208 2 016 1 632 2 016 1.739 1.256<br />

HIGH 3 828 1 324 0.383 0 330 5 327 5 070 4 517 5 070 4.676 3.939<br />

WGHTD AVE 2 811 0 838 0.272 0 236 3.751 3 528 3 064 3 528 3.197 2.581<br />

SEM NOLE LOW 0 699 0.102 0.070 0 081 0 683 0 551 0 327 0 551 0.384 0.158<br />

HIGH 0 882 0.143 0.088 0 088 0 908 0.756 0.485 0.756 0.556 0.266<br />

WGHTD AVE 0.756 0.115 0.076 0 083 0.753 0 614 0 374 0 614 0.436 0.189<br />

SUMTER LOW 0 631 0 094 0.063 0 079 0 620 0 500 0 299 0 500 0.351 0.148<br />

HIGH 0 692 0.108 0.069 0 081 0 690 0 563 0 346 0 563 0.402 0.178<br />

WGHTD AVE 0 656 0.100 0.066 0 080 0 650 0 528 0 320 0 528 0.373 0.161<br />

*Includes contents and A L.E. <strong>Model</strong> USWIND 5.11 / WORLDCATenterprise 3.9 145


Output Range Loss Costs<br />

Form A-6 (2002 FHCF Exposure) LOSS COSTS PER $1,000<br />

PERSONAL RESIDENTIAL -Owners -- MASONRY<br />

0% 0% $0 DEDUCTIBLE $0 DEDUCTIBLE $500 $1,000 $2,500 1% 2% 5%<br />

DEDUCTIBLE DEDUCTIBLE APPURTENANT ADDITIONAL DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE<br />

COUNTY LOSS COSTS STRUCTURE CONTENTS STRUCTURE LIVING EXPENSE TOTAL* TOTAL* TOTAL* TOTAL* TOTAL* TOTAL*<br />

SUWANNEE LOW 0 233 0 027 0.023 0 056 0 203 0.147 0 072 0.146 0.089 0.027<br />

HIGH 0 322 0 040 0.032 0 062 0 289 0 221 0.117 0 221 0.142 0.049<br />

WGHTD AVE 0 250 0 030 0.025 0 057 0 222 0.163 0 081 0.161 0.101 0.032<br />

TAYLOR LOW 0 342 0 042 0.034 0 061 0 308 0 234 0.123 0 234 0.150 0.049<br />

HIGH 0.429 0 058 0.043 0 068 0.404 0 312 0.178 0 312 0.213 0.081<br />

WGHTD AVE 0.413 0 054 0.041 0 066 0 384 0 298 0.164 0 298 0.197 0.071<br />

UNION LOW 0 326 0 041 0.033 0 060 0 298 0 225 0.121 0 227 0.144 0.050<br />

HIGH 0 346 0 044 0.035 0 062 0 316 0 241 0.129 0 241 0.159 0.055<br />

WGHTD AVE 0 330 0 041 0.033 0 061 0 305 0 229 0.123 0 230 0.149 0.052<br />

VOLUSIA LOW 0 562 0 077 0.056 0 072 0 542 0.434 0 254 0.434 0.301 0.121<br />

HIGH 1 618 0.447 0.162 0.140 2 036 1 855 1 502 1 855 1.606 1.181<br />

WGHTD AVE 0 952 0.196 0.094 0 093 1 056 0 914 0 656 0 914 0.725 0.439<br />

WAKULLA LOW 0 628 0 085 0.063 0 076 0 595 0.472 0 267 0.472 0.319 0.121<br />

HIGH 0.744 0.117 0.074 0 083 0.748 0 614 0 381 0 614 0.441 0.200<br />

WGHTD AVE 0 649 0 090 0.065 0 078 0 622 0.496 0 285 0.496 0.339 0.132<br />

WALTON LOW 0.762 0.115 0.076 0 072 0.761 0 622 0 377 0 622 0.441 0.187<br />

HIGH 4.741 1.705 0.474 0 372 6.739 6.402 5 649 6.402 5.868 4.826<br />

WGHTD AVE 3 236 0 980 0.290 0 219 4 259 3 987 3.404 3 987 3.570 2.801<br />

WASH NGTON LOW 0 966 0.158 0.097 0 083 0 998 0 834 0 532 0 834 0.612 0.285<br />

HIGH 1 544 0 332 0.154 0.110 1.760 1 545 1.119 1 545 1.236 0.731<br />

WGHTD AVE 1 027 0.174 0.103 0 085 1 075 0 905 0 590 0 905 0.674 0.327<br />

<strong>State</strong>wide LOW 0 223 0 025 0.022 0 049 0.192 0.139 0 067 0.139 0.084 0.024<br />

HIGH 10 680 3.766 1.068 0 917 15 526 15 018 13.781 15 018 14.153 12.303<br />

WGHTD AVE 3.123 0 809 0.272 0 222 3 916 3 646 3 072 3 646 3.236 2.485<br />

*Includes contents and A L.E. <strong>Model</strong> USWIND 5.11 / WORLDCATenterprise 3.9 146


Output Range Loss Costs<br />

Form A-6 (2002 FHCF Exposure) LOSS COSTS PER $1,000<br />

PERSONAL RESIDENTIAL - MOBILE HOMES<br />

$0 $0 $0 DEDUCTIBLE $0 DEDUCTIBLE $500 $1,000 $2,500 1% 2% 5%<br />

DEDUCTIBLE DEDUCTIBLE APPURTENANT ADDITIONAL DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE<br />

COUNTY LOSS COSTS STRUCTURE CONTENTS STRUCTURE LIVING EXPENSE TOTAL* TOTAL* TOTAL* TOTAL* TOTAL* TOTAL*<br />

ALACHUA LOW 0.871 0.092 0 087 0.077 0.815 0 683 0.455 0 816 0.683 0.455<br />

HIGH 1.280 0.161 0.128 0.099 1.278 1 099 0.797 1 274 1.095 0.791<br />

WGHTD AVE 1.030 0.119 0.104 0.086 1.005 0 857 0 581 1 010 0.853 0.591<br />

BAKER LOW 0.511 0.048 0 051 0.054 0.438 0 346 0 202 0.438 0.346 0.202<br />

HIGH 0.838 0.087 0 084 0.073 0.787 0 658 0.435 0.787 0.658 0.435<br />

WGHTD AVE 0.756 0.076 0 075 0.068 0.697 0 571 0 370 0 693 0.571 0.370<br />

BAY LOW 2.742 0.453 0 274 0.171 3.080 2.777 2.164 3 080 2.777 2.164<br />

HIGH 13.188 4.374 1 319 1.239 18.964 18.341 16 847 18 964 18.341 16.847<br />

WGHTD AVE 7.849 2.210 0.739 0.630 10.577 10.093 8 985 10 577 10.093 8.985<br />

BRADFORD LOW 0.860 0.088 0 085 0.074 0.807 0 660 0.439 0 805 0.665 0.439<br />

HIGH 0.897 0.096 0 090 0.079 0.842 0.706 0.472 0 842 0.706 0.472<br />

WGHTD AVE 0.877 0.091 0 088 0.075 0.826 0 682 0.450 0 824 0.682 0.450<br />

BREVARD LOW 3.240 0.712 0 324 0.235 3.945 3 656 3 058 3 945 3.656 3.058<br />

HIGH 12.693 4.105 1 269 1.223 18.054 17.455 16 029 18 054 17.455 16.029<br />

WGHTD AVE 9.080 2.746 0 838 0.858 12.661 12.170 11 032 12 661 12.170 11.032<br />

BROWARD LOW 11.203 2.459 1.120 0.840 14.303 13.586 11 888 14 303 13.586 11.888<br />

HIGH 27.336 9.040 2.734 3.118 40.164 39.242 36 833 40.164 39.242 36.833<br />

WGHTD AVE 16.144 4.433 1 556 1.496 22.126 21.334 19 383 22.126 21.334 19.383<br />

CALHOUN LOW 2.321 0.347 0 232 0.146 2.515 2 235 1 689 2 515 2.235 1.689<br />

HIGH 2.970 0.513 0 297 0.187 3.381 3 062 2.414 3 381 3.062 2.414<br />

WGHTD AVE 2.476 0.388 0 249 0.157 2.724 2.435 1 863 2.724 2.435 1.863<br />

CHARLOTTE LOW 5.111 1.264 0 511 0.373 6.549 6.151 5 283 6 549 6.151 5.283<br />

HIGH 12.209 4.153 1 221 1.302 17.832 17.325 16.129 17 832 17.325 16.129<br />

WGHTD AVE 8.844 2.798 0 907 0.853 12.496 12.031 10 955 12.496 12.031 10.955<br />

CITRUS LOW 1.825 0.301 0.182 0.132 2.013 1.802 1 393 2 013 1.802 1.393<br />

HIGH 3.263 0.721 0 326 0.255 4.029 3.755 3.190 4 029 3.755 3.190<br />

WGHTD AVE 2.316 0.436 0 231 0.171 2.683 2.445 1 970 2 683 2.445 1.970<br />

CLAY LOW 0.723 0.073 0 072 0.066 0.664 0.548 0 353 0 664 0.548 0.353<br />

HIGH 0.962 0.103 0 096 0.080 0.910 0.763 0 509 0 910 0.763 0.509<br />

WGHTD AVE 0.874 0.092 0 087 0.074 0.821 0.685 0.452 0 821 0.685 0.452<br />

COLLIER LOW 6.143 1.315 0 614 0.411 7.602 7.101 5 995 7 602 7.101 5.995<br />

HIGH 17.454 6.162 1.745 1.760 25.770 25.069 23 298 25.770 25.069 23.298<br />

WGHTD AVE 10.421 3.193 1 024 0.871 14.504 13.925 12 550 14 504 13.925 12.550<br />

COLUMBIA LOW 0.605 0.058 0 060 0.064 0.530 0.423 0 258 0 534 0.427 0.256<br />

HIGH 0.794 0.081 0 079 0.074 0.731 0.605 0 394 0.731 0.605 0.394<br />

WGHTD AVE 0.673 0.067 0 068 0.068 0.610 0.489 0 307 0 604 0.490 0.308<br />

DESOTO LOW 4.610 1.087 0.461 0.332 5.797 5.417 4 608 5.797 5.417 4.608<br />

HIGH 4.882 1.145 0.488 0.358 6.193 5.815 4 998 6.193 5.815 4.998<br />

WGHTD AVE 4.617 1.089 0.462 0.333 5.808 5.429 4 619 5 808 5.429 4.619<br />

DIX E LOW 1.153 0.136 0.115 0.091 1.138 0.975 0 684 1.138 0.975 0.684<br />

HIGH 2.742 0.576 0 272 0.205 3.247 2.980 2.437 3 265 2.987 2.469<br />

WGHTD AVE 1.462 0.225 0.146 0.114 1.549 1.367 1 026 1 552 1.367 1.026<br />

*Includes contents and A L.E. <strong>Model</strong> USWIND 5.11 / WORLDCATenterprise 3.9 147


Output Range Loss Costs<br />

Form A-6 (2002 FHCF Exposure) LOSS COSTS PER $1,000<br />

PERSONAL RESIDENTIAL - MOBILE HOMES<br />

$0 $0 $0 DEDUCTIBLE $0 DEDUCTIBLE $500 $1,000 $2,500 1% 2% 5%<br />

DEDUCTIBLE DEDUCTIBLE APPURTENANT ADDITIONAL DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE<br />

COUNTY LOSS COSTS STRUCTURE CONTENTS STRUCTURE LIVING EXPENSE TOTAL* TOTAL* TOTAL* TOTAL* TOTAL* TOTAL*<br />

DUVAL LOW 0.720 0.073 0 072 0.065 0.665 0 545 0 351 0 658 0.545 0.351<br />

HIGH 1.920 0.374 0.192 0.149 2.235 2 042 1 676 2 235 2.042 1.676<br />

WGHTD AVE 0.918 0.112 0 091 0.078 0.908 0.771 0 542 0 913 0.771 0.542<br />

ESCAMBIA LOW 2.345 0.352 0 234 0.142 2.567 2 291 1.745 2 567 2.291 1.745<br />

HIGH 17.341 6.017 1.734 1.730 25.524 24 837 23.107 25 524 24.837 23.107<br />

WGHTD AVE 8.416 2.323 0 835 0.652 11.356 10 858 9.701 11 356 10.858 9.701<br />

FLAGLER LOW 1.391 0.186 0.140 0.103 1.434 1 266 0 917 1.446 1.256 0.918<br />

HIGH 3.073 0.767 0 307 0.244 3.912 3 663 3.111 3 938 3.667 3.135<br />

WGHTD AVE 2.160 0.486 0.182 0.172 2.624 2 365 1 934 2 618 2.357 1.937<br />

FRANKL N LOW 4.017 0.886 0.402 0.281 4.922 4 559 3.797 4 922 4.559 3.797<br />

HIGH 10.020 3.053 1 002 0.905 13.991 13.442 12.149 13 991 13.442 12.149<br />

WGHTD AVE 7.412 2.093 0.741 0.603 9.991 9 514 8.429 9 991 9.514 8.429<br />

GADSDEN LOW 0.991 0.099 0 099 0.081 0.913 0.752 0.479 0 913 0.752 0.479<br />

HIGH 1.308 0.149 0.131 0.096 1.273 1 079 0.733 1 273 1.079 0.733<br />

WGHTD AVE 1.134 0.121 0.113 0.087 1.072 0 896 0 589 1 072 0.896 0.589<br />

G LCHRIST LOW 0.945 0.100 0 094 0.080 0.883 0.747 0 500 0 890 0.746 0.494<br />

HIGH 1.123 0.132 0.112 0.090 1.106 0 946 0 661 1.106 0.946 0.661<br />

WGHTD AVE 1.066 0.122 0.105 0.087 1.032 0 875 0 604 1 041 0.875 0.604<br />

GLADES LOW 4.551 0.830 0.455 0.289 5.343 4 900 3 937 5 343 4.900 3.937<br />

HIGH 5.268 0.979 0 527 0.333 6.212 5.722 4 675 6 212 5.722 4.675<br />

WGHTD AVE 5.163 0.954 0 516 0.326 6.072 5 586 4 550 6 072 5.586 4.550<br />

GULF LOW 3.509 0.652 0 351 0.222 4.101 3.748 3 017 4.101 3.748 3.017<br />

HIGH 11.963 3.832 1.196 1.113 17.013 16.411 14 966 17 013 16.411 14.966<br />

WGHTD AVE 6.632 1.803 0 623 0.535 8.800 8.357 7 366 8 800 8.357 7.366<br />

HAM LTON LOW 0.509 0.047 0 051 0.059 0.429 0.335 0.195 0.431 0.335 0.192<br />

HIGH 0.584 0.056 0 058 0.061 0.512 0.409 0 249 0 513 0.412 0.247<br />

WGHTD AVE 0.536 0.050 0 054 0.060 0.456 0.360 0 212 0.454 0.360 0.212<br />

HARDEE LOW 3.602 0.670 0 360 0.251 4.248 3.908 3 209 4 248 3.908 3.209<br />

HIGH 3.747 0.744 0 375 0.259 4.419 4.063 3 331 4.419 4.063 3.331<br />

WGHTD AVE 3.677 0.688 0 368 0.255 4.340 3.993 3 277 4 340 3.993 3.277<br />

HENDRY LOW 4.841 0.974 0.484 0.315 5.795 5.345 4 388 5.795 5.345 4.388<br />

HIGH 5.750 1.174 0 575 0.376 6.958 6.486 5.422 6 958 6.486 5.422<br />

WGHTD AVE 5.310 1.011 0 534 0.336 6.293 5.803 4.751 6 293 5.803 4.751<br />

HERNANDO LOW 1.946 0.328 0.195 0.139 2.161 1.935 1 500 2.161 1.935 1.500<br />

HIGH 3.631 0.887 0 363 0.282 4.597 4.301 3 682 4 597 4.301 3.682<br />

WGHTD AVE 2.448 0.486 0 244 0.181 2.880 2.636 2.147 2 880 2.636 2.147<br />

HIGHLANDS LOW 3.112 0.522 0 311 0.204 3.499 3.157 2.467 3.499 3.157 2.467<br />

HIGH 4.178 0.760 0.418 0.280 4.890 4.491 3 657 4 890 4.491 3.657<br />

WGHTD AVE 3.650 0.643 0 364 0.243 4.202 3.832 3 073 4 202 3.832 3.073<br />

HILLSBOROUGH LOW 2.783 0.512 0 278 0.193 3.215 2.927 2 347 3 215 2.927 2.347<br />

HIGH 7.552 2.177 0.755 0.836 10.479 10.079 9 203 10.479 10.079 9.203<br />

WGHTD AVE 4.047 0.956 0.406 0.342 5.132 4.817 4.157 5.132 4.817 4.157<br />

HOLMES LOW 2.021 0.295 0 202 0.129 2.168 1.920 1.438 2.168 1.920 1.438<br />

HIGH 2.608 0.426 0 261 0.162 2.922 2.631 2 046 2 922 2.631 2.046<br />

WGHTD AVE 2.567 0.417 0 257 0.160 2.866 2.577 1 996 2 866 2.577 1.996<br />

*Includes contents and A L.E. <strong>Model</strong> USWIND 5.11 / WORLDCATenterprise 3.9 148


Output Range Loss Costs<br />

Form A-6 (2002 FHCF Exposure) LOSS COSTS PER $1,000<br />

PERSONAL RESIDENTIAL - MOBILE HOMES<br />

$0 $0 $0 DEDUCTIBLE $0 DEDUCTIBLE $500 $1,000 $2,500 1% 2% 5%<br />

DEDUCTIBLE DEDUCTIBLE APPURTENANT ADDITIONAL DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE<br />

COUNTY LOSS COSTS STRUCTURE CONTENTS STRUCTURE LIVING EXPENSE TOTAL* TOTAL* TOTAL* TOTAL* TOTAL* TOTAL*<br />

INDIAN RIVER LOW 5.743 1.323 0 574 0.391 7.213 6.749 5.730 7 213 6.749 5.730<br />

HIGH 15.890 5.061 1 589 1.694 22.941 22 289 20.701 22 941 22.289 20.701<br />

WGHTD AVE 9.374 2.661 0 930 0.783 12.765 12 213 10 935 12.765 12.213 10.935<br />

JACKSON LOW 1.469 0.178 0.147 0.103 1.472 1 266 0 890 1.472 1.266 0.890<br />

HIGH 2.070 0.303 0 207 0.132 2.217 1 961 1.465 2 217 1.961 1.465<br />

WGHTD AVE 1.793 0.236 0.180 0.119 1.860 1 625 1.181 1 860 1.625 1.181<br />

JEFFERSON LOW 0.834 0.083 0 083 0.074 0.757 0 620 0 390 0.757 0.620 0.390<br />

HIGH 0.955 0.096 0 095 0.079 0.883 0.730 0.469 0 883 0.730 0.469<br />

WGHTD AVE 0.847 0.084 0 085 0.074 0.770 0 631 0 398 0.770 0.631 0.398<br />

LAFAYETTE LOW 0.776 0.079 0 078 0.071 0.718 0 584 0 373 0.706 0.583 0.377<br />

HIGH 0.813 0.083 0 081 0.074 0.753 0 616 0.403 0.744 0.618 0.402<br />

WGHTD AVE 0.805 0.083 0 081 0.074 0.741 0 611 0.401 0.740 0.619 0.402<br />

LAKE LOW 1.357 0.162 0.136 0.100 1.350 1.158 0 808 1 350 1.158 0.808<br />

HIGH 2.347 0.363 0 235 0.159 2.558 2 282 1.741 2 558 2.282 1.741<br />

WGHTD AVE 1.977 0.296 0.195 0.139 2.120 1 876 1.412 2.120 1.876 1.412<br />

LEE LOW 5.286 1.151 0 529 0.365 6.551 6.116 5.170 6 551 6.116 5.170<br />

HIGH 14.532 5.019 1.453 1.634 21.156 20.539 19 059 21.156 20.539 19.059<br />

WGHTD AVE 7.990 2.269 0.746 0.689 10.849 10.381 9 313 10 849 10.381 9.313<br />

LEON LOW 0.775 0.075 0 077 0.072 0.689 0 557 0 341 0 689 0.557 0.341<br />

HIGH 1.236 0.139 0.124 0.093 1.196 1 011 0 682 1.196 1.011 0.682<br />

WGHTD AVE 1.154 0.124 0.115 0.089 1.096 0 918 0 608 1 096 0.918 0.608<br />

LEVY LOW 1.238 0.153 0.124 0.095 1.245 1 073 0.754 1 243 1.073 0.757<br />

HIGH 3.790 0.980 0 381 0.299 4.865 4.529 3 913 4 826 4.544 3.876<br />

WGHTD AVE 1.461 0.198 0.145 0.112 1.525 1.342 1 002 1 525 1.342 1.002<br />

LIBERTY LOW 1.538 0.180 0.154 0.106 1.528 1.308 0 906 1 528 1.308 0.906<br />

HIGH 2.169 0.313 0 217 0.138 2.320 2.051 1 532 2 320 2.051 1.532<br />

WGHTD AVE 2.020 0.279 0 201 0.130 2.128 1.871 1 378 2.128 1.871 1.378<br />

MADISON LOW 0.617 0.059 0 062 0.063 0.538 0.438 0 263 0 542 0.435 0.264<br />

HIGH 0.765 0.078 0 076 0.071 0.708 0.580 0 374 0.714 0.576 0.378<br />

WGHTD AVE 0.695 0.068 0 069 0.067 0.621 0.504 0 314 0 621 0.504 0.314<br />

MANATEE LOW 3.116 0.586 0 312 0.213 3.634 3.320 2 679 3 634 3.320 2.679<br />

HIGH 9.641 2.911 0 964 1.108 13.662 13.226 12 243 13 662 13.226 12.243<br />

WGHTD AVE 7.178 2.030 0.729 0.740 9.881 9.496 8 637 9 881 9.496 8.637<br />

MARION LOW 1.127 0.130 0.112 0.089 1.102 0.926 0 630 1.100 0.932 0.641<br />

HIGH 1.962 0.332 0.196 0.142 2.178 1.958 1 532 2.178 1.958 1.532<br />

WGHTD AVE 1.528 0.205 0.153 0.114 1.587 1.389 1 024 1 587 1.389 1.024<br />

MARTIN LOW 7.183 1.600 0.718 0.471 8.963 8.385 7 087 8 963 8.385 7.087<br />

HIGH 19.811 6.480 1 981 2.012 28.648 27.847 25 840 28 648 27.847 25.840<br />

WGHTD AVE 15.298 4.621 1 501 1.436 21.518 20.801 19 063 21 518 20.801 19.063<br />

MIAMI-DADE LOW 11.366 2.633 1.137 0.832 14.686 13.950 12.196 14 686 13.950 12.196<br />

HIGH 30.224 10.038 3 022 3.558 44.752 43.789 41 299 44.752 43.789 41.299<br />

WGHTD AVE 15.722 4.342 1 553 1.333 21.520 20.704 18 687 21 520 20.704 18.687<br />

MONROE LOW 22.357 7.837 2 236 2.442 33.582 32.808 30 835 33 582 32.808 30.835<br />

HIGH 31.494 10.490 3.149 3.589 46.610 45.630 43 021 46 610 45.630 43.021<br />

WGHTD AVE 28.269 9.846 2.774 3.135 42.178 41.264 38 853 42.178 41.264 38.853<br />

NASSAU LOW 0.689 0.070 0 070 0.063 0.637 0.518 0 334 0 634 0.526 0.336<br />

HIGH 1.606 0.287 0.161 0.123 1.814 1.636 1 297 1 814 1.636 1.297<br />

WGHTD AVE 0.902 0.114 0 092 0.077 0.914 0.775 0 550 0 908 0.775 0.550<br />

*Includes contents and A L.E. <strong>Model</strong> USWIND 5.11 / WORLDCATenterprise 3.9 149


Output Range Loss Costs<br />

Form A-6 (2002 FHCF Exposure) LOSS COSTS PER $1,000<br />

PERSONAL RESIDENTIAL - MOBILE HOMES<br />

$0 $0 $0 DEDUCTIBLE $0 DEDUCTIBLE $500 $1,000 $2,500 1% 2% 5%<br />

DEDUCTIBLE DEDUCTIBLE APPURTENANT ADDITIONAL DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE<br />

COUNTY LOSS COSTS STRUCTURE CONTENTS STRUCTURE LIVING EXPENSE TOTAL* TOTAL* TOTAL* TOTAL* TOTAL* TOTAL*<br />

OKALOOSA LOW 3.073 0.535 0 307 0.190 3.532 3 210 2 548 3 532 3.210 2.548<br />

HIGH 15.295 5.103 1 530 1.555 22.256 21 607 19 986 22 256 21.607 19.986<br />

WGHTD AVE 7.552 2.215 0.709 0.628 10.305 9 852 8 817 10 305 9.852 8.817<br />

OKEECHOBEE LOW 4.555 0.831 0.455 0.284 5.299 4 845 3 892 5 299 4.845 3.892<br />

HIGH 5.251 0.969 0 525 0.331 6.186 5 697 4 651 6.186 5.697 4.651<br />

WGHTD AVE 4.573 0.835 0.457 0.285 5.323 4 867 3 912 5 323 4.867 3.912<br />

ORANGE LOW 1.816 0.238 0.182 0.125 1.880 1 642 1.195 1 880 1.642 1.195<br />

HIGH 2.745 0.467 0 275 0.182 3.102 2 803 2 205 3.102 2.803 2.205<br />

WGHTD AVE 2.227 0.335 0 224 0.150 2.407 2.140 1 622 2.407 2.140 1.622<br />

OSCEOLA LOW 1.964 0.263 0.196 0.134 2.048 1.794 1 314 2 048 1.794 1.314<br />

HIGH 3.699 0.667 0 370 0.239 4.267 3 886 3.103 4 267 3.886 3.103<br />

WGHTD AVE 2.726 0.427 0 280 0.180 3.013 2.708 2.101 3 013 2.708 2.101<br />

PALM BEACH LOW 6.486 1.290 0 649 0.408 7.840 7 270 6 014 7 840 7.270 6.014<br />

HIGH 24.974 8.130 2.497 2.787 36.504 35.612 33 341 36 504 35.612 33.341<br />

WGHTD AVE 16.403 4.849 1 506 1.574 22.946 22.168 20 267 22 946 22.168 20.267<br />

PASCO LOW 2.239 0.388 0 224 0.159 2.522 2 272 1.782 2 522 2.272 1.782<br />

HIGH 5.961 1.640 0 596 0.595 8.047 7 686 6 898 8 047 7.686 6.898<br />

WGHTD AVE 3.255 0.701 0 318 0.249 3.967 3 679 3 089 3 967 3.679 3.089<br />

PINELLAS LOW 3.797 0.910 0 380 0.293 4.805 4 500 3 859 4 805 4.500 3.859<br />

HIGH 8.611 2.571 0 861 0.916 12.105 11.685 10.723 12.105 11.685 10.723<br />

WGHTD AVE 6.113 1.668 0 615 0.619 8.269 7 906 7.109 8 269 7.906 7.109<br />

POLK LOW 2.089 0.297 0 209 0.142 2.219 1 960 1.465 2 219 1.960 1.465<br />

HIGH 3.012 0.521 0 301 0.204 3.359 3.043 2.409 3 359 3.043 2.409<br />

WGHTD AVE 2.653 0.438 0 264 0.182 2.970 2.677 2 096 2 970 2.677 2.096<br />

PUTNAM LOW 1.029 0.113 0.103 0.083 0.987 0.832 0 560 0 987 0.832 0.560<br />

HIGH 1.462 0.184 0.146 0.107 1.490 1.296 0 938 1.490 1.296 0.938<br />

WGHTD AVE 1.185 0.142 0.118 0.092 1.173 1.004 0.700 1.173 1.004 0.700<br />

SA NT JOHNS LOW 0.886 0.097 0 089 0.075 0.849 0.718 0.488 0 849 0.718 0.488<br />

HIGH 2.555 0.587 0 256 0.198 3.133 2.902 2.437 3.133 2.902 2.437<br />

WGHTD AVE 1.373 0.214 0.138 0.107 1.469 1.318 0 984 1.467 1.294 1.000<br />

SA NT LUC E LOW 6.019 1.251 0 602 0.385 7.335 6.815 5 674 7 335 6.815 5.674<br />

HIGH 17.148 5.795 1.715 1.694 24.963 24.252 22 503 24 963 24.252 22.503<br />

WGHTD AVE 12.212 3.584 1 215 1.108 16.941 16.301 14.775 16 941 16.301 14.775<br />

SANTA ROSA LOW 2.129 0.296 0 213 0.129 2.282 2.020 1 510 2 282 2.020 1.510<br />

HIGH 17.112 5.912 1.711 1.708 25.155 24.473 22.758 25.155 24.473 22.758<br />

WGHTD AVE 9.033 2.735 0 912 0.789 12.581 12.069 10 874 12 581 12.069 10.874<br />

SARASOTA LOW 6.093 1.537 0 609 0.524 8.083 7.728 6 942 8 083 7.728 6.942<br />

HIGH 11.296 3.658 1.130 1.346 16.215 15.758 14 682 16 215 15.758 14.682<br />

WGHTD AVE 8.299 2.539 0 842 0.824 11.667 11.245 10 278 11 667 11.245 10.278<br />

SEM NOLE LOW 1.905 0.260 0.190 0.129 1.995 1.751 1 288 1 995 1.751 1.288<br />

HIGH 2.586 0.425 0 259 0.174 2.904 2.621 2 060 2 904 2.621 2.060<br />

WGHTD AVE 2.224 0.342 0 226 0.149 2.426 2.163 1 652 2.426 2.163 1.652<br />

SUMTER LOW 1.744 0.249 0.174 0.125 1.841 1.620 1 205 1 841 1.620 1.205<br />

HIGH 1.957 0.306 0.196 0.138 2.127 1.892 1.441 2.127 1.892 1.441<br />

WGHTD AVE 1.844 0.276 0.186 0.131 1.977 1.751 1 320 1 977 1.751 1.320<br />

*Includes contents and A L.E. <strong>Model</strong> USWIND 5.11 / WORLDCATenterprise 3.9 150


Output Range Loss Costs<br />

Form A-6 (2002 FHCF Exposure) LOSS COSTS PER $1,000<br />

PERSONAL RESIDENTIAL - MOBILE HOMES<br />

$0 $0 $0 DEDUCTIBLE $0 DEDUCTIBLE $500 $1,000 $2,500 1% 2% 5%<br />

DEDUCTIBLE DEDUCTIBLE APPURTENANT ADDITIONAL DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE<br />

COUNTY LOSS COSTS STRUCTURE CONTENTS STRUCTURE LIVING EXPENSE TOTAL* TOTAL* TOTAL* TOTAL* TOTAL* TOTAL*<br />

SUWANNEE LOW 0.545 0.051 0 055 0.061 0.469 0 368 0 214 0.463 0.365 0.213<br />

HIGH 0.798 0.082 0 080 0.075 0.733 0 610 0 396 0.739 0.608 0.396<br />

WGHTD AVE 0.600 0.059 0 060 0.064 0.534 0.424 0 256 0 526 0.426 0.258<br />

TAYLOR LOW 0.837 0.085 0 084 0.074 0.772 0 639 0.414 0.772 0.639 0.414<br />

HIGH 1.111 0.133 0.111 0.091 1.114 0 935 0 658 1 099 0.945 0.658<br />

WGHTD AVE 1.042 0.115 0.104 0.085 1.002 0 847 0 575 1 002 0.847 0.575<br />

UNION LOW 0.801 0.083 0 080 0.072 0.750 0 612 0.403 0.751 0.608 0.402<br />

HIGH 0.875 0.091 0 088 0.077 0.824 0 685 0.458 0 818 0.685 0.458<br />

WGHTD AVE 0.822 0.085 0 082 0.074 0.777 0 633 0.419 0.769 0.634 0.420<br />

VOLUSIA LOW 1.515 0.183 0.152 0.109 1.557 1 361 0 988 1 557 1.361 0.988<br />

HIGH 4.935 1.430 0.494 0.408 6.614 6 284 5 548 6 630 6.284 5.548<br />

WGHTD AVE 3.060 0.720 0 317 0.235 3.808 3 538 2 988 3 808 3.538 2.988<br />

WAKULLA LOW 1.624 0.198 0.162 0.112 1.631 1.405 0 987 1 631 1.405 0.987<br />

HIGH 2.103 0.344 0 210 0.147 2.311 2 060 1 578 2 311 2.060 1.578<br />

WGHTD AVE 1.707 0.216 0.171 0.118 1.745 1 515 1 085 1.745 1.515 1.085<br />

WALTON LOW 2.131 0.304 0 213 0.131 2.292 2 032 1 524 2 292 2.032 1.524<br />

HIGH 14.087 4.729 1.409 1.345 20.443 19.810 18 243 20.443 19.810 18.243<br />

WGHTD AVE 6.225 1.621 0 576 0.510 8.194 7.774 6 839 8.194 7.774 6.839<br />

WASHINGTON LOW 2.850 0.469 0 285 0.177 3.218 2 911 2 286 3 218 2.911 2.286<br />

HIGH 4.980 1.143 0.498 0.336 6.244 5 836 4 942 6 244 5.836 4.942<br />

WGHTD AVE 3.148 0.560 0 313 0.197 3.633 3 310 2 644 3 633 3.310 2.644<br />

<strong>State</strong>wide LOW 0.510 0.047 0 051 0.054 0.429 0 339 0.192 0.429 0.333 0.194<br />

HIGH 31.494 10.490 3.149 3.589 46.610 45.630 43 021 46 610 45.630 43.021<br />

WGHTD AVE 5.145 1.351 0.455 0.458 6.769 6.419 5 658 6.769 6.419 5.658<br />

*Includes contents and A L.E. <strong>Model</strong> USWIND 5.11 / WORLDCATenterprise 3.9 151


Output Range Loss Costs<br />

Form A-6 (2002 FHCF Exposure) LOSS COSTS PER $1,000<br />

PERSONAL RESIDENTIAL - Renters -- FRAME<br />

$0 $0 DEDUCTIBLE $500 $1,000 $2,500 1% 2% 5%<br />

DEDUCTIBLE ADDITIONAL DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE<br />

COUNTY LOSS COSTS CONTENTS LIVING EXPENSE TOTAL* TOTAL* TOTAL* TOTAL* TOTAL* TOTAL*<br />

ALACHUA LOW 0.117 0.129 0.040 0 019 0.004 0 046 0 040 0 014<br />

HIGH 0.181 0.150 0.078 0 043 0.013 0 081 0 078 0 034<br />

WGHTD AVE 0.140 0.136 0.054 0 027 0.007 0 059 0 054 0 021<br />

BAKER LOW 0 066 0.100 0.016 0 006 0.001 0 022 0 016 0 004<br />

HIGH 0.112 0.123 0.038 0 018 0.004 0 043 0 038 0 013<br />

WGHTD AVE 0.109 0.123 0.036 0 017 0.003 0 042 0 036 0 012<br />

BAY LOW 0.421 0.189 0.233 0.151 0.064 0 228 0 233 0.127<br />

HIGH 3.732 0 849 3.730 3 375 2.709 3 697 3.730 3 233<br />

WGHTD AVE 2 696 0 623 2.542 2 257 1.754 2 511 2 542 2.148<br />

BRADFORD LOW 0.115 0.125 0.038 0 017 0.003 0 043 0 039 0 013<br />

HIGH 0.121 0.131 0.042 0 020 0.004 0 050 0 042 0 015<br />

WGHTD AVE 0.118 0.127 0.040 0 018 0.004 0 046 0 040 0 013<br />

BREVARD LOW 0 563 0 223 0.399 0 300 0.175 0 397 0 398 0 273<br />

HIGH 3 552 0 847 3.572 3 248 2.628 3 559 3 572 3.118<br />

WGHTD AVE 1 917 0 510 1.761 1 545 1.176 1.755 1.761 1.463<br />

BROWARD LOW 1 886 0 534 1.495 1.174 0.708 1.451 1.495 1 061<br />

HIGH 7 946 2 030 8.553 7 897 6.557 8.472 8 553 7 623<br />

WGHTD AVE 3 821 0 878 3.625 3.181 2.405 3 576 3 625 3 010<br />

CALHOUN LOW 0 346 0.180 0.174 0.107 0.041 0.175 0.174 0 089<br />

HIGH 0.464 0 201 0.268 0.179 0.081 0 266 0 268 0.153<br />

WGHTD AVE 0 354 0.181 0.179 0.111 0.042 0.179 0.179 0 091<br />

CHARLOTTE LOW 0 949 0 303 0.729 0 578 0.359 0.724 0.729 0 525<br />

HIGH 3 630 0 903 3.770 3.465 2.854 3.747 3.770 3 342<br />

WGHTD AVE 2.437 0 637 2.390 2.146 1.697 2 372 2 390 2 050<br />

CITRUS LOW 0 278 0.166 0.151 0 098 0.042 0.157 0.152 0 083<br />

HIGH 0 563 0 234 0.415 0 323 0.198 0.418 0.415 0 292<br />

WGHTD AVE 0 371 0.191 0.221 0.155 0.077 0 224 0 221 0.134<br />

CLAY LOW 0 097 0.113 0.030 0 013 0.002 0 037 0 031 0 009<br />

HIGH 0.130 0.132 0.045 0 021 0.004 0 052 0 045 0 016<br />

WGHTD AVE 0.108 0.119 0.036 0 016 0.003 0 041 0 036 0 012<br />

COLL ER LOW 1 042 0 330 0.743 0 561 0.315 0.725 0.743 0 500<br />

HIGH 5 369 1 208 5.539 5 085 4.179 5.490 5 539 4 899<br />

WGHTD AVE 3 030 0.703 2.852 2 542 1.982 2 826 2 852 2.421<br />

COLUMBIA LOW 0 079 0.117 0.021 0 008 0.001 0 027 0 021 0 005<br />

HIGH 0.106 0.127 0.034 0 015 0.003 0 041 0 034 0 011<br />

WGHTD AVE 0 082 0.119 0.022 0 008 0.001 0 028 0 022 0 006<br />

DESOTO LOW 0 835 0 284 0.622 0.485 0.293 0 611 0 622 0.439<br />

HIGH 0 860 0 290 0.652 0 511 0.309 0 645 0 652 0.462<br />

WGHTD AVE 0 836 0 284 0.623 0.486 0.294 0 611 0 623 0.439<br />

DIXIE LOW 0.162 0.142 0.065 0 033 0.008 0 071 0 065 0 025<br />

HIGH 0.466 0 218 0.312 0 235 0.132 0 316 0 310 0 208<br />

WGHTD AVE 0 315 0.182 0.157 0.107 0.053 0.159 0.156 0 092<br />

*Includes contents and A L.E. <strong>Model</strong> USWIND 5.11 / WORLDCATenterprise 3.9 152


Output Range Loss Costs<br />

Form A-6 (2002 FHCF Exposure) LOSS COSTS PER $1,000<br />

PERSONAL RESIDENTIAL - Renters -- FRAME<br />

$0 $0 DEDUCTIBLE $500 $1,000 $2,500 1% 2% 5%<br />

DEDUCTIBLE ADDITIONAL DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE<br />

COUNTY LOSS COSTS CONTENTS LIVING EXPENSE TOTAL* TOTAL* TOTAL* TOTAL* TOTAL* TOTAL*<br />

DUVAL LOW 0 096 0.112 0.030 0 013 0.002 0 037 0 030 0 009<br />

HIGH 0 311 0.166 0.204 0.150 0.082 0 204 0 202 0.132<br />

WGHTD AVE 0.135 0.125 0.060 0 034 0.012 0 066 0 060 0 027<br />

ESCAMBIA LOW 0 352 0.167 0.181 0.111 0.041 0.184 0.181 0 091<br />

HIGH 5.163 1.156 5.320 4 873 3.979 5 267 5 320 4 690<br />

WGHTD AVE 2 873 0 649 2.725 2.413 1.853 2 697 2.725 2 292<br />

FLAGLER LOW 0 201 0.146 0.095 0 054 0.017 0 095 0 093 0 044<br />

HIGH 0 591 0 218 0.460 0 375 0.246 0.464 0.461 0 345<br />

WGHTD AVE 0 372 0.179 0.240 0.177 0.102 0 241 0 240 0.160<br />

FRANKLIN LOW 0.711 0 258 0.501 0 384 0.231 0 502 0 501 0 346<br />

HIGH 2 513 0 617 2.383 2.107 1.623 2 365 2 383 2 002<br />

WGHTD AVE 2 098 0 555 1.977 1.728 1.305 1 958 1 977 1 634<br />

GADSDEN LOW 0.131 0.138 0.040 0 017 0.003 0 046 0 040 0 012<br />

HIGH 0.180 0.150 0.067 0 034 0.009 0 073 0 067 0 026<br />

WGHTD AVE 0.156 0.144 0.052 0 025 0.006 0 059 0 052 0 018<br />

GILCHRIST LOW 0.128 0.134 0.045 0 021 0.004 0 050 0 045 0 015<br />

HIGH 0.157 0.141 0.062 0 032 0.008 0 068 0 062 0 024<br />

WGHTD AVE 0.152 0.140 0.057 0 029 0.007 0 064 0 058 0 022<br />

GLADES LOW 0.741 0 284 0.448 0 308 0.146 0.452 0.448 0 264<br />

HIGH 0 845 0 307 0.537 0 381 0.192 0 540 0 537 0 331<br />

WGHTD AVE 0 820 0 303 0.513 0 361 0.179 0 516 0 513 0 313<br />

GULF LOW 0 567 0 219 0.349 0 243 0.119 0 349 0 349 0 210<br />

HIGH 3 245 0.757 3.186 2 858 2.260 3.151 3.186 2.730<br />

WGHTD AVE 2 006 0.487 1.883 1 657 1.277 1 867 1 883 1 573<br />

HAM LTON LOW 0 066 0.111 0.016 0 005 0.000 0 022 0 016 0 003<br />

HIGH 0 075 0.112 0.021 0 008 0.001 0 027 0 021 0 005<br />

WGHTD AVE 0 068 0.111 0.017 0 006 0.001 0 024 0 017 0 004<br />

HARDEE LOW 0 563 0 245 0.363 0 259 0.131 0 363 0 363 0 226<br />

HIGH 0 609 0 254 0.405 0 295 0.155 0.402 0.405 0 260<br />

WGHTD AVE 0 574 0 246 0.372 0 267 0.136 0 371 0 372 0 233<br />

HENDRY LOW 0 807 0 291 0.531 0 388 0.195 0 534 0 531 0 341<br />

HIGH 0 946 0 323 0.654 0.484 0.263 0 642 0 654 0.428<br />

WGHTD AVE 0 847 0 301 0.546 0 392 0.203 0 545 0 546 0 343<br />

HERNANDO LOW 0 299 0.172 0.165 0.108 0.048 0.169 0.165 0 092<br />

HIGH 0 678 0 251 0.521 0.416 0.267 0 522 0 521 0 380<br />

WGHTD AVE 0.425 0.196 0.289 0 214 0.121 0 290 0 289 0.190<br />

HIGHLANDS LOW 0.478 0 230 0.267 0.176 0.076 0 269 0 267 0.148<br />

HIGH 0 654 0 273 0.413 0 292 0.146 0.406 0.413 0 254<br />

WGHTD AVE 0 559 0 250 0.333 0 228 0.107 0 333 0 333 0.195<br />

HILLSBOROUGH LOW 0.443 0 209 0.269 0.186 0.089 0 272 0 269 0.160<br />

HIGH 1 838 0 594 1.858 1 665 1.322 1 849 1 858 1 591<br />

WGHTD AVE 0 894 0 323 0.756 0 633 0.448 0.757 0.756 0 590<br />

HOLMES LOW 0 300 0.165 0.148 0 090 0.033 0.150 0.148 0 073<br />

HIGH 0 399 0.180 0.218 0.141 0.058 0 217 0 218 0.118<br />

WGHTD AVE 0 389 0.179 0.206 0.132 0.054 0 207 0 206 0.110<br />

*Includes contents and A L.E. <strong>Model</strong> USWIND 5.11 / WORLDCATenterprise 3.9 153


Output Range Loss Costs<br />

Form A-6 (2002 FHCF Exposure) LOSS COSTS PER $1,000<br />

PERSONAL RESIDENTIAL - Renters -- FRAME<br />

$0 $0 DEDUCTIBLE $500 $1,000 $2,500 1% 2% 5%<br />

DEDUCTIBLE ADDITIONAL DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE<br />

COUNTY LOSS COSTS CONTENTS LIVING EXPENSE TOTAL* TOTAL* TOTAL* TOTAL* TOTAL* TOTAL*<br />

INDIAN RIVER LOW 1 028 0 315 0.754 0 581 0.346 0.756 0.754 0 524<br />

HIGH 4.413 1.122 4.597 4.199 3.424 4 568 4 597 4 038<br />

WGHTD AVE 3 074 0.744 2.969 2 645 2.042 2 985 2 969 2 518<br />

JACKSON LOW 0 206 0.151 0.083 0 044 0.012 0 086 0 083 0 035<br />

HIGH 0 307 0.169 0.150 0 091 0.034 0.151 0.150 0 075<br />

WGHTD AVE 0 253 0.161 0.115 0 065 0.021 0.119 0.115 0 052<br />

JEFFERSON LOW 0.110 0.128 0.033 0 014 0.002 0 040 0 033 0 010<br />

HIGH 0.127 0.134 0.040 0 017 0.003 0 048 0 040 0 012<br />

WGHTD AVE 0.111 0.129 0.033 0 014 0.002 0 041 0 033 0 010<br />

LAFAYETTE LOW 0.104 0.124 0.033 0 014 0.002 0 038 0 033 0 010<br />

HIGH 0.109 0.128 0.036 0 016 0.003 0 044 0 036 0 011<br />

WGHTD AVE 0.108 0.127 0.035 0 015 0.003 0 042 0 035 0 011<br />

LAKE LOW 0.190 0.151 0.076 0 040 0.011 0 083 0 076 0 031<br />

HIGH 0 353 0 200 0.184 0.116 0.046 0.191 0.184 0 096<br />

WGHTD AVE 0 306 0.186 0.148 0 091 0.035 0.154 0.148 0 075<br />

LEE LOW 0 904 0 303 0.649 0.494 0.282 0 643 0 649 0.442<br />

HIGH 4.432 1 086 4.591 4 233 3.515 4 556 4 591 4 085<br />

WGHTD AVE 2.161 0 520 1.988 1.745 1.325 1 969 1 988 1 653<br />

LEON LOW 0.101 0.127 0.028 0 011 0.002 0 035 0 028 0 008<br />

HIGH 0.170 0.149 0.061 0 030 0.007 0 070 0 061 0 023<br />

WGHTD AVE 0.139 0.139 0.046 0 021 0.004 0 054 0 046 0 015<br />

LEVY LOW 0.176 0.145 0.074 0 039 0.011 0 079 0 073 0 031<br />

HIGH 0.738 0 266 0.589 0.473 0.316 0 583 0 586 0.435<br />

WGHTD AVE 0 229 0.159 0.098 0 059 0.022 0.105 0 099 0 048<br />

LIBERTY LOW 0 214 0.158 0.083 0 043 0.011 0 092 0 083 0 033<br />

HIGH 0 321 0.177 0.156 0 094 0.034 0.161 0.156 0 077<br />

WGHTD AVE 0 304 0.174 0.136 0 080 0.028 0.140 0.136 0 064<br />

MADISON LOW 0 081 0.114 0.022 0 008 0.001 0 029 0 022 0 006<br />

HIGH 0.102 0.123 0.033 0 015 0.003 0 040 0 033 0 011<br />

WGHTD AVE 0 092 0.120 0.027 0 011 0.002 0 034 0 027 0 008<br />

MANATEE LOW 0 500 0 223 0.309 0 216 0.104 0 307 0 309 0.186<br />

HIGH 2 504 0.750 2.610 2 370 1.920 2 593 2 610 2 276<br />

WGHTD AVE 1 682 0 528 1.721 1 528 1.187 1.709 1.721 1.454<br />

MARION LOW 0.156 0.142 0.059 0 030 0.007 0 060 0 059 0 023<br />

HIGH 0 301 0.179 0.170 0.112 0.049 0.174 0.170 0 095<br />

WGHTD AVE 0 211 0.157 0.099 0 058 0.020 0.106 0 099 0 047<br />

MARTIN LOW 1 271 0 370 0.917 0 699 0.402 0 918 0 917 0 625<br />

HIGH 5.446 1 293 5.589 5.108 4.164 5 552 5 589 4 913<br />

WGHTD AVE 3 806 0 899 3.707 3 314 2.594 3 680 3.707 3.159<br />

MIAMI-DADE LOW 1 993 0 527 1.581 1 249 0.760 1 529 1 581 1.130<br />

HIGH 8 965 2 323 9.797 9 087 7.604 9.700 9.797 8.787<br />

WGHTD AVE 5 580 1 363 5.740 5.188 4.137 5 672 5.740 4 966<br />

MONROE LOW 6.705 1 595 7.192 6 635 5.485 7.113 7.192 6.403<br />

HIGH 8 855 2 205 9.531 8.778 7.207 9.420 9 531 8.459<br />

WGHTD AVE 8.124 1 833 8.675 8 001 6.593 8 567 8 675 7.716<br />

NASSAU LOW 0 092 0.110 0.029 0 013 0.002 0 035 0 029 0 009<br />

HIGH 0 249 0.151 0.146 0 099 0.045 0.151 0.146 0 085<br />

WGHTD AVE 0 230 0.144 0.135 0 092 0.042 0.141 0.135 0 079<br />

*Includes contents and A L.E. <strong>Model</strong> USWIND 5.11 / WORLDCATenterprise 3.9 154


Output Range Loss Costs<br />

Form A-6 (2002 FHCF Exposure) LOSS COSTS PER $1,000<br />

PERSONAL RESIDENTIAL - Renters -- FRAME<br />

$0 $0 DEDUCTIBLE $500 $1,000 $2,500 1% 2% 5%<br />

DEDUCTIBLE ADDITIONAL DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE<br />

COUNTY LOSS COSTS CONTENTS LIVING EXPENSE TOTAL* TOTAL* TOTAL* TOTAL* TOTAL* TOTAL*<br />

OKALOOSA LOW 0.482 0.193 0.283 0.189 0.084 0 284 0 283 0.161<br />

HIGH 4 388 1 030 4.481 4 080 3.310 4.443 4.481 3 919<br />

WGHTD AVE 3 258 0.750 3.252 2 930 2.336 3 226 3 252 2 803<br />

OKEECHOBEE LOW 0.734 0 281 0.447 0 309 0.149 0.453 0.447 0 266<br />

HIGH 0 838 0 306 0.530 0 375 0.187 0 534 0 530 0 325<br />

WGHTD AVE 0.738 0 281 0.449 0 311 0.150 0.454 0.449 0 268<br />

ORANGE LOW 0 261 0.173 0.117 0 067 0.021 0.124 0.117 0 053<br />

HIGH 0.424 0 205 0.241 0.165 0.077 0 249 0 242 0.141<br />

WGHTD AVE 0 338 0.193 0.172 0.107 0.041 0.177 0.172 0 088<br />

OSCEOLA LOW 0 283 0.184 0.130 0 075 0.026 0.137 0.130 0 060<br />

HIGH 0 593 0 249 0.357 0 246 0.119 0 360 0 357 0 213<br />

WGHTD AVE 0 370 0 204 0.199 0.126 0.051 0 204 0.199 0.105<br />

PALM BEACH LOW 1 077 0 349 0.714 0 516 0.269 0.706 0.714 0.452<br />

HIGH 7 066 1.782 7.509 6 905 5.689 7.444 7 509 6 656<br />

WGHTD AVE 4 243 0 983 4.037 3 594 2.792 3 998 4 037 3.421<br />

PASCO LOW 0 348 0.188 0.197 0.131 0.058 0 202 0.197 0.111<br />

HIGH 1 324 0.422 1.225 1 073 0.821 1 221 1 225 1 017<br />

WGHTD AVE 0.736 0 272 0.566 0.459 0.307 0 569 0 566 0.423<br />

P NELLAS LOW 0 695 0 256 0.535 0.425 0.270 0 538 0 535 0 388<br />

HIGH 2.173 0 658 2.217 1 999 1.597 2 203 2 217 1 913<br />

WGHTD AVE 1.481 0.469 1.429 1 257 0.964 1.424 1.429 1.192<br />

POLK LOW 0 306 0.188 0.149 0 090 0.032 0.152 0.149 0 073<br />

HIGH 0.465 0 228 0.273 0.186 0.088 0 280 0 273 0.160<br />

WGHTD AVE 0.406 0 210 0.228 0.151 0.067 0 232 0 228 0.128<br />

PUTNAM LOW 0.140 0.133 0.050 0 024 0.005 0 056 0 050 0 018<br />

HIGH 0 207 0.153 0.092 0 052 0.017 0 097 0 092 0 042<br />

WGHTD AVE 0.156 0.139 0.062 0 032 0.009 0 068 0 062 0 025<br />

SA NT JOHNS LOW 0.120 0.122 0.044 0 022 0.005 0 050 0 044 0 016<br />

HIGH 0.455 0 200 0.328 0 254 0.157 0 327 0 328 0 230<br />

WGHTD AVE 0 275 0.158 0.161 0.112 0.056 0.161 0.159 0 097<br />

SA NT LUC E LOW 1 021 0 326 0.696 0 512 0.278 0 699 0 696 0.452<br />

HIGH 5 083 1.153 5.183 4.708 3.883 5.177 5.186 4 567<br />

WGHTD AVE 2 548 0 619 2.341 2 026 1.496 2 328 2 341 1 908<br />

SANTA ROSA LOW 0 313 0.160 0.152 0 089 0.029 0.154 0.152 0 072<br />

HIGH 5 080 1.140 5.231 4.789 3.907 5.176 5 231 4 608<br />

WGHTD AVE 2 639 0 645 2.636 2 344 1.824 2 612 2 636 2 231<br />

SARASOTA LOW 1.112 0 373 0.990 0 831 0.576 0 977 0 990 0.773<br />

HIGH 3.185 0 866 3.290 3 014 2.473 3 269 3 290 2 902<br />

WGHTD AVE 2.148 0 617 2.128 1 911 1.513 2.112 2.128 1 826<br />

SEMINOLE LOW 0 277 0.175 0.128 0 075 0.025 0.134 0.128 0 060<br />

HIGH 0 390 0.197 0.220 0.144 0.062 0 223 0 220 0.122<br />

WGHTD AVE 0 306 0.181 0.152 0 092 0.034 0.157 0.152 0 076<br />

SUMTER LOW 0 256 0.171 0.124 0 074 0.027 0.130 0.124 0 060<br />

HIGH 0 295 0.178 0.154 0 097 0.040 0.163 0.154 0 081<br />

WGHTD AVE 0 267 0.172 0.131 0 080 0.030 0.137 0.131 0 066<br />

*Includes contents and A L.E. <strong>Model</strong> USWIND 5.11 / WORLDCATenterprise 3.9 155


Output Range Loss Costs<br />

Form A-6 (2002 FHCF Exposure) LOSS COSTS PER $1,000<br />

PERSONAL RESIDENTIAL - Renters -- FRAME<br />

$0 $0 DEDUCTIBLE $500 $1,000 $2,500 1% 2% 5%<br />

DEDUCTIBLE ADDITIONAL DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE<br />

COUNTY LOSS COSTS CONTENTS LIVING EXPENSE TOTAL* TOTAL* TOTAL* TOTAL* TOTAL* TOTAL*<br />

SUWANNEE LOW 0 071 0.114 0.018 0 006 0.001 0 025 0 018 0 004<br />

HIGH 0.108 0.129 0.035 0 016 0.003 0 043 0 035 0 011<br />

WGHTD AVE 0 077 0.117 0.020 0 007 0.001 0 027 0 020 0 005<br />

TAYLOR LOW 0.111 0.126 0.036 0 015 0.003 0 043 0 036 0 011<br />

HIGH 0.156 0.144 0.063 0 033 0.008 0 069 0 063 0 025<br />

WGHTD AVE 0.144 0.137 0.053 0 025 0.006 0 060 0 052 0 019<br />

UNION LOW 0.107 0.124 0.035 0 016 0.003 0 043 0 035 0 011<br />

HIGH 0.118 0.130 0.041 0 019 0.004 0 049 0 040 0 014<br />

WGHTD AVE 0.110 0.126 0.037 0 017 0.003 0 044 0 037 0 012<br />

VOLUSIA LOW 0 206 0.155 0.092 0 052 0.016 0.100 0 092 0 041<br />

HIGH 1.138 0 335 1.015 0 882 0.651 1 011 1 016 0 828<br />

WGHTD AVE 0 544 0 220 0.402 0 318 0.205 0.408 0.402 0 290<br />

WAKULLA LOW 0 230 0.163 0.093 0 050 0.014 0.102 0 093 0 039<br />

HIGH 0 319 0.184 0.169 0.110 0.048 0.175 0.169 0 093<br />

WGHTD AVE 0 250 0.169 0.111 0 063 0.021 0.119 0.111 0 050<br />

WALTON LOW 0 315 0.162 0.155 0 092 0.032 0.157 0.155 0 075<br />

HIGH 4.107 0 928 4.155 3.781 3.066 4.120 4.155 3 632<br />

WGHTD AVE 2 960 0.704 2.795 2 509 1.992 2.775 2.795 2 398<br />

WASHINGTON LOW 0.435 0.190 0.244 0.160 0.067 0 238 0 244 0.134<br />

HIGH 0 891 0 270 0.651 0 501 0.297 0 641 0 651 0.451<br />

WGHTD AVE 0.458 0.191 0.278 0.187 0.085 0 272 0 278 0.159<br />

<strong>State</strong>wide LOW 0 066 0.100 0.016 0 005 0.000 0 022 0 016 0 003<br />

HIGH 8 965 2 323 9.797 9 087 7.604 9.700 9.797 8.787<br />

WGHTD AVE 1 087 0 324 0.947 0 821 0.619 0 947 0 947 0.775<br />

*Includes contents and A L.E. <strong>Model</strong> USWIND 5.11 / WORLDCATenterprise 3.9 156


Output Range Loss Costs<br />

Form A-6 (2002 FHCF Exposure) LOSS COSTS PER $1,000<br />

PERSONAL RESIDENTIAL - Renters -- MASONRY<br />

0% $0 DEDUCTIBLE $500 $1,000 $2,500 1% 2% 5%<br />

DEDUCTIBLE ADDITIONAL DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE<br />

COUNTY LOSS COSTS CONTENTS LIVING EXPENSE TOTAL* TOTAL* TOTAL* TOTAL* TOTAL* TOTAL*<br />

ALACHUA LOW 0.087 0.124 0.023 0.009 0.001 0.030 0 023 0 006<br />

HIGH 0.133 0.142 0.047 0.023 0.006 0.052 0 047 0 017<br />

WGHTD AVE 0.103 0.129 0.032 0.014 0.003 0.038 0 032 0 010<br />

BAKER LOW 0.050 0.099 0.010 0.003 0.000 0.015 0 010 0 002<br />

HIGH 0.084 0.118 0.023 0.009 0.001 0.027 0 023 0 006<br />

WGHTD AVE 0.082 0.117 0.021 0.008 0.001 0.026 0 021 0 005<br />

BAY LOW 0.307 0.166 0.143 0.085 0.031 0.144 0.143 0 069<br />

HIGH 3.053 0.669 2.976 2.689 2.159 2.955 2 976 2 576<br />

WGHTD AVE 2.529 0.497 2.250 2.007 1.576 2.227 2 250 1 913<br />

BRADFORD LOW 0.086 0.120 0.022 0.008 0.001 0.028 0 023 0 006<br />

HIGH 0.090 0.126 0.025 0.010 0.002 0.032 0 025 0 007<br />

WGHTD AVE 0.088 0.123 0.023 0.009 0.001 0.030 0 023 0 006<br />

BREVARD LOW 0.429 0.192 0.281 0.207 0.120 0.279 0 280 0.187<br />

HIGH 2.925 0.668 2.851 2.611 2.118 2.882 2 884 2 505<br />

WGHTD AVE 1.673 0.425 1.495 1.316 1.012 1.494 1.495 1 249<br />

BROWARD LOW 1.405 0.401 1.015 0.775 0.453 0.992 1 015 0 694<br />

HIGH 6.739 1.612 7.090 6.543 5.437 7.033 7 090 6 317<br />

WGHTD AVE 2.974 0.646 2.650 2.304 1.727 2.622 2 650 2.174<br />

CALHOUN LOW 0.256 0.161 0.108 0.061 0.020 0.112 0.108 0 049<br />

HIGH 0.340 0.176 0.168 0.105 0.043 0.171 0.168 0 087<br />

WGHTD AVE 0.262 0.163 0.110 0.062 0.021 0.114 0.110 0 050<br />

CHARLOTTE LOW 0.723 0.252 0.516 0.400 0.243 0.515 0 516 0 362<br />

HIGH 3.027 0.729 3.079 2.824 2.323 3.064 3 079 2.721<br />

WGHTD AVE 1.945 0.506 1.873 1.673 1.313 1.862 1 873 1 596<br />

CITRUS LOW 0.202 0.150 0.093 0.055 0.020 0.099 0 093 0 045<br />

HIGH 0.431 0.201 0.294 0.225 0.137 0.299 0 294 0 203<br />

WGHTD AVE 0.254 0.165 0.130 0.084 0.037 0.136 0.130 0 071<br />

CLAY LOW 0.072 0.110 0.018 0.006 0.001 0.024 0 018 0 004<br />

HIGH 0.097 0.127 0.027 0.011 0.002 0.034 0 027 0 007<br />

WGHTD AVE 0.082 0.116 0.021 0.008 0.001 0.027 0 021 0 005<br />

COLL ER LOW 0.778 0.269 0.502 0.368 0.199 0.495 0 502 0 324<br />

HIGH 4.482 0.971 4.540 4.162 3.419 4.507 4 540 4 009<br />

WGHTD AVE 2.643 0.593 2.395 2.134 1.667 2.380 2 395 2 033<br />

COLUMBIA LOW 0.059 0.115 0.013 0.004 0.000 0.019 0 013 0 002<br />

HIGH 0.080 0.123 0.021 0.007 0.001 0.027 0 021 0 005<br />

WGHTD AVE 0.060 0.116 0.013 0.004 0.000 0.020 0 014 0 002<br />

DESOTO LOW 0.627 0.238 0.429 0.325 0.190 0.424 0.429 0 292<br />

HIGH 0.653 0.242 0.456 0.349 0.204 0.455 0.456 0 314<br />

WGHTD AVE 0.632 0.239 0.432 0.328 0.192 0.428 0.432 0 295<br />

DIXIE LOW 0.119 0.134 0.038 0.016 0.003 0.044 0 038 0 012<br />

HIGH 0.352 0.194 0.215 0.157 0.087 0.223 0 214 0.139<br />

WGHTD AVE 0.171 0.151 0.076 0.046 0.020 0.082 0 076 0 038<br />

*Includes contents and A L.E. <strong>Model</strong> USWIND 5.11 / WORLDCATenterprise 3.9 157


Output Range Loss Costs<br />

Form A-6 (2002 FHCF Exposure) LOSS COSTS PER $1,000<br />

PERSONAL RESIDENTIAL - Renters -- MASONRY<br />

0% $0 DEDUCTIBLE $500 $1,000 $2,500 1% 2% 5%<br />

DEDUCTIBLE ADDITIONAL DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE<br />

COUNTY LOSS COSTS CONTENTS LIVING EXPENSE TOTAL* TOTAL* TOTAL* TOTAL* TOTAL* TOTAL*<br />

DUVAL LOW 0.072 0.108 0.018 0.006 0.001 0.024 0 018 0 004<br />

HIGH 0.233 0.150 0.138 0.097 0.050 0.137 0.136 0 084<br />

WGHTD AVE 0.101 0.118 0.037 0.019 0.006 0.043 0 037 0 015<br />

ESCAMBIA LOW 0.256 0.147 0.108 0.060 0.018 0.114 0.108 0 047<br />

HIGH 4.293 0.914 4.340 3.966 3.237 4.301 4 340 3 814<br />

WGHTD AVE 2.746 0.520 2.468 2.195 1.709 2.448 2.468 2 090<br />

FLAGLER LOW 0.145 0.137 0.056 0.028 0.007 0.060 0 055 0 022<br />

HIGH 0.450 0.190 0.327 0.263 0.170 0.330 0 328 0 241<br />

WGHTD AVE 0.267 0.159 0.147 0.102 0.054 0.147 0.147 0 090<br />

FRANKLIN LOW 0.540 0.219 0.351 0.264 0.158 0.356 0 351 0 236<br />

HIGH 1.993 0.469 1.807 1.585 1.210 1.802 1 807 1 502<br />

WGHTD AVE 1.477 0.410 1.233 1.061 0.788 1.226 1 233 0 999<br />

GADSDEN LOW 0.099 0.133 0.024 0.008 0.001 0.030 0 024 0 005<br />

HIGH 0.134 0.143 0.040 0.018 0.003 0.047 0 040 0 013<br />

WGHTD AVE 0.119 0.138 0.031 0.012 0.002 0.038 0 031 0 009<br />

GILCHRIST LOW 0.094 0.128 0.026 0.010 0.001 0.033 0 026 0 006<br />

HIGH 0.116 0.134 0.037 0.016 0.003 0.044 0 037 0 012<br />

WGHTD AVE 0.114 0.133 0.037 0.016 0.003 0.043 0 037 0 011<br />

GLADES LOW 0.545 0.242 0.288 0.187 0.083 0.301 0 288 0.158<br />

HIGH 0.632 0.259 0.357 0.243 0.117 0.365 0 357 0 208<br />

WGHTD AVE 0.614 0.256 0.343 0.231 0.110 0.352 0 343 0.198<br />

GULF LOW 0.420 0.188 0.228 0.151 0.069 0.232 0 228 0.129<br />

HIGH 2.637 0.591 2.508 2.246 1.776 2.484 2 508 2.144<br />

WGHTD AVE 2.010 0.422 1.939 1.723 1.350 1.924 1 939 1 641<br />

HAM LTON LOW 0.051 0.109 0.010 0.002 0.000 0.016 0 010 0 001<br />

HIGH 0.057 0.110 0.013 0.004 0.000 0.019 0 013 0 002<br />

WGHTD AVE 0.051 0.109 0.010 0.003 0.000 0.016 0 010 0 002<br />

HARDEE LOW 0.414 0.212 0.236 0.160 0.076 0.240 0 236 0.137<br />

HIGH 0.449 0.218 0.267 0.186 0.092 0.270 0 267 0.161<br />

WGHTD AVE 0.419 0.214 0.239 0.162 0.077 0.242 0 239 0.139<br />

HENDRY LOW 0.601 0.247 0.355 0.248 0.113 0.361 0 355 0 211<br />

HIGH 0.701 0.269 0.435 0.310 0.161 0.432 0.435 0 271<br />

WGHTD AVE 0.637 0.257 0.364 0.250 0.122 0.369 0 364 0 215<br />

HERNANDO LOW 0.219 0.157 0.103 0.062 0.024 0.108 0.103 0 051<br />

HIGH 0.518 0.214 0.372 0.292 0.187 0.375 0 372 0 267<br />

WGHTD AVE 0.371 0.187 0.237 0.175 0.101 0.241 0 237 0.156<br />

HIGHLANDS LOW 0.350 0.205 0.167 0.101 0.038 0.172 0.167 0 083<br />

HIGH 0.485 0.235 0.270 0.182 0.086 0.270 0 270 0.156<br />

WGHTD AVE 0.420 0.220 0.221 0.144 0.063 0.225 0 221 0.121<br />

HILLSBOROUGH LOW 0.325 0.185 0.173 0.113 0.050 0.179 0.173 0 096<br />

HIGH 1.474 0.472 1.435 1.281 1.012 1.432 1.435 1 223<br />

WGHTD AVE 0.670 0.261 0.548 0.454 0.319 0.554 0 548 0.422<br />

HOLMES LOW 0.218 0.149 0.088 0.048 0.014 0.093 0 088 0 037<br />

HIGH 0.291 0.159 0.135 0.079 0.029 0.138 0.135 0 064<br />

WGHTD AVE 0.286 0.159 0.131 0.077 0.027 0.135 0.131 0 062<br />

*Includes contents and A L.E. <strong>Model</strong> USWIND 5.11 / WORLDCATenterprise 3.9 158


Output Range Loss Costs<br />

Form A-6 (2002 FHCF Exposure) LOSS COSTS PER $1,000<br />

PERSONAL RESIDENTIAL - Renters -- MASONRY<br />

0% $0 DEDUCTIBLE $500 $1,000 $2,500 1% 2% 5%<br />

DEDUCTIBLE ADDITIONAL DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE<br />

COUNTY LOSS COSTS CONTENTS LIVING EXPENSE TOTAL* TOTAL* TOTAL* TOTAL* TOTAL* TOTAL*<br />

INDIAN RIVER LOW 0.767 0.257 0.513 0.383 0.221 0.523 0 513 0 343<br />

HIGH 3.647 0.894 3.717 3.388 2.761 3.700 3.717 3 256<br />

WGHTD AVE 2.102 0.510 1.989 1.748 1.329 1.986 1 989 1 657<br />

JACKSON LOW 0.152 0.141 0.051 0.024 0.005 0.055 0 051 0 017<br />

HIGH 0.227 0.153 0.092 0.051 0.016 0.096 0 092 0 040<br />

WGHTD AVE 0.191 0.149 0.069 0.034 0.009 0.076 0 069 0 026<br />

JEFFERSON LOW 0.082 0.124 0.019 0.006 0.001 0.026 0 019 0 004<br />

HIGH 0.095 0.130 0.023 0.008 0.001 0.031 0 023 0 005<br />

WGHTD AVE 0.083 0.125 0.019 0.006 0.001 0.027 0 019 0 004<br />

LAFAYETTE LOW 0.078 0.120 0.019 0.007 0.001 0.026 0 020 0 004<br />

HIGH 0.081 0.123 0.021 0.008 0.001 0.029 0 021 0 005<br />

WGHTD AVE 0.080 0.122 0.021 0.007 0.001 0.028 0 021 0 005<br />

LAKE LOW 0.140 0.142 0.046 0.021 0.004 0.053 0 046 0 015<br />

HIGH 0.255 0.180 0.111 0.065 0.023 0.121 0.111 0 053<br />

WGHTD AVE 0.224 0.169 0.097 0.055 0.019 0.105 0 097 0 044<br />

LEE LOW 0.675 0.251 0.440 0.324 0.178 0.442 0.440 0 286<br />

HIGH 3.714 0.871 3.800 3.499 2.897 3.772 3 800 3 377<br />

WGHTD AVE 1.629 0.415 1.417 1.227 0.911 1.407 1.417 1.156<br />

LEON LOW 0.076 0.123 0.017 0.005 0.000 0.023 0 017 0 003<br />

HIGH 0.126 0.141 0.037 0.015 0.003 0.045 0 037 0 011<br />

WGHTD AVE 0.108 0.135 0.028 0.011 0.002 0.036 0 028 0 007<br />

LEVY LOW 0.129 0.136 0.044 0.020 0.004 0.051 0 044 0 015<br />

HIGH 0.562 0.224 0.420 0.333 0.220 0.417 0.419 0 304<br />

WGHTD AVE 0.162 0.145 0.060 0.032 0.011 0.068 0 060 0 025<br />

LIBERTY LOW 0.159 0.148 0.050 0.022 0.005 0.059 0 050 0 016<br />

HIGH 0.232 0.159 0.091 0.048 0.014 0.100 0 091 0 038<br />

WGHTD AVE 0.222 0.158 0.090 0.047 0.014 0.098 0 090 0 037<br />

MADISON LOW 0.061 0.112 0.014 0.004 0.000 0.021 0 013 0 002<br />

HIGH 0.076 0.120 0.019 0.007 0.001 0.027 0 020 0 005<br />

WGHTD AVE 0.068 0.116 0.016 0.005 0.000 0.023 0 016 0 003<br />

MANATEE LOW 0.365 0.197 0.198 0.130 0.057 0.201 0.198 0.110<br />

HIGH 2.019 0.579 2.023 1.830 1.473 2.014 2 023 1.755<br />

WGHTD AVE 1.327 0.416 1.275 1.121 0.859 1.270 1 275 1 063<br />

MARION LOW 0.115 0.135 0.035 0.015 0.003 0.040 0 035 0 011<br />

HIGH 0.217 0.162 0.104 0.063 0.024 0.110 0.104 0 051<br />

WGHTD AVE 0.154 0.147 0.060 0.031 0.009 0.068 0 060 0 024<br />

MARTIN LOW 0.953 0.299 0.627 0.466 0.263 0.636 0 627 0.414<br />

HIGH 4.509 1.019 4.512 4.115 3.351 4.505 4 512 3 956<br />

WGHTD AVE 2.920 0.670 2.855 2.539 1.980 2.841 2 855 2.418<br />

MIAMI-DADE LOW 1.494 0.396 1.086 0.835 0.494 1.053 1 086 0.750<br />

HIGH 7.531 1.834 8.056 7.461 6.247 7.979 8 056 7 215<br />

WGHTD AVE 4.853 0.997 4.672 4.221 3.383 4.627 4 672 4 042<br />

MONROE LOW 5.569 1.246 5.823 5.364 4.421 5.760 5 823 5.174<br />

HIGH 7.399 1.703 7.730 7.102 5.825 7.649 7.730 6 841<br />

WGHTD AVE 6.967 1.583 7.259 6.678 5.492 7.177 7 259 6.436<br />

NASSAU LOW 0.068 0.107 0.017 0.006 0.001 0.023 0 017 0 004<br />

HIGH 0.180 0.137 0.091 0.057 0.023 0.097 0 091 0 048<br />

WGHTD AVE 0.170 0.127 0.080 0.049 0.020 0.086 0 080 0 041<br />

*Includes contents and A L.E. <strong>Model</strong> USWIND 5.11 / WORLDCATenterprise 3.9 159


Output Range Loss Costs<br />

Form A-6 (2002 FHCF Exposure) LOSS COSTS PER $1,000<br />

PERSONAL RESIDENTIAL - Renters -- MASONRY<br />

0% $0 DEDUCTIBLE $500 $1,000 $2,500 1% 2% 5%<br />

DEDUCTIBLE ADDITIONAL DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE<br />

COUNTY LOSS COSTS CONTENTS LIVING EXPENSE TOTAL* TOTAL* TOTAL* TOTAL* TOTAL* TOTAL*<br />

OKALOOSA LOW 0.350 0.166 0.176 0.110 0.043 0.181 0.176 0 091<br />

HIGH 3.663 0.813 3.673 3.343 2.719 3.644 3 673 3 213<br />

WGHTD AVE 3.160 0.618 3.025 2.735 2.198 3.004 3 025 2 621<br />

OKEECHOBEE LOW 0.539 0.240 0.287 0.188 0.085 0.298 0 287 0.159<br />

HIGH 0.624 0.258 0.350 0.236 0.113 0.359 0 350 0 202<br />

WGHTD AVE 0.539 0.240 0.287 0.188 0.086 0.298 0 287 0.159<br />

ORANGE LOW 0.192 0.161 0.071 0.036 0.009 0.078 0 071 0 027<br />

HIGH 0.304 0.181 0.151 0.097 0.040 0.156 0.152 0 080<br />

WGHTD AVE 0.247 0.174 0.104 0.058 0.019 0.112 0.104 0 046<br />

OSCEOLA LOW 0.208 0.170 0.078 0.040 0.011 0.087 0 078 0 031<br />

HIGH 0.436 0.217 0.230 0.151 0.068 0.238 0 230 0.128<br />

WGHTD AVE 0.279 0.187 0.121 0.070 0.024 0.128 0.121 0 056<br />

PALM BEACH LOW 0.797 0.287 0.471 0.326 0.162 0.473 0.471 0 282<br />

HIGH 5.895 1.389 6.106 5.607 4.620 6.058 6.106 5.403<br />

WGHTD AVE 3.401 0.774 3.162 2.801 2.168 3.137 3.162 2 663<br />

PASCO LOW 0.248 0.168 0.119 0.072 0.028 0.126 0.119 0 059<br />

HIGH 1.039 0.356 0.950 0.828 0.630 0.950 0 950 0.784<br />

WGHTD AVE 0.639 0.246 0.505 0.415 0.286 0.512 0 505 0 384<br />

P NELLAS LOW 0.524 0.215 0.373 0.291 0.182 0.381 0 373 0 264<br />

HIGH 1.734 0.506 1.696 1.518 1.200 1.691 1 696 1.450<br />

WGHTD AVE 1.171 0.377 1.075 0.938 0.713 1.075 1 075 0 888<br />

POLK LOW 0.227 0.173 0.092 0.050 0.015 0.097 0 092 0 039<br />

HIGH 0.343 0.202 0.176 0.113 0.049 0.187 0.176 0 095<br />

WGHTD AVE 0.300 0.189 0.140 0.085 0.033 0.147 0.140 0 070<br />

PUTNAM LOW 0.104 0.126 0.029 0.012 0.002 0.036 0 029 0 008<br />

HIGH 0.153 0.143 0.056 0.028 0.007 0.062 0 056 0 021<br />

WGHTD AVE 0.118 0.132 0.038 0.017 0.003 0.045 0 038 0 012<br />

SA NT JOHNS LOW 0.091 0.117 0.027 0.011 0.002 0.033 0 027 0 008<br />

HIGH 0.346 0.176 0.230 0.174 0.104 0.232 0 230 0.156<br />

WGHTD AVE 0.205 0.145 0.108 0.072 0.034 0.112 0.107 0 061<br />

SA NT LUCIE LOW 0.759 0.269 0.465 0.334 0.175 0.476 0.465 0 290<br />

HIGH 4.237 0.922 4.239 3.846 3.174 4.235 4 241 3.732<br />

WGHTD AVE 2.186 0.505 2.129 1.864 1.415 2.125 2.129 1.764<br />

SANTA ROSA LOW 0.230 0.142 0.092 0.048 0.013 0.096 0 092 0 037<br />

HIGH 4.218 0.900 4.259 3.890 3.170 4.219 4 259 3.741<br />

WGHTD AVE 2.386 0.441 2.061 1.820 1.402 2.048 2 061 1.728<br />

SARASOTA LOW 0.852 0.294 0.709 0.586 0.397 0.704 0.709 0 542<br />

HIGH 2.647 0.660 2.665 2.438 1.995 2.652 2 665 2 346<br />

WGHTD AVE 1.827 0.493 1.743 1.562 1.235 1.734 1.743 1.492<br />

SEMINOLE LOW 0.204 0.161 0.078 0.040 0.011 0.084 0 078 0 031<br />

HIGH 0.286 0.175 0.137 0.082 0.031 0.143 0.137 0 068<br />

WGHTD AVE 0.229 0.166 0.094 0.052 0.016 0.101 0 094 0 041<br />

SUMTER LOW 0.187 0.158 0.074 0.040 0.012 0.082 0 074 0 031<br />

HIGH 0.215 0.162 0.094 0.054 0.019 0.104 0 094 0 044<br />

WGHTD AVE 0.203 0.160 0.085 0.047 0.016 0.092 0 085 0 038<br />

*Includes contents and A L.E. <strong>Model</strong> USWIND 5.11 / WORLDCATenterprise 3.9 160


Output Range Loss Costs<br />

Form A-6 (2002 FHCF Exposure) LOSS COSTS PER $1,000<br />

PERSONAL RESIDENTIAL - Renters -- MASONRY<br />

0% $0 DEDUCTIBLE $500 $1,000 $2,500 1% 2% 5%<br />

DEDUCTIBLE ADDITIONAL DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE<br />

COUNTY LOSS COSTS CONTENTS LIVING EXPENSE TOTAL* TOTAL* TOTAL* TOTAL* TOTAL* TOTAL*<br />

SUWANNEE LOW 0.053 0.111 0.011 0.003 0.000 0.017 0 011 0 002<br />

HIGH 0.080 0.124 0.021 0.007 0.001 0.029 0 021 0 005<br />

WGHTD AVE 0.059 0.115 0.012 0.003 0.000 0.019 0 012 0 002<br />

TAYLOR LOW 0.083 0.122 0.021 0.007 0.001 0.029 0 021 0 005<br />

HIGH 0.115 0.136 0.038 0.017 0.003 0.045 0 038 0 012<br />

WGHTD AVE 0.107 0.131 0.031 0.013 0.002 0.040 0 031 0 009<br />

UNION LOW 0.080 0.120 0.021 0.008 0.001 0.028 0 021 0 005<br />

HIGH 0.087 0.125 0.024 0.009 0.001 0.032 0 024 0 006<br />

WGHTD AVE 0.081 0.121 0.022 0.008 0.001 0.029 0 022 0 005<br />

VOLUSIA LOW 0.153 0.144 0.055 0.027 0.007 0.065 0 055 0 020<br />

HIGH 0.891 0.280 0.767 0.662 0.488 0.763 0.767 0 621<br />

WGHTD AVE 0.454 0.186 0.301 0.236 0.155 0.309 0 301 0 216<br />

WAKULLA LOW 0.169 0.153 0.055 0.025 0.006 0.065 0 055 0 019<br />

HIGH 0.233 0.167 0.105 0.062 0.024 0.111 0.105 0 051<br />

WGHTD AVE 0.176 0.155 0.061 0.029 0.008 0.069 0 060 0 022<br />

WALTON LOW 0.230 0.144 0.093 0.050 0.014 0.098 0 093 0 038<br />

HIGH 3.410 0.743 3.387 3.078 2.501 3.365 3 387 2 956<br />

WGHTD AVE 2.993 0.554 2.760 2.492 2.004 2.746 2.760 2 388<br />

WASHINGTON LOW 0.315 0.166 0.148 0.088 0.032 0.148 0.148 0 072<br />

HIGH 0.664 0.219 0.443 0.332 0.191 0.441 0.443 0 296<br />

WGHTD AVE 0.370 0.171 0.164 0.101 0.040 0.164 0.164 0 083<br />

<strong>State</strong>wide LOW 0.050 0.099 0.010 0.002 0.000 0.015 0 010 0 001<br />

HIGH 7.531 1.834 8.056 7.461 6.247 7.979 8 056 7 215<br />

WGHTD AVE 1.758 0.431 1.435 1.259 0.966 1.431 1.435 1.194<br />

*Includes contents and A L.E. <strong>Model</strong> USWIND 5.11 / WORLDCATenterprise 3.9 161


Output Range Loss Costs<br />

Form A-6 (2002 FHCF Exposure) LOSS COSTS PER $1,000<br />

PERSONAL RESIDENTIAL - Condo Owners -- FRAME<br />

$0 $0 $0 DEDUCTIBLE $500 $1,000 $2,500 1% 2% 5%<br />

DEDUCTIBLE DEDUCTIBLE ADDITIONAL DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE<br />

COUNTY LOSS COSTS STRUCTURE CONTENTS LIVING EXPENSE TOTAL* TOTAL* TOTAL* TOTAL* TOTAL* TOTAL*<br />

ALACHUA LOW 0.051 0.118 0.129 0.102 0.050 0.016 0.101 0.050 0 016<br />

HIGH 0.071 0.181 0.150 0.162 0.094 0.040 0.162 0.094 0 039<br />

WGHTD AVE 0.058 0.139 0.135 0.123 0.068 0.025 0.123 0.068 0 025<br />

BAKER LOW 0.033 0.066 0.100 0.055 0.021 0.005 0.055 0.021 0 005<br />

HIGH 0.049 0.113 0.123 0.097 0.048 0.016 0.097 0.048 0 016<br />

WGHTD AVE<br />

BAY LOW 0.136 0.421 0.189 0.400 0.282 0.148 0.400 0.282 0.148<br />

HIGH 0.584 3.732 0.849 4.485 4.169 3.582 4.485 4.169 3 582<br />

WGHTD AVE 0.553 3.535 0.800 4.205 3.895 3.331 4.205 3.895 3 331<br />

BRADFORD LOW 0.051 0.114 0.125 0.097 0.049 0.015 0.099 0.049 0 015<br />

HIGH 0.053 0.121 0.131 0.105 0.053 0.018 0.105 0.053 0 018<br />

WGHTD AVE<br />

BREVARD LOW 0.147 0.563 0.223 0.579 0.458 0.307 0.585 0.465 0 310<br />

HIGH 0.563 3.553 0.847 4.284 3.987 3.451 4.284 3.987 3.451<br />

WGHTD AVE 0.367 2.043 0.534 2.422 2.198 1.828 2.422 2.198 1 828<br />

BROWARD LOW 0.470 1.886 0.534 2.111 1.772 1.230 2.111 1.772 1 230<br />

HIGH 1.245 7.946 2.030 10.121 9.590 8.498 10.121 9.590 8.498<br />

WGHTD AVE 0.728 3.886 0.987 4.695 4.279 3.523 4.695 4.279 3 523<br />

CALHOUN LOW 0.120 0.346 0.180 0.319 0.213 0.103 0.319 0.213 0.103<br />

HIGH 0.146 0.464 0.201 0.446 0.321 0.176 0.446 0.321 0.176<br />

WGHTD AVE 0.120 0.346 0.319 0.213 0.103 0.319 0.213 0.103<br />

CHARLOTTE LOW 0.221 0.950 0.303 1.021 0.844 0.594 1.021 0.844 0 594<br />

HIGH 0.551 3.630 0.903 4.473 4.202 3.704 4.473 4.202 3.704<br />

WGHTD AVE 0.439 3.023 0.739 3.544 3.294 2.852 3.544 3.294 2 852<br />

CITRUS LOW 0.092 0.278 0.166 0.268 0.181 0.096 0.268 0.183 0 097<br />

HIGH 0.146 0.564 0.234 0.605 0.485 0.333 0.605 0.485 0 333<br />

WGHTD AVE 0.112 0.359 0.190 0.366 0.269 0.160 0.366 0.269 0.160<br />

CLAY LOW 0.044 0.097 0.113 0.081 0.039 0.011 0.082 0.039 0 011<br />

HIGH 0.057 0.130 0.132 0.111 0.057 0.019 0.111 0.057 0 019<br />

WGHTD AVE 0.047 0.105 0.117 0.090 0.044 0.013 0.089 0.044 0 013<br />

COLL ER LOW 0.271 1.042 0.330 1.092 0.876 0.573 1.092 0.876 0 573<br />

HIGH 0.784 5.370 1.208 6.546 6.164 5.416 6.546 6.164 5.416<br />

WGHTD AVE 0.567 3.553 0.828 4.264 3.951 3.381 4.264 3.951 3 381<br />

COLUMBIA LOW 0.038 0.080 0.117 0.067 0.027 0.006 0.067 0.028 0 006<br />

HIGH 0.048 0.106 0.127 0.091 0.043 0.013 0.091 0.043 0 013<br />

WGHTD AVE 0.038 0.081 0.118 0.068 0.028 0.007 0.068 0.028 0 007<br />

DESOTO LOW 0.203 0.836 0.284 0.887 0.722 0.496 0.887 0.722 0.496<br />

HIGH 0.210 0.860 0.290 0.927 0.761 0.527 0.927 0.761 0 527<br />

WGHTD AVE 0.204 0.840 0.285 0.893 0.728 0.501 0.893 0.728 0 501<br />

DIX E LOW 0.065 0.162 0.142 0.144 0.081 0.030 0.144 0.081 0 030<br />

HIGH 0.128 0.467 0.218 0.483 0.366 0.236 0.474 0.368 0 237<br />

WGHTD AVE 0.118 0.414 0.201 0.418 0.311 0.196 0.415 0.312 0.195<br />

*Includes contents and A L.E. <strong>Model</strong> USWIND 5.11 / WORLDCATenterprise 3.9 162


Output Range Loss Costs<br />

Form A-6 (2002 FHCF Exposure) LOSS COSTS PER $1,000<br />

PERSONAL RESIDENTIAL - Condo Owners -- FRAME<br />

$0 $0 $0 DEDUCTIBLE $500 $1,000 $2,500 1% 2% 5%<br />

DEDUCTIBLE DEDUCTIBLE ADDITIONAL DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE<br />

COUNTY LOSS COSTS STRUCTURE CONTENTS LIVING EXPENSE TOTAL* TOTAL* TOTAL* TOTAL* TOTAL* TOTAL*<br />

DUVAL LOW 0.044 0.096 0.112 0.081 0.039 0.011 0.081 0.038 0 011<br />

HIGH 0.090 0.305 0.166 0.318 0.238 0.151 0.315 0.237 0.152<br />

WGHTD AVE 0.052 0.134 0.124 0.120 0.069 0.029 0.120 0.070 0 029<br />

ESCAMBIA LOW 0.120 0.352 0.167 0.328 0.222 0.107 0.328 0.222 0.107<br />

HIGH 0.766 5.163 1.156 6.310 5.933 5.195 6.310 5.933 5.195<br />

WGHTD AVE 0.575 3.747 0.816 4.413 4.089 3.482 4.413 4.089 3.482<br />

FLAGLER LOW 0.074 0.203 0.146 0.184 0.114 0.051 0.184 0.115 0 051<br />

HIGH 0.138 0.588 0.219 0.647 0.531 0.388 0.643 0.535 0 389<br />

WGHTD AVE 0.109 0.428 0.185 0.421 0.333 0.216 0.422 0.332 0 216<br />

FRANKLIN LOW 0.186 0.711 0.258 0.738 0.587 0.393 0.738 0.587 0 393<br />

HIGH 0.439 2.514 0.617 2.953 2.685 2.229 2.953 2.685 2 229<br />

WGHTD AVE 0.303 1.341 0.394 1.573 1.369 1.060 1.573 1.369 1 060<br />

GADSDEN LOW 0.060 0.132 0.138 0.107 0.051 0.015 0.107 0.051 0 015<br />

HIGH 0.076 0.180 0.150 0.153 0.084 0.031 0.153 0.084 0 031<br />

WGHTD AVE 0.060 0.107 0.051 0.015 0.107 0.051 0 015<br />

G LCHRIST LOW 0.055 0.128 0.134 0.111 0.056 0.018 0.111 0.057 0 018<br />

HIGH 0.064 0.157 0.141 0.140 0.078 0.029 0.140 0.078 0 029<br />

WGHTD AVE 0.157 0.140 0.078 0.029 0.140 0.078 0 029<br />

GLADES LOW 0.214 0.741 0.284 0.728 0.539 0.306 0.728 0.539 0 306<br />

HIGH 0.246 0.845 0.307 0.847 0.644 0.382 0.847 0.644 0 382<br />

WGHTD AVE 0.237 0.836 0.307 0.825 0.625 0.368 0.825 0.625 0 368<br />

GULF LOW 0.167 0.567 0.219 0.559 0.417 0.243 0.559 0.417 0 243<br />

HIGH 0.529 3.245 0.757 3.872 3.570 3.029 3.872 3.570 3 029<br />

WGHTD AVE 0.529 3.245 0.757 3.872 3.570 3.029 3.872 3.570 3 029<br />

HAM LTON LOW 0.033 0.066 0.111 0.055 0.020 0.004 0.055 0.020 0 004<br />

HIGH 0.037 0.076 0.112 0.064 0.027 0.007 0.064 0.027 0 007<br />

WGHTD AVE<br />

HARDEE LOW 0.166 0.564 0.245 0.576 0.435 0.262 0.576 0.435 0 262<br />

HIGH 0.174 0.610 0.254 0.621 0.478 0.297 0.621 0.478 0 297<br />

WGHTD AVE<br />

HENDRY LOW 0.223 0.807 0.291 0.817 0.631 0.392 0.817 0.631 0 392<br />

HIGH 0.268 0.946 0.323 0.981 0.775 0.492 0.981 0.775 0.492<br />

WGHTD AVE 0.248 0.872 0.307 0.870 0.664 0.396 0.870 0.664 0 396<br />

HERNANDO LOW 0.098 0.300 0.172 0.288 0.199 0.106 0.288 0.199 0.106<br />

HIGH 0.162 0.679 0.251 0.734 0.603 0.431 0.734 0.603 0.431<br />

WGHTD AVE 0.133 0.482 0.212 0.516 0.405 0.267 0.515 0.405 0 271<br />

HIGHLANDS LOW 0.154 0.478 0.230 0.456 0.321 0.171 0.456 0.321 0.171<br />

HIGH 0.196 0.655 0.273 0.659 0.495 0.294 0.659 0.495 0 294<br />

WGHTD AVE 0.185 0.598 0.260 0.599 0.445 0.259 0.599 0.445 0 259<br />

HILLSBOROUGH LOW 0.133 0.443 0.209 0.436 0.319 0.184 0.436 0.319 0.184<br />

HIGH 0.347 1.838 0.594 2.299 2.105 1.790 2.299 2.105 1.790<br />

WGHTD AVE 0.208 0.923 0.326 1.062 0.914 0.706 1.062 0.914 0.706<br />

HOLMES LOW 0.106 0.300 0.165 0.274 0.180 0.086 0.274 0.180 0 086<br />

HIGH 0.130 0.399 0.180 0.376 0.263 0.136 0.376 0.263 0.136<br />

WGHTD AVE<br />

*Includes contents and A L.E. <strong>Model</strong> USWIND 5.11 / WORLDCATenterprise 3.9 163


Output Range Loss Costs<br />

Form A-6 (2002 FHCF Exposure) LOSS COSTS PER $1,000<br />

PERSONAL RESIDENTIAL - Condo Owners -- FRAME<br />

$0 $0 $0 DEDUCTIBLE $500 $1,000 $2,500 1% 2% 5%<br />

DEDUCTIBLE DEDUCTIBLE ADDITIONAL DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE<br />

COUNTY LOSS COSTS STRUCTURE CONTENTS LIVING EXPENSE TOTAL* TOTAL* TOTAL* TOTAL* TOTAL* TOTAL*<br />

INDIAN RIVER LOW 0.252 1.029 0.315 1.086 0.883 0.597 1.086 0.883 0 597<br />

HIGH 0.714 4.413 1.122 5.505 5.157 4.499 5.505 5.157 4.499<br />

WGHTD AVE 0.530 3.316 0.777 3.889 3.582 3.033 3.889 3.582 3 033<br />

JACKSON LOW 0.083 0.207 0.151 0.179 0.104 0.041 0.179 0.104 0 041<br />

HIGH 0.109 0.307 0.169 0.281 0.184 0.088 0.281 0.184 0 088<br />

WGHTD AVE 0.095 0.218 0.133 0.055 0.218 0.133 0 055<br />

JEFFERSON LOW 0.051 0.111 0.128 0.091 0.042 0.012 0.091 0.042 0 012<br />

HIGH 0.058 0.127 0.134 0.105 0.050 0.015 0.105 0.050 0 015<br />

WGHTD AVE<br />

LAFAYETTE LOW 0.047 0.105 0.124 0.088 0.042 0.012 0.087 0.041 0 012<br />

HIGH 0.049 0.109 0.128 0.093 0.046 0.014 0.093 0.045 0 014<br />

WGHTD AVE 0.048 0.109 0.128 0.092 0.045 0.013 0.093 0.044 0 013<br />

LAKE LOW 0.077 0.190 0.151 0.165 0.094 0.036 0.165 0.094 0 036<br />

HIGH 0.120 0.354 0.200 0.331 0.223 0.112 0.331 0.223 0.112<br />

WGHTD AVE 0.110 0.321 0.189 0.300 0.200 0.100 0.300 0.200 0.100<br />

LEE LOW 0.233 0.904 0.303 0.953 0.765 0.506 0.953 0.765 0 506<br />

HIGH 0.665 4.433 1.086 5.408 5.098 4.510 5.408 5.098 4 510<br />

WGHTD AVE 0.416 2.929 0.655 3.243 2.985 2.533 3.243 2.985 2 533<br />

LEON LOW 0.048 0.101 0.127 0.082 0.036 0.009 0.082 0.036 0 009<br />

HIGH 0.073 0.170 0.149 0.143 0.077 0.027 0.143 0.077 0 027<br />

WGHTD AVE 0.066 0.150 0.143 0.124 0.063 0.020 0.124 0.063 0 020<br />

LEVY LOW 0.068 0.177 0.145 0.156 0.092 0.036 0.155 0.092 0 036<br />

HIGH 0.168 0.743 0.266 0.803 0.674 0.493 0.808 0.668 0.494<br />

WGHTD AVE 0.119 0.436 0.210 0.449 0.345 0.217 0.448 0.339 0 219<br />

LIBERTY LOW 0.088 0.215 0.158 0.183 0.104 0.039 0.183 0.104 0 039<br />

HIGH 0.114 0.321 0.177 0.292 0.191 0.090 0.292 0.191 0 090<br />

WGHTD AVE<br />

MADISON LOW 0.039 0.080 0.114 0.067 0.029 0.007 0.067 0.029 0 007<br />

HIGH 0.046 0.103 0.123 0.089 0.042 0.012 0.088 0.042 0 012<br />

WGHTD AVE 0.043 0.091 0.119 0.077 0.034 0.009 0.076 0.034 0 009<br />

MANATEE LOW 0.147 0.500 0.223 0.497 0.368 0.215 0.497 0.368 0 215<br />

HIGH 0.439 2.504 0.750 3.161 2.938 2.547 3.161 2.938 2 547<br />

WGHTD AVE 0.357 1.965 0.589 2.411 2.211 1.877 2.411 2.211 1 877<br />

MARION LOW 0.065 0.157 0.142 0.135 0.074 0.027 0.134 0.074 0 027<br />

HIGH 0.099 0.301 0.179 0.294 0.205 0.110 0.294 0.205 0.110<br />

WGHTD AVE 0.083 0.221 0.161 0.206 0.130 0.060 0.206 0.130 0 060<br />

MARTIN LOW 0.317 1.271 0.370 1.330 1.077 0.714 1.330 1.077 0.714<br />

HIGH 0.868 5.447 1.293 6.670 6.258 5.459 6.670 6.258 5.459<br />

WGHTD AVE 0.725 4.406 1.066 5.356 4.970 4.249 5.356 4.970 4 249<br />

MIAMI-DADE LOW 0.474 1.993 0.527 2.211 1.864 1.302 2.211 1.864 1 302<br />

HIGH 1.385 8.965 2.323 11.538 10.974 9.796 11.538 10.974 9.796<br />

WGHTD AVE 1.032 5.956 1.623 7.662 7.177 6.223 7.662 7.177 6 223<br />

MONROE LOW 1.005 6.705 1.595 8.478 8.040 7.126 8.478 8.040 7.126<br />

HIGH 1.392 8.855 2.205 11.307 10.718 9.461 11.307 10.718 9.461<br />

WGHTD AVE 1.267 7.931 1.975 10.132 9.610 8.499 10.132 9.610 8.499<br />

NASSAU LOW 0.042 0.093 0.110 0.078 0.037 0.011 0.078 0.037 0 011<br />

HIGH 0.078 0.249 0.151 0.246 0.174 0.099 0.246 0.174 0 098<br />

WGHTD AVE 0.078 0.249 0.151 0.246 0.173 0.097 0.246 0.173 0 098<br />

*Includes contents and A L.E. <strong>Model</strong> USWIND 5.11 / WORLDCATenterprise 3.9 164


Output Range Loss Costs<br />

Form A-6 (2002 FHCF Exposure) LOSS COSTS PER $1,000<br />

PERSONAL RESIDENTIAL - Condo Owners -- FRAME<br />

$0 $0 $0 DEDUCTIBLE $500 $1,000 $2,500 1% 2% 5%<br />

DEDUCTIBLE DEDUCTIBLE ADDITIONAL DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE<br />

COUNTY LOSS COSTS STRUCTURE CONTENTS LIVING EXPENSE TOTAL* TOTAL* TOTAL* TOTAL* TOTAL* TOTAL*<br />

OKALOOSA LOW 0.148 0.482 0.193 0.465 0.338 0.185 0.465 0.338 0.185<br />

HIGH 0.678 4.389 1.030 5.355 5.009 4.346 5.355 5.009 4 346<br />

WGHTD AVE 0.627 4.127 0.946 4.994 4.664 4.043 4.994 4.664 4 043<br />

OKEECHOBEE LOW 0.218 0.734 0.281 0.721 0.537 0.307 0.721 0.537 0 307<br />

HIGH 0.245 0.839 0.306 0.839 0.637 0.376 0.839 0.637 0 376<br />

WGHTD AVE<br />

ORANGE LOW 0.098 0.261 0.173 0.234 0.145 0.062 0.234 0.145 0 062<br />

HIGH 0.135 0.425 0.205 0.411 0.291 0.164 0.411 0.291 0.163<br />

WGHTD AVE 0.116 0.334 0.191 0.310 0.206 0.100 0.310 0.206 0.100<br />

OSCEOLA LOW 0.105 0.284 0.184 0.255 0.159 0.071 0.255 0.159 0 070<br />

HIGH 0.179 0.594 0.249 0.580 0.427 0.245 0.580 0.427 0 245<br />

WGHTD AVE 0.132 0.390 0.210 0.369 0.253 0.129 0.369 0.253 0.129<br />

PALM BEACH LOW 0.296 1.077 0.349 1.096 0.854 0.521 1.096 0.854 0 521<br />

HIGH 1.127 7.067 1.782 8.935 8.435 7.428 8.935 8.435 7.428<br />

WGHTD AVE 0.733 4.286 1.041 5.115 4.704 3.947 5.115 4.704 3 947<br />

PASCO LOW 0.111 0.349 0.188 0.337 0.237 0.129 0.337 0.237 0.129<br />

HIGH 0.263 1.309 0.422 1.558 1.392 1.142 1.558 1.392 1.142<br />

WGHTD AVE 0.164 0.739 0.267 0.785 0.652 0.476 0.785 0.652 0.476<br />

P NELLAS LOW 0.168 0.696 0.256 0.754 0.620 0.439 0.754 0.620 0.439<br />

HIGH 0.392 2.173 0.658 2.714 2.503 2.143 2.714 2.503 2.143<br />

WGHTD AVE 0.286 1.530 0.473 1.812 1.631 1.347 1.812 1.631 1 347<br />

POLK LOW 0.109 0.306 0.188 0.282 0.183 0.086 0.282 0.183 0 086<br />

HIGH 0.149 0.466 0.228 0.452 0.327 0.184 0.452 0.327 0.184<br />

WGHTD AVE 0.133 0.412 0.212 0.399 0.282 0.153 0.399 0.282 0.153<br />

PUTNAM LOW 0.060 0.140 0.133 0.121 0.063 0.021 0.121 0.063 0 021<br />

HIGH 0.080 0.205 0.153 0.184 0.113 0.049 0.186 0.113 0 049<br />

WGHTD AVE 0.066 0.167 0.141 0.145 0.083 0.033 0.145 0.082 0 032<br />

SA NT JOHNS LOW 0.051 0.121 0.122 0.105 0.055 0.019 0.105 0.055 0 019<br />

HIGH 0.117 0.456 0.200 0.480 0.381 0.261 0.480 0.381 0 261<br />

WGHTD AVE 0.089 0.299 0.165 0.305 0.225 0.140 0.304 0.225 0.137<br />

SA NT LUC E LOW 0.271 1.021 0.326 1.046 0.824 0.518 1.046 0.824 0 518<br />

HIGH 0.762 5.087 1.153 6.081 5.730 5.059 6.146 5.756 5 062<br />

WGHTD AVE 0.556 3.459 0.819 3.992 3.659 3.064 3.992 3.659 3 064<br />

SANTA ROSA LOW 0.111 0.314 0.160 0.284 0.186 0.083 0.284 0.186 0 083<br />

HIGH 0.756 5.080 1.140 6.205 5.834 5.104 6.205 5.834 5.104<br />

WGHTD AVE 0.584 3.620 0.829 4.357 4.033 3.427 4.357 4.033 3.427<br />

SARASOTA LOW 0.253 1.112 0.373 1.320 1.149 0.886 1.320 1.149 0 886<br />

HIGH 0.510 3.186 0.866 3.925 3.673 3.219 3.925 3.673 3 219<br />

WGHTD AVE 0.390 2.362 0.651 2.863 2.647 2.275 2.863 2.647 2 275<br />

SEMINOLE LOW 0.102 0.277 0.175 0.249 0.157 0.070 0.249 0.157 0 070<br />

HIGH 0.128 0.390 0.197 0.377 0.265 0.141 0.377 0.265 0.141<br />

WGHTD AVE 0.107 0.299 0.180 0.274 0.178 0.083 0.274 0.178 0 083<br />

SUMTER LOW 0.092 0.257 0.171 0.237 0.152 0.071 0.237 0.152 0 071<br />

HIGH 0.101 0.295 0.178 0.279 0.186 0.094 0.279 0.186 0 094<br />

WGHTD AVE 0.093 0.262 0.171 0.242 0.159 0.078 0.245 0.160 0 078<br />

*Includes contents and A L.E. <strong>Model</strong> USWIND 5.11 / WORLDCATenterprise 3.9 165


Output Range Loss Costs<br />

Form A-6 (2002 FHCF Exposure) LOSS COSTS PER $1,000<br />

PERSONAL RESIDENTIAL - Condo Owners -- FRAME<br />

$0 $0 $0 DEDUCTIBLE $500 $1,000 $2,500 1% 2% 5%<br />

DEDUCTIBLE DEDUCTIBLE ADDITIONAL DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE<br />

COUNTY LOSS COSTS STRUCTURE CONTENTS LIVING EXPENSE TOTAL* TOTAL* TOTAL* TOTAL* TOTAL* TOTAL*<br />

SUWANNEE LOW 0.035 0.071 0.114 0.059 0.023 0.005 0.059 0.023 0 005<br />

HIGH 0.048 0.107 0.129 0.091 0.045 0.014 0.093 0.045 0 014<br />

WGHTD AVE 0.035 0.072 0.114 0.059 0.023 0.005 0.059 0.023 0 005<br />

TAYLOR LOW 0.050 0.112 0.126 0.094 0.045 0.013 0.094 0.045 0 013<br />

HIGH 0.063 0.158 0.144 0.139 0.079 0.030 0.139 0.078 0 030<br />

WGHTD AVE<br />

UNION LOW 0.048 0.108 0.124 0.092 0.044 0.013 0.092 0.045 0 013<br />

HIGH 0.051 0.116 0.130 0.102 0.052 0.017 0.101 0.051 0 017<br />

WGHTD AVE<br />

VOLUSIA LOW 0.082 0.207 0.155 0.190 0.116 0.050 0.190 0.116 0 050<br />

HIGH 0.220 1.141 0.335 1.308 1.149 0.916 1.300 1.152 0 926<br />

WGHTD AVE 0.151 0.717 0.241 0.751 0.628 0.464 0.751 0.628 0.464<br />

WAKULLA LOW 0.092 0.230 0.163 0.199 0.117 0.046 0.199 0.117 0 046<br />

HIGH 0.108 0.320 0.184 0.302 0.205 0.108 0.302 0.205 0.108<br />

WGHTD AVE 0.093 0.240 0.168 0.212 0.127 0.052 0.212 0.127 0 052<br />

WALTON LOW 0.111 0.315 0.162 0.289 0.190 0.088 0.289 0.190 0 088<br />

HIGH 0.628 4.107 0.928 4.962 4.634 4.018 4.962 4.634 4 018<br />

WGHTD AVE 0.600 3.621 0.867 4.443 4.130 3.553 4.443 4.130 3 553<br />

WASHINGTON LOW 0.140 0.436 0.190 0.417 0.296 0.156 0.417 0.296 0.156<br />

HIGH 0.220 0.892 0.270 0.938 0.763 0.513 0.938 0.763 0 513<br />

WGHTD AVE 0.184 0.671 0.228 0.678 0.525 0.323 0.678 0.525 0 323<br />

<strong>State</strong>wide LOW 0.033 0.066 0.100 0.055 0.020 0.004 0.055 0.020 0 004<br />

HIGH 1.392 8.965 2.323 11.538 10.974 9.796 11.538 10.974 9.796<br />

WGHTD AVE 0.379 2.342 0.575 2.690 2.459 2.066 2.690 2.459 2 066<br />

*Includes contents and A L.E. <strong>Model</strong> USWIND 5.11 / WORLDCATenterprise 3.9 166


Output Range Loss Costs<br />

Form A-6 (2002 FHCF Exposure) LOSS COSTS PER $1,000<br />

PERSONAL RESIDENTIAL - Condo Owners -- MASONRY<br />

$0 $0 $0 DEDUCTIBLE $500 $1,000 $2,500 1% 2% 5%<br />

DEDUCTIBLE DEDUCTIBLE ADDITIONAL DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE<br />

COUNTY LOSS COSTS STRUCTURE CONTENTS LIVING EXPENSE TOTAL* TOTAL* TOTAL* TOTAL* TOTAL* TOTAL*<br />

ALACHUA LOW 0.034 0.087 0.124 0.071 0.029 0.007 0.071 0.029 0 007<br />

HIGH 0.048 0.133 0.142 0.111 0.057 0.020 0.112 0.056 0 020<br />

WGHTD AVE 0.039 0.103 0.129 0.086 0.040 0.012 0.086 0.040 0 012<br />

BAKER LOW 0.022 0.051 0.099 0.041 0.013 0.002 0.041 0.013 0 002<br />

HIGH 0.034 0.084 0.118 0.068 0.028 0.007 0.068 0.029 0 007<br />

WGHTD AVE 0.034 0.068 0.029 0.007 0.068 0.028 0 007<br />

BAY LOW 0.094 0.307 0.166 0.266 0.172 0.080 0.266 0.172 0 080<br />

HIGH 0.438 3.053 0.669 3.564 3.299 2.832 3.564 3.299 2 832<br />

WGHTD AVE 0.416 2.866 0.626 3.314 3.056 2.608 3.314 3.056 2 608<br />

BRADFORD LOW 0.035 0.085 0.120 0.068 0.029 0.007 0.070 0.028 0 007<br />

HIGH 0.036 0.090 0.126 0.074 0.031 0.008 0.073 0.031 0 008<br />

WGHTD AVE 0.035 0.089 0.124 0.071 0.030 0.007 0.071 0.030 0 007<br />

BREVARD LOW 0.103 0.429 0.192 0.417 0.319 0.209 0.422 0.324 0 211<br />

HIGH 0.419 2.938 0.668 3.420 3.178 2.756 3.432 3.174 2.757<br />

WGHTD AVE 0.319 2.073 0.506 2.403 2.200 1.865 2.403 2.200 1 865<br />

BROWARD LOW 0.332 1.405 0.401 1.466 1.194 0.799 1.466 1.194 0.799<br />

HIGH 0.963 6.739 1.612 8.339 7.882 6.983 8.339 7.882 6 983<br />

WGHTD AVE 0.597 3.554 0.808 4.127 3.768 3.139 4.127 3.768 3.139<br />

CALHOUN LOW 0.083 0.256 0.161 0.216 0.132 0.057 0.216 0.132 0 057<br />

HIGH 0.101 0.340 0.176 0.300 0.200 0.099 0.300 0.200 0 099<br />

WGHTD AVE 0.084 0.265 0.220 0.134 0.057 0.220 0.134 0 057<br />

CHARLOTTE LOW 0.156 0.724 0.252 0.738 0.594 0.406 0.738 0.594 0.406<br />

HIGH 0.418 3.027 0.729 3.634 3.402 2.992 3.634 3.402 2 992<br />

WGHTD AVE 0.317 1.978 0.516 2.347 2.147 1.821 2.347 2.147 1 821<br />

CITRUS LOW 0.062 0.201 0.150 0.177 0.110 0.052 0.178 0.111 0 052<br />

HIGH 0.102 0.430 0.201 0.436 0.339 0.228 0.436 0.339 0 228<br />

WGHTD AVE 0.079 0.279 0.174 0.267 0.187 0.107 0.267 0.187 0.107<br />

CLAY LOW 0.029 0.072 0.110 0.058 0.022 0.005 0.058 0.022 0 005<br />

HIGH 0.038 0.097 0.127 0.078 0.033 0.009 0.078 0.033 0 009<br />

WGHTD AVE 0.030 0.075 0.111 0.061 0.024 0.005 0.060 0.024 0 005<br />

COLL ER LOW 0.190 0.778 0.269 0.760 0.587 0.367 0.760 0.587 0 367<br />

HIGH 0.597 4.482 0.971 5.336 5.009 4.396 5.336 5.009 4 396<br />

WGHTD AVE 0.430 3.160 0.680 3.581 3.312 2.840 3.581 3.312 2 840<br />

COLUMBIA LOW 0.025 0.059 0.115 0.049 0.016 0.003 0.049 0.016 0 003<br />

HIGH 0.032 0.080 0.123 0.066 0.026 0.006 0.066 0.026 0 006<br />

WGHTD AVE 0.026 0.060 0.115 0.050 0.016 0.003 0.050 0.016 0 003<br />

DESOTO LOW 0.142 0.628 0.238 0.628 0.494 0.328 0.628 0.494 0 328<br />

HIGH 0.148 0.653 0.242 0.665 0.528 0.354 0.665 0.528 0 354<br />

WGHTD AVE 0.145 0.637 0.240 0.643 0.508 0.338 0.643 0.508 0 338<br />

DIX E LOW 0.044 0.118 0.134 0.097 0.048 0.014 0.098 0.048 0 014<br />

HIGH 0.089 0.352 0.194 0.345 0.250 0.157 0.339 0.251 0.157<br />

WGHTD AVE 0.082 0.312 0.180 0.298 0.211 0.128 0.295 0.211 0.127<br />

*Includes contents and A L.E. <strong>Model</strong> USWIND 5.11 / WORLDCATenterprise 3.9 167


Output Range Loss Costs<br />

Form A-6 (2002 FHCF Exposure) LOSS COSTS PER $1,000<br />

PERSONAL RESIDENTIAL - Condo Owners -- MASONRY<br />

$0 $0 $0 DEDUCTIBLE $500 $1,000 $2,500 1% 2% 5%<br />

DEDUCTIBLE DEDUCTIBLE ADDITIONAL DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE<br />

COUNTY LOSS COSTS STRUCTURE CONTENTS LIVING EXPENSE TOTAL* TOTAL* TOTAL* TOTAL* TOTAL* TOTAL*<br />

DUVAL LOW 0.029 0.072 0.108 0.058 0.023 0.005 0.058 0.023 0 005<br />

HIGH 0.062 0.229 0.150 0.225 0.159 0.096 0.223 0.159 0 096<br />

WGHTD AVE 0.040 0.128 0.122 0.109 0.063 0.028 0.110 0.063 0 029<br />

ESCAMBIA LOW 0.082 0.256 0.147 0.215 0.132 0.055 0.215 0.132 0 055<br />

HIGH 0.581 4.294 0.914 5.113 4.796 4.188 5.113 4.796 4.188<br />

WGHTD AVE 0.470 3.220 0.672 3.754 3.470 2.953 3.754 3.470 2 953<br />

FLAGLER LOW 0.050 0.147 0.137 0.123 0.067 0.025 0.123 0.067 0 025<br />

HIGH 0.097 0.448 0.190 0.466 0.372 0.267 0.463 0.375 0 268<br />

WGHTD AVE 0.083 0.368 0.174 0.352 0.276 0.183 0.353 0.275 0.182<br />

FRANKLIN LOW 0.130 0.540 0.219 0.527 0.406 0.266 0.527 0.406 0 266<br />

HIGH 0.321 1.993 0.469 2.243 2.021 1.661 2.243 2.021 1 661<br />

WGHTD AVE 0.190 1.143 0.309 1.178 1.015 0.785 1.178 1.015 0.785<br />

GADSDEN LOW 0.041 0.099 0.133 0.076 0.030 0.006 0.076 0.030 0 006<br />

HIGH 0.052 0.135 0.143 0.106 0.050 0.015 0.106 0.050 0 015<br />

WGHTD AVE 0.048 0.122 0.139 0.095 0.042 0.011 0.095 0.042 0 011<br />

G LCHRIST LOW 0.036 0.094 0.128 0.076 0.032 0.008 0.076 0.032 0 008<br />

HIGH 0.043 0.117 0.134 0.097 0.047 0.014 0.097 0.047 0 014<br />

WGHTD AVE 0.036 0.094 0.128 0.075 0.032 0.007 0.076 0.032 0 008<br />

GLADES LOW 0.148 0.545 0.242 0.494 0.343 0.180 0.494 0.343 0.180<br />

HIGH 0.172 0.632 0.259 0.586 0.424 0.238 0.586 0.424 0 238<br />

WGHTD AVE 0.172 0.632 0.259 0.586 0.424 0.238 0.586 0.424 0 238<br />

GULF LOW 0.116 0.421 0.188 0.383 0.270 0.147 0.383 0.270 0.147<br />

HIGH 0.393 2.637 0.591 3.037 2.786 2.361 3.037 2.786 2 361<br />

WGHTD AVE 0.116 2.621 2.670 2.438 2.054 2.670 2.438 2 054<br />

HAM LTON LOW 0.022 0.051 0.109 0.043 0.013 0.002 0.043 0.013 0 002<br />

HIGH 0.024 0.058 0.110 0.048 0.016 0.003 0.048 0.016 0 003<br />

WGHTD AVE<br />

HARDEE LOW 0.115 0.415 0.212 0.393 0.280 0.158 0.393 0.280 0.158<br />

HIGH 0.120 0.450 0.218 0.427 0.311 0.182 0.427 0.311 0.182<br />

WGHTD AVE 0.115 0.393 0.280 0.158 0.393 0.280 0.158<br />

HENDRY LOW 0.156 0.601 0.247 0.565 0.416 0.241 0.565 0.416 0 241<br />

HIGH 0.186 0.701 0.269 0.676 0.511 0.308 0.676 0.511 0 308<br />

WGHTD AVE 0.177 0.653 0.261 0.603 0.435 0.243 0.603 0.435 0 243<br />

HERNANDO LOW 0.067 0.219 0.157 0.194 0.122 0.058 0.194 0.122 0 058<br />

HIGH 0.113 0.518 0.214 0.532 0.426 0.299 0.532 0.426 0 299<br />

WGHTD AVE 0.091 0.371 0.187 0.369 0.279 0.181 0.369 0.279 0.181<br />

HIGHLANDS LOW 0.106 0.351 0.205 0.308 0.200 0.095 0.308 0.200 0 095<br />

HIGH 0.136 0.486 0.235 0.453 0.322 0.179 0.453 0.322 0.179<br />

WGHTD AVE 0.125 0.427 0.223 0.394 0.272 0.145 0.394 0.272 0.145<br />

HILLSBOROUGH LOW 0.092 0.325 0.185 0.300 0.205 0.109 0.300 0.205 0.109<br />

HIGH 0.258 1.474 0.472 1.777 1.615 1.366 1.777 1.615 1 366<br />

WGHTD AVE 0.161 0.793 0.287 0.886 0.758 0.589 0.886 0.758 0 589<br />

HOLMES LOW 0.073 0.218 0.149 0.182 0.107 0.043 0.182 0.107 0 043<br />

HIGH 0.089 0.291 0.159 0.251 0.162 0.074 0.251 0.162 0 074<br />

WGHTD AVE<br />

*Includes contents and A L.E. <strong>Model</strong> USWIND 5.11 / WORLDCATenterprise 3.9 168


Output Range Loss Costs<br />

Form A-6 (2002 FHCF Exposure) LOSS COSTS PER $1,000<br />

PERSONAL RESIDENTIAL - Condo Owners -- MASONRY<br />

$0 $0 $0 DEDUCTIBLE $500 $1,000 $2,500 1% 2% 5%<br />

DEDUCTIBLE DEDUCTIBLE ADDITIONAL DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE<br />

COUNTY LOSS COSTS STRUCTURE CONTENTS LIVING EXPENSE TOTAL* TOTAL* TOTAL* TOTAL* TOTAL* TOTAL*<br />

INDIAN RIVER LOW 0.176 0.767 0.257 0.757 0.593 0.385 0.757 0.593 0 385<br />

HIGH 0.540 3.648 0.894 4.427 4.135 3.600 4.427 4.135 3 600<br />

WGHTD AVE 0.455 3.050 0.712 3.577 3.305 2.827 3.577 3.305 2 827<br />

JACKSON LOW 0.056 0.153 0.141 0.122 0.062 0.020 0.122 0.062 0 020<br />

HIGH 0.075 0.227 0.153 0.189 0.112 0.047 0.189 0.112 0 047<br />

WGHTD AVE 0.066 0.192 0.149 0.154 0.084 0.030 0.154 0.084 0 030<br />

JEFFERSON LOW 0.034 0.082 0.124 0.065 0.024 0.005 0.065 0.024 0 005<br />

HIGH 0.039 0.096 0.130 0.075 0.029 0.006 0.075 0.029 0 006<br />

WGHTD AVE<br />

LAFAYETTE LOW 0.032 0.079 0.120 0.064 0.025 0.005 0.063 0.025 0 005<br />

HIGH 0.033 0.081 0.123 0.066 0.027 0.006 0.066 0.026 0 006<br />

WGHTD AVE<br />

LAKE LOW 0.052 0.141 0.142 0.114 0.057 0.018 0.114 0.057 0 018<br />

HIGH 0.082 0.255 0.180 0.219 0.133 0.060 0.219 0.133 0 060<br />

WGHTD AVE 0.074 0.231 0.171 0.199 0.120 0.053 0.199 0.120 0 053<br />

LEE LOW 0.163 0.675 0.251 0.665 0.513 0.324 0.665 0.513 0 324<br />

HIGH 0.506 3.715 0.871 4.447 4.183 3.697 4.447 4.183 3 697<br />

WGHTD AVE 0.327 2.141 0.521 2.439 2.222 1.866 2.439 2.222 1 866<br />

LEON LOW 0.032 0.076 0.123 0.060 0.021 0.004 0.060 0.021 0 004<br />

HIGH 0.049 0.127 0.141 0.100 0.046 0.013 0.100 0.046 0 013<br />

WGHTD AVE 0.047 0.117 0.138 0.092 0.040 0.010 0.092 0.040 0 010<br />

LEVY LOW 0.046 0.130 0.136 0.107 0.055 0.017 0.107 0.054 0 017<br />

HIGH 0.117 0.566 0.224 0.580 0.474 0.340 0.584 0.471 0 341<br />

WGHTD AVE 0.059 0.235 0.149 0.189 0.123 0.062 0.189 0.121 0 063<br />

LIBERTY LOW 0.060 0.160 0.148 0.125 0.062 0.019 0.125 0.062 0 019<br />

HIGH 0.078 0.232 0.159 0.191 0.111 0.044 0.191 0.111 0 044<br />

WGHTD AVE<br />

MADISON LOW 0.026 0.061 0.112 0.050 0.017 0.003 0.050 0.017 0 003<br />

HIGH 0.031 0.077 0.120 0.064 0.025 0.005 0.063 0.025 0 005<br />

WGHTD AVE 0.031 0.078 0.120 0.063 0.025 0.005 0.063 0.025 0 005<br />

MANATEE LOW 0.101 0.365 0.197 0.337 0.233 0.125 0.337 0.233 0.125<br />

HIGH 0.327 2.020 0.579 2.448 2.262 1.952 2.448 2.262 1 952<br />

WGHTD AVE 0.258 1.470 0.448 1.757 1.592 1.333 1.757 1.592 1 333<br />

MARION LOW 0.044 0.116 0.135 0.093 0.043 0.013 0.092 0.043 0 013<br />

HIGH 0.068 0.217 0.162 0.195 0.123 0.058 0.195 0.123 0 059<br />

WGHTD AVE 0.061 0.188 0.153 0.166 0.100 0.044 0.165 0.099 0 044<br />

MARTIN LOW 0.222 0.953 0.299 0.931 0.729 0.467 0.931 0.729 0.467<br />

HIGH 0.657 4.510 1.019 5.385 5.017 4.358 5.385 5.017 4 358<br />

WGHTD AVE 0.529 3.558 0.801 4.155 3.838 3.272 4.155 3.838 3 272<br />

MIAMI-DADE LOW 0.335 1.494 0.396 1.548 1.269 0.855 1.548 1.269 0 855<br />

HIGH 1.067 7.532 1.834 9.427 8.952 7.981 9.427 8.952 7 981<br />

WGHTD AVE 0.819 6.139 1.377 7.294 6.860 6.019 7.294 6.860 6 019<br />

MONROE LOW 0.769 5.569 1.246 6.833 6.462 5.714 6.833 6.462 5.714<br />

HIGH 1.068 7.400 1.703 9.128 8.625 7.590 9.128 8.625 7 590<br />

WGHTD AVE 0.985 7.045 1.561 8.619 8.147 7.180 8.619 8.147 7.180<br />

NASSAU LOW 0.028 0.069 0.107 0.056 0.021 0.005 0.056 0.021 0 005<br />

HIGH 0.053 0.180 0.137 0.168 0.109 0.055 0.168 0.109 0 055<br />

WGHTD AVE 0.053 0.180 0.137 0.168 0.108 0.055 0.168 0.108 0 055<br />

*Includes contents and A L.E. <strong>Model</strong> USWIND 5.11 / WORLDCATenterprise 3.9 169


Output Range Loss Costs<br />

Form A-6 (2002 FHCF Exposure) LOSS COSTS PER $1,000<br />

PERSONAL RESIDENTIAL - Condo Owners -- MASONRY<br />

$0 $0 $0 DEDUCTIBLE $500 $1,000 $2,500 1% 2% 5%<br />

DEDUCTIBLE DEDUCTIBLE ADDITIONAL DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE<br />

COUNTY LOSS COSTS STRUCTURE CONTENTS LIVING EXPENSE TOTAL* TOTAL* TOTAL* TOTAL* TOTAL* TOTAL*<br />

OKALOOSA LOW 0.102 0.350 0.166 0.311 0.210 0.104 0.311 0.210 0.104<br />

HIGH 0.514 3.664 0.813 4.356 4.066 3.530 4.356 4.066 3 530<br />

WGHTD AVE 0.497 3.512 0.792 4.178 3.896 3.381 4.178 3.896 3 381<br />

OKEECHOBEE LOW 0.151 0.540 0.240 0.487 0.341 0.181 0.487 0.341 0.181<br />

HIGH 0.171 0.624 0.258 0.577 0.416 0.232 0.577 0.416 0 232<br />

WGHTD AVE 0.154 0.560 0.242 0.507 0.357 0.192 0.507 0.357 0.192<br />

ORANGE LOW 0.067 0.192 0.161 0.158 0.086 0.031 0.158 0.086 0 031<br />

HIGH 0.092 0.304 0.181 0.271 0.183 0.093 0.270 0.181 0 092<br />

WGHTD AVE 0.080 0.248 0.175 0.211 0.127 0.054 0.211 0.127 0 054<br />

OSCEOLA LOW 0.072 0.208 0.170 0.173 0.096 0.036 0.173 0.096 0 036<br />

HIGH 0.124 0.437 0.217 0.394 0.272 0.145 0.394 0.272 0.145<br />

WGHTD AVE 0.089 0.285 0.187 0.245 0.153 0.069 0.245 0.153 0 069<br />

PALM BEACH LOW 0.206 0.797 0.287 0.751 0.557 0.322 0.751 0.557 0 322<br />

HIGH 0.859 5.895 1.389 7.223 6.800 5.981 7.223 6.800 5 981<br />

WGHTD AVE 0.592 3.762 0.867 4.385 4.032 3.403 4.385 4.032 3.403<br />

PASCO LOW 0.076 0.249 0.168 0.222 0.142 0.068 0.222 0.142 0 068<br />

HIGH 0.196 1.039 0.356 1.211 1.072 0.878 1.211 1.072 0 878<br />

WGHTD AVE 0.142 0.720 0.261 0.771 0.649 0.492 0.771 0.649 0.492<br />

P NELLAS LOW 0.117 0.524 0.215 0.539 0.430 0.298 0.539 0.430 0 298<br />

HIGH 0.289 1.734 0.506 2.079 1.902 1.616 2.079 1.902 1 616<br />

WGHTD AVE 0.226 1.251 0.394 1.466 1.312 1.083 1.466 1.312 1 083<br />

POLK LOW 0.075 0.227 0.173 0.192 0.112 0.046 0.192 0.112 0 046<br />

HIGH 0.102 0.343 0.202 0.310 0.208 0.108 0.310 0.208 0.108<br />

WGHTD AVE 0.093 0.313 0.191 0.280 0.185 0.093 0.280 0.185 0 093<br />

PUTNAM LOW 0.041 0.104 0.126 0.084 0.037 0.010 0.084 0.037 0 010<br />

HIGH 0.054 0.151 0.143 0.126 0.068 0.025 0.127 0.068 0 025<br />

WGHTD AVE 0.044 0.115 0.133 0.094 0.044 0.013 0.094 0.044 0 013<br />

SA NT JOHNS LOW 0.035 0.091 0.117 0.075 0.033 0.009 0.075 0.033 0 009<br />

HIGH 0.082 0.347 0.176 0.346 0.264 0.175 0.346 0.264 0.175<br />

WGHTD AVE 0.063 0.229 0.153 0.222 0.155 0.093 0.221 0.155 0 091<br />

SA NT LUC E LOW 0.189 0.760 0.269 0.723 0.545 0.326 0.723 0.545 0 327<br />

HIGH 0.576 4.241 0.922 4.943 4.645 4.098 4.995 4.666 4.100<br />

WGHTD AVE 0.464 3.263 0.704 3.700 3.398 2.927 3.700 3.415 2 929<br />

SANTA ROSA LOW 0.076 0.230 0.142 0.190 0.112 0.043 0.190 0.112 0 043<br />

HIGH 0.573 4.218 0.900 5.022 4.707 4.108 5.022 4.707 4.108<br />

WGHTD AVE 0.428 2.889 0.618 3.329 3.058 2.577 3.329 3.058 2 577<br />

SARASOTA LOW 0.180 0.852 0.294 0.958 0.816 0.616 0.958 0.816 0 616<br />

HIGH 0.382 2.648 0.660 3.166 2.952 2.584 3.166 2.952 2 584<br />

WGHTD AVE 0.302 1.967 0.523 2.316 2.133 1.829 2.316 2.133 1 829<br />

SEMINOLE LOW 0.070 0.204 0.161 0.170 0.095 0.036 0.170 0.095 0 036<br />

HIGH 0.088 0.286 0.175 0.255 0.165 0.078 0.255 0.165 0 078<br />

WGHTD AVE 0.074 0.222 0.165 0.188 0.110 0.045 0.188 0.110 0 045<br />

SUMTER LOW 0.063 0.187 0.158 0.159 0.090 0.036 0.159 0.090 0 036<br />

HIGH 0.069 0.215 0.162 0.187 0.112 0.050 0.187 0.112 0 050<br />

WGHTD AVE 0.063 0.194 0.158 0.165 0.098 0.042 0.167 0.098 0 042<br />

*Includes contents and A L.E. <strong>Model</strong> USWIND 5.11 / WORLDCATenterprise 3.9 170


Output Range Loss Costs<br />

Form A-6 (2002 FHCF Exposure) LOSS COSTS PER $1,000<br />

PERSONAL RESIDENTIAL - Condo Owners -- MASONRY<br />

$0 $0 $0 DEDUCTIBLE $500 $1,000 $2,500 1% 2% 5%<br />

DEDUCTIBLE DEDUCTIBLE ADDITIONAL DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE DEDUCTIBLE<br />

COUNTY LOSS COSTS STRUCTURE CONTENTS LIVING EXPENSE TOTAL* TOTAL* TOTAL* TOTAL* TOTAL* TOTAL*<br />

SUWANNEE LOW 0.023 0.053 0.111 0.044 0.014 0.002 0.044 0.014 0 002<br />

HIGH 0.032 0.080 0.124 0.065 0.026 0.006 0.066 0.026 0 006<br />

WGHTD AVE<br />

TAYLOR LOW 0.034 0.083 0.122 0.067 0.026 0.006 0.067 0.026 0 006<br />

HIGH 0.043 0.116 0.136 0.096 0.047 0.014 0.096 0.047 0 014<br />

WGHTD AVE<br />

UNION LOW 0.032 0.081 0.120 0.066 0.026 0.006 0.066 0.026 0 006<br />

HIGH 0.034 0.087 0.125 0.072 0.030 0.007 0.072 0.030 0 007<br />

WGHTD AVE 0.032 0.081 0.120 0.066 0.026 0.006 0.065 0.026 0 006<br />

VOLUSIA LOW 0.056 0.153 0.144 0.129 0.069 0.025 0.129 0.069 0 025<br />

HIGH 0.162 0.894 0.280 0.994 0.863 0.685 0.988 0.865 0 692<br />

WGHTD AVE 0.127 0.652 0.229 0.691 0.581 0.441 0.691 0.581 0.441<br />

WAKULLA LOW 0.063 0.169 0.153 0.134 0.068 0.022 0.134 0.068 0 022<br />

HIGH 0.074 0.234 0.167 0.203 0.126 0.059 0.203 0.126 0 059<br />

WGHTD AVE<br />

WALTON LOW 0.076 0.230 0.144 0.191 0.113 0.045 0.191 0.113 0 045<br />

HIGH 0.474 3.411 0.743 4.017 3.740 3.241 4.017 3.740 3 241<br />

WGHTD AVE 0.456 3.149 0.698 3.730 3.461 2.984 3.730 3.461 2 984<br />

WASHINGTON LOW 0.096 0.315 0.166 0.275 0.179 0.083 0.275 0.179 0 083<br />

HIGH 0.154 0.665 0.219 0.653 0.513 0.333 0.653 0.513 0 333<br />

WGHTD AVE<br />

<strong>State</strong>wide LOW 0.022 0.051 0.099 0.041 0.013 0.002 0.041 0.013 0 002<br />

HIGH 1.068 7.532 1.834 9.427 8.952 7.981 9.427 8.952 7 981<br />

WGHTD AVE 0.457 3.239 0.716 3.654 3.368 2.867 3.654 3.368 2 867<br />

*Includes contents and A L.E. <strong>Model</strong> USWIND 5.11 / WORLDCATenterprise 3.9 171


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

Form A-7: Percentage Change In Output Ranges<br />

A. Provide the percentage change in the weighted average loss costs using the 2002 <strong>Florida</strong><br />

Hurricane Catastrophe Fund’s aggregate personal residential exposure data found in the file<br />

named “hlpm2002.exe”, as <strong>of</strong> August 1, 2003, from the output ranges from the prior year<br />

submission for the following:<br />

• statewide (overall percentage change),<br />

• by region, as defined in Figure 21 – North, Central and South,<br />

• by coastal and inland counties, as defined in Figure 22.<br />

B. Provide this Form on CD in both an Excel and a PDF format. The file name should include<br />

the abbreviated name <strong>of</strong> the modeler, the Standards year, and the Form name. A hard copy<br />

<strong>of</strong> Form A-7 should be included in the submission.<br />

North<br />

Central<br />

South<br />

Figure 21. <strong>State</strong> <strong>of</strong> <strong>Florida</strong> by North/Central/South Regions<br />

172


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

Inland<br />

Coastal<br />

Figure 22. <strong>State</strong> <strong>of</strong> <strong>Florida</strong> by Coastal/Inland Counties<br />

The results are shown on Form A-7.<br />

173


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

Form A-7: Percentage Change In Output Ranges<br />

Frame<br />

Owners<br />

Masonry<br />

Owners<br />

Mobile<br />

Homes<br />

Frame<br />

Renters<br />

Masonry<br />

Renters<br />

Frame<br />

Condos<br />

Masonry<br />

Condos<br />

Structure<br />

$0 Deductible<br />

Appurtenant<br />

Contents<br />

Structure<br />

Additional<br />

Living<br />

Expense<br />

$500<br />

Deductible<br />

Total<br />

$1,000<br />

Deductible<br />

Total<br />

$2,500<br />

Deductible<br />

Total<br />

1%<br />

Deductible<br />

Total<br />

2%<br />

Deductible<br />

Total<br />

5%<br />

Deductible<br />

Total<br />

Coastal 6.81% 3.14% 6.43% 8.91% 6.45% 6.80% 7.61% 6.79% 7.35% 8.73%<br />

Inland 1.54% 1.74% 1.67% 1.43% 1.72% 1.87% 2.19% 1.84% 2.15% 3.02%<br />

North 6.56% 6.65% 6.41% 6.41% 6.99% 7.29% 7.96% 7.28% 7.78% 8.74%<br />

Central 3.92% 0.05% 3.91% 5.91% 3.67% 4.08% 4.98% 4.03% 4.67% 6.49%<br />

South 7.97% 2.19% 7.26% 11.43% 7.14% 7.48% 8.33% 7.48% 8.06% 9.52%<br />

<strong>State</strong>wide 6.34% 3.03% 5.95% 7.99% 6.09% 6.45% 7.33% 6.45% 7.06% 8.52%<br />

Coastal 8.02% 0.66% 7.64% 10.96% 7.00% 7.47% 8.71% 7.48% 8.32% 10.44%<br />

Inland 1.95% 1.81% 1.84% 1.47% 2.13% 2.30% 2.83% 2.29% 2.61% 3.68%<br />

North 5.93% 6.59% 5.80% 4.46% 6.57% 6.91% 7.81% 7.02% 7.57% 8.64%<br />

Central 4.86% 0.46% 4.86% 5.83% 4.63% 5.12% 6.45% 5.12% 6.02% 8.46%<br />

South 8.53% 0.57% 8.14% 12.19% 7.36% 7.82% 9.03% 7.82% 8.65% 10.75%<br />

<strong>State</strong>wide 7.71% 0.69% 7.28% 10.20% 6.80% 7.28% 8.55% 7.28% 8.15% 10.33%<br />

Coastal 6.75% 2.96% 6.50% 14.37% 6.54% 7.24% 8.31% 6.54% 7.23% 8.31%<br />

Inland 3.19% 3.17% 3.19% 3.71% 3.62% 4.59% 5.63% 3.62% 4.59% 5.66%<br />

North 6.24% 6.87% 6.09% 6.77% 6.90% 7.64% 8.70% 6.88% 7.65% 8.71%<br />

Central 4.19% 0.91% 4.06% 10.73% 4.14% 4.89% 5.89% 4.15% 4.88% 5.90%<br />

South 8.26% 4.39% 8.04% 15.76% 7.99% 8.72% 9.85% 7.99% 8.72% 9.85%<br />

<strong>State</strong>wide 6.14% 2.96% 5.80% 12.81% 6.11% 6.87% 7.99% 6.11% 6.87% 7.99%<br />

Coastal 3.51% 8.35% 5.52% 5.76% 6.19% 4.88% 5.50% 5.86%<br />

Inland 1.39% 1.47% 1.98% 2.60% 2.53% 6.92% 1.94% 2.37%<br />

North 6.58% 6.11% 7.81% 8.09% 8.46% 7.35% 7.80% 8.18%<br />

Central 0.50% 5.83% 2.68% 3.02% 3.54% 3.03% 2.65% 3.14%<br />

South 1.99% 12.11% 4.79% 4.96% 5.32% 3.78% 4.79% 5.03%<br />

<strong>State</strong>wide 3.30% 6.94% 5.30% 5.62% 6.13% 5.34% 5.30% 5.73%<br />

Coastal 0.89% 11.26% 3.61% 3.79% 4.11% 2.99% 3.61% 3.86%<br />

Inland 1.72% 1.51% 2.53% 2.68% 3.80% 10.02% 2.51% 3.03%<br />

North 7.09% 4.78% 8.23% 8.44% 8.71% 7.95% 8.22% 8.50%<br />

Central 0.56% 6.75% 3.16% 3.54% 4.18% 4.02% 3.16% 3.71%<br />

South 0.58% 12.34% 3.41% 3.53% 3.79% 2.54% 3.41% 3.58%<br />

<strong>State</strong>wide 0.93% 10.24% 3.59% 3.77% 4.12% 3.32% 3.59% 3.84%<br />

Coastal 7.29% 2.79% 10.73% 5.06% 5.28% 5.67% 5.06% 5.28% 5.66%<br />

Inland 1.30% 1.20% 1.39% 1.66% 2.15% 2.73% 1.62% 2.18% 2.70%<br />

North 7.31% 7.21% 7.86% 8.14% 8.41% 8.70% 8.15% 8.41% 8.70%<br />

Central 4.51% -0.19% 6.91% 2.45% 2.69% 3.13% 2.44% 2.68% 3.09%<br />

South 8.00% 2.09% 12.32% 4.87% 5.06% 5.43% 4.87% 5.06% 5.43%<br />

<strong>State</strong>wide 6.98% 2.74% 10.18% 4.99% 5.23% 5.64% 4.99% 5.23% 5.64%<br />

Coastal 8.57% 0.54% 11.71% 3.69% 3.82% 4.09% 3.69% 3.82% 4.09%<br />

Inland 2.09% 1.88% 1.70% 2.41% 2.94% 3.92% 2.33% 2.83% 4.03%<br />

North 8.31% 7.44% 8.59% 8.47% 8.72% 8.95% 8.47% 8.72% 8.95%<br />

Central 6.56% -0.06% 8.81% 2.86% 3.04% 3.54% 2.85% 3.09% 3.55%<br />

South 8.77% 0.45% 12.07% 3.66% 3.78% 4.03% 3.66% 3.78% 4.03%<br />

<strong>State</strong>wide 8.50% 0.54% 11.60% 3.68% 3.82% 4.08% 3.68% 3.82% 4.08%<br />

174


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

Form A-8: Percentage Change in Output Ranges by County<br />

Provide color-coded maps by county reflecting the percentage changes in the weighted average<br />

2% deductible loss costs for frame owners, masonry owners, mobile homes, frame renters,<br />

masonry renters, frame condos, and masonry condos from the output ranges using the 2002<br />

<strong>Florida</strong> Hurricane Catastrophe Fund’s aggregate personal residential exposure data found in<br />

the file named “hlpm2002.exe”, as <strong>of</strong> August 1, 2003.<br />

Counties with a negative percentage change (reduction in loss costs) would be indicated with<br />

shades <strong>of</strong> blue; counties with a positive percentage change (increase in loss costs) would be<br />

indicated with shades <strong>of</strong> red, and counties with no percentage change would be white. The larger<br />

the percentage change in the county, the more intense the color-shade.<br />

The percentage changes in the county level weighted average loss costs for a<br />

2% deductible for the seven policy types are shown in the maps below.<br />

175


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

176


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

177


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Actuarial Standards<br />

178


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Statistical Standards<br />

Statistical Standards<br />

S-1 <strong>Model</strong>ed Results and Goodness-<strong>of</strong>-Fit<br />

A. The use <strong>of</strong> historical data in developing the model shall be supported by<br />

rigorous methods published in currently accepted scientific literature.<br />

EQECAT’s use <strong>of</strong> historical data in developing USWIND is supported by rigorous<br />

methods published in currently accepted scientific literature.<br />

B. <strong>Model</strong>ed and historical results shall reflect agreement using currently<br />

accepted scientific and statistical methods.<br />

<strong>Model</strong>ed and historical results reflect agreement using currently accepted<br />

scientific and statistical methods.<br />

Disclosures<br />

1. Identify the form <strong>of</strong> the probability distributions used for each function or variable,<br />

if applicable. Identify statistical techniques used for the estimates and the specific<br />

goodness-<strong>of</strong>-fit tests applied. Describe whether the p-values associated with the<br />

fitted distributions provide a reasonable agreement with the historical data.<br />

Radius to maximum winds and translational speed are modeled using<br />

lognormal distributions, the parameters <strong>of</strong> which vary smoothly along the<br />

coast. Filling rate is modeled using a normal distribution. Friction and gust<br />

factor are modeled using lognormal distributions. Chi-squared and<br />

Kolmogorov-Smirnov tests have been performed to assess the goodness-<strong>of</strong>fit,<br />

and reasonable aggreement with the historical data has been shown.<br />

2. Provide the source and the number <strong>of</strong> years <strong>of</strong> the historical data set used to develop<br />

probability distributions for specific hurricane characteristics. If any modifications<br />

have been made to the data set, describe them in detail and their appropriateness.<br />

NOAA Publication NWS-38 covers the period 1900-1984, and was the main<br />

source for compiling information on hurricane modeling parameters, (radius <strong>of</strong><br />

maximum winds, direction <strong>of</strong> motion, translation speed, etc.) Data for later<br />

storms (1985-2004) was obtained in specific reports or publications from the<br />

National Hurricane Center (including Tropical Cyclone Reports and<br />

Advisories), analyses from the Hurricane Research Division, or from other<br />

scientifically accepted publications. Coastline-dependent landfall frequency<br />

and severity distributions for the state <strong>of</strong> <strong>Florida</strong> were developed from the<br />

Commission’s November 1, <strong>2006</strong> <strong>Florida</strong> storm set.<br />

179


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Statistical Standards<br />

3. Describe the nature and results <strong>of</strong> the tests performed to validate the wind speeds<br />

generated.<br />

Dr. Don Friedman, who has a Doctorate in meteorology and over 35 years<br />

analyzing hurricane wind patterns and their relation to insurance claims while<br />

at the Research Department <strong>of</strong> The Travelers Insurance Company, performed<br />

a study <strong>of</strong> USWIND-generated peak gust wind patterns with those <strong>of</strong> actual<br />

hurricanes: Actual peak gust observations were obtained for eleven landfalls<br />

<strong>of</strong> nine notable hurricanes since 1960. These observations were compared<br />

with model-generated peak gust wind speeds. Scatter plots were made <strong>of</strong><br />

observed versus modeled. Table 3 below summarizes his results, and is<br />

limited to observations with gusts above 60 mph to avoid including areas<br />

where wind damage on the fringe <strong>of</strong> a storm would not be significant; (this<br />

level would roughly correspond to a 1-minute sustained <strong>of</strong> 45 mph).<br />

TABLE 3.<br />

COMPARISON OF POINT LOCATION OBSERVATIONS WITH<br />

MODEL-GENERATED WINDS<br />

(Peak Gust Observations 60 mph or more)<br />

Hurricane #Obs<br />

#Simulated +/- 10 #Simulated +/- 15<br />

mph<br />

mph<br />

Andrew 1992 10 9 90% 9 90%<br />

Bob 1991 16 12 75% 13 82%<br />

Hugo 1989 7 5 71% 6 86%<br />

Gloria 1985 11 7 64% 9 82%<br />

Elena 1985 6 4 67% 6 100%<br />

Alicia 1983 9 5 56% 5 56%<br />

Betsy 1965 24 13 54% 19 79%<br />

Carla 1961 17 12 71% 14 82%<br />

Donna 1960 26 15 58% 22 85%<br />

Total 126 82 65% 103 82%<br />

4. Provide the date <strong>of</strong> loss <strong>of</strong> the insurance company data available for validation and<br />

verification <strong>of</strong> the model.<br />

The primary information available for validation and verification <strong>of</strong> the model<br />

is claims data from Hurricanes Alicia (1983), Elena (1985), Gloria (1985),<br />

Juan (1985), Kate (1985), Hugo (1989), Bob (1991), Andrew (1992), Iniki<br />

(1992), Erin (1995), Opal (1995), Charley (2004), Frances (2004), Ivan<br />

(2004), Jeanne (2004), Katrina (2005), Rita (2005), and Wilma (2005).<br />

5. Provide an assessment <strong>of</strong> uncertainty in loss costs for output ranges using confidence<br />

intervals or other accepted scientific characterizations <strong>of</strong> uncertainty.<br />

Figure 23 below compares the loss exceedance curve presented in Form S-2<br />

with the curves that would result from adding or subtracting one standard<br />

deviation (sigma) to the total annual hurricane frequency in the model.<br />

180


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Statistical Standards<br />

100,000,000<br />

90,000,000<br />

80,000,000<br />

Frequency plus one sigma<br />

Mean frequency<br />

Frequency minus one sigma<br />

70,000,000<br />

60,000,000<br />

Loss ($)<br />

50,000,000<br />

40,000,000<br />

30,000,000<br />

20,000,000<br />

10,000,000<br />

-<br />

1 10 100 1,000 10,000<br />

Return Period (Years)<br />

Figure 23. Uncertainty Analysis for Frequency<br />

6. Provide graphical comparisons <strong>of</strong> modeled and historical data and goodness-<strong>of</strong>-fit<br />

tests. Examples include hurricane frequencies, tracks, intensities, and physical<br />

damage.<br />

Figures 24 and 25 are examples <strong>of</strong> graphical comparisons <strong>of</strong> modeled and<br />

historical data.<br />

Figure 24 compares the historical data for translational speed near Ft. Myers<br />

and Daytona Beach with the lognormal distribution used to model it. As an<br />

example <strong>of</strong> a more quantitative comparison, we performed a Kolmogorov-<br />

Smirnov test to assess the goodness-<strong>of</strong>-fit <strong>of</strong> our modeled distribution for<br />

translational speed at Ft. Myers to the historical data. The test statistic value<br />

is 0.116. The critical test value at a 5% level <strong>of</strong> significance is 0.21, for 41<br />

data points. Hence, the modeled distribution cannot be rejected at that level<br />

<strong>of</strong> significance. Similarly, for Daytona Beach the test statistic value is 0.208,<br />

and the critical test value at a 5% level <strong>of</strong> significance is 0.27, for 23 data<br />

points; hence the modeled distribution cannot be rejected at that level <strong>of</strong><br />

significance.<br />

181


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Statistical Standards<br />

(a)<br />

(b)<br />

Figure 24. Goodness-<strong>of</strong>-fit for Translational Speed<br />

0.7<br />

0.6<br />

0.5<br />

historical<br />

negative binomial<br />

probability<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

0 1 2 3 4 5 6 7 8 9 10 or<br />

more<br />

# events per year<br />

Figure 25. Goodness-<strong>of</strong>-fit for Hurricane Frequency in <strong>Florida</strong><br />

Figure 25 compares the historical data for hurricane frequency in <strong>Florida</strong> with<br />

the negative binomial distribution used to model it. We performed a<br />

Kolmogorov-Smirnov test to assess the goodness-<strong>of</strong>-fit <strong>of</strong> our modeled<br />

182


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Statistical Standards<br />

distribution for hurricane frequency in <strong>Florida</strong> to the historical data. The test<br />

statistic value is 0.0384. The critical test value at a 5% level <strong>of</strong> significance is<br />

0.130, hence the modeled distribution cannot be rejected at that level <strong>of</strong><br />

significance.<br />

7. Provide a completed Form S-1, Probability <strong>of</strong> <strong>Florida</strong> Landfalling Hurricanes per<br />

Year.<br />

See Form S-1 at the end <strong>of</strong> this section.<br />

8. Provide a completed Form S-2, Probable Maximum Loss.<br />

See Form S-2 at the end <strong>of</strong> this section.<br />

183


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Statistical Standards<br />

S-2 Sensitivity Analysis for <strong>Model</strong> Output<br />

The modeler shall have assessed the sensitivity <strong>of</strong> temporal and spatial<br />

outputs with respect to the simultaneous variation <strong>of</strong> input variables using<br />

currently accepted scientific and statistical methods and have taken<br />

appropriate action.<br />

EQECAT has assessed the sensitivity <strong>of</strong> temporal and spatial outputs with<br />

respect to the simultaneous variation <strong>of</strong> input variables using currently accepted<br />

scientific and statistical methods, and has taken appropriate action.<br />

Disclosures<br />

1. Provide a detailed explanation <strong>of</strong> the sensitivity analyses that have been performed<br />

on the model above and beyond those completed for the original submission <strong>of</strong> Form<br />

S-5 and provide specific results. (Requirement for modeling organizations that have<br />

previously provided the Commission with Form S-5. This Disclosure can be satisfied<br />

with an updated Form S-5 that incorporates changes to the model since the previous<br />

submission <strong>of</strong> the Form.)<br />

Sensitivity analyses have been performed on track spacing; on the number <strong>of</strong><br />

attack angles given landfall; on the number <strong>of</strong> wind speed class intervals<br />

given landfall and attack angle; and on the number <strong>of</strong> other storm parameter<br />

samples used in the stochastic hurricane database. Figure 26 presents an<br />

example <strong>of</strong> such an analysis.<br />

3,500<br />

3,000<br />

2,500<br />

expected annual loss<br />

2,000<br />

1,500<br />

1,000<br />

500<br />

0<br />

0 1000 2000 3000 4000 5000 6000 7000 8000 9000<br />

number <strong>of</strong> events affecting Nassau county<br />

Figure 26. Sensitivity Analysis for Number <strong>of</strong> Events<br />

184


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Statistical Standards<br />

In the figure, the expected annual loss for Nassau county is shown as a<br />

function <strong>of</strong> the size <strong>of</strong> the stochastic event set, displayed in terms <strong>of</strong> the<br />

number <strong>of</strong> events affecting the county. The red lines indicate a 90%<br />

confidence interval on the expected annual loss. Note that this test is based<br />

on the reduced set <strong>of</strong> approximately 50,000 events (see Form A-5 for a<br />

description <strong>of</strong> this event set).<br />

2. Provide a description <strong>of</strong> the statistical methods used to perform the sensitivity<br />

analysis.<br />

The sensitivity analyses performed were primarily convergence tests.<br />

3. Identify the most sensitive aspect <strong>of</strong> the model and the basis for making this<br />

determination. Provide a full discussion <strong>of</strong> the degree to which these sensitivities<br />

affect output results and illustrate with an example.<br />

The most sensitive aspect <strong>of</strong> our model involves the conversion <strong>of</strong> wind<br />

speed to damage. This is due to the fact that the damage sustained by a<br />

particular structure type depends very sensitively on the wind speed<br />

experienced at the site. For example, the damage sustained by a given<br />

structure type depends approximately on the wind speed raised to some<br />

power. If the damage is proportional to the fifth power <strong>of</strong> the wind speed, then<br />

a 1% uncertainty in the wind speed will result in a 5% uncertainty in the<br />

damage calculated at that site. The origin <strong>of</strong> this uncertainty is the underlying<br />

non-linearity <strong>of</strong> the vulnerability relationship, and not in any assumptions, data<br />

or properties unique to our model.<br />

4. Describe how other aspects <strong>of</strong> the model may have a significant impact on the<br />

sensitivities in output results and the basis for making this determination.<br />

The results <strong>of</strong> any model depend sensitively on details <strong>of</strong> the structural<br />

characteristics and location <strong>of</strong> the insured sites. Often, this information is not<br />

provided by the insurance or underwriting agency for use by the model. Such<br />

details can potentially have a large impact on results due to the large variation<br />

in damageability among different structure classes and secondary structural<br />

configurations, and to the large variation in the wind hazard with respect to<br />

distance to coast and other factors.<br />

5. Describe actions taken in light <strong>of</strong> the sensitivity analyses performed.<br />

The sensitivity analyses performed during the initial development <strong>of</strong> the model<br />

were crucial in determining optimal sample sizes and the relative importance<br />

<strong>of</strong> parameters. Subsequent analyses have been used to verify that the<br />

decisions made continue to be valid.<br />

185


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Statistical Standards<br />

6. Provide a completed Form S-5, Hypothetical Events for Sensitivity and Uncertainty<br />

Analysis (requirement models submitted by modeling organizations which have not<br />

previously provided the Commission with this analysis).<br />

Not applicable.<br />

186


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Statistical Standards<br />

S-3 Uncertainty Analysis for <strong>Model</strong> Output<br />

The modeler shall have performed an uncertainty analysis on the temporal<br />

and spatial outputs <strong>of</strong> the model using currently accepted scientific and<br />

statistical methods and have taken appropriate action. The analysis shall<br />

identify and quantify the extent that input variables impact the uncertainty<br />

in model output as the input variables are simultaneously varied.<br />

EQECAT has performed uncertainty analysis on the temporal and spatial outputs<br />

<strong>of</strong> the model using currently accepted scientific and statistical methods and has<br />

taken appropriate action. The analysis has identified and quantified the extent<br />

that input variables impact the uncertainty in model output as the input variables<br />

are simultaneously varied.<br />

Disclosures<br />

1. Provide a detailed explanation <strong>of</strong> the uncertainty analyses that have been performed<br />

on the model above and beyond those completed for the original submission <strong>of</strong> Form<br />

S-5 and provide specific results. (Requirement for modeling organizations that have<br />

previously provided the Commission with Form S-5. This Disclosure can be satisfied<br />

with an updated Form S-5 that incorporates changes to the model since the previous<br />

submission <strong>of</strong> the Form.)<br />

Several uncertainty analyses were performed, including an analysis <strong>of</strong> the<br />

effect <strong>of</strong> uncertainty on hurricane frequency on the loss exceedance curve for<br />

the FHCF portfolio, and the effect <strong>of</strong> uncertainty in damage estimation<br />

(including both modeling uncertainty and uncertainty in physical properties)<br />

on expected annual losses for the FHCF portfolio.<br />

2. Provide a description <strong>of</strong> the statistical methods used to perform the uncertainty<br />

analysis.<br />

The uncertainty analyses performed were primarily confidence interval tests.<br />

3. Identify the major contributors to the uncertainty in model outputs and the basis for<br />

making this determination. Provide a full discussion <strong>of</strong> the degree to which these<br />

uncertainties affect output results and illustrate with an example.<br />

Major contributors to the uncertainty in model output include uncertainty on<br />

storm parameters, uncertainty on site parameters, and uncertainty on the<br />

vulnerability functions, as identified in our uncertainty analysis.<br />

One such contributor is the conversion <strong>of</strong> wind speed to damage. This is due<br />

to the fact that the damage sustained by a particular structure type depends<br />

very sensitively on the <strong>of</strong> wind speed experienced at the site. For example,<br />

the damage sustained by a given structure type depends approximately on<br />

the <strong>of</strong> wind speed raised to some power. If the damage is proportional to the<br />

fifth power <strong>of</strong> the <strong>of</strong> wind speed, then a 1% uncertainty in the wind speed will<br />

187


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Statistical Standards<br />

result in a 5% uncertainty in the damage calculated at that site. The origin <strong>of</strong><br />

this uncertainty is the underlying non-linearity <strong>of</strong> the vulnerability relationship,<br />

and not in any assumptions, data or properties unique to our model.<br />

4. Describe how other aspects <strong>of</strong> the model may have a significant impact on the<br />

uncertainties in output results and the basis for making this determination.<br />

The results <strong>of</strong> any model depend sensitively on details <strong>of</strong> the structural<br />

characteristics and location <strong>of</strong> the insured sites. Often, this information is not<br />

provided by the insurance or underwriting agency for use by the model. Such<br />

details can potentially have a large impact on results due to the large variation<br />

in damageability among different structure classes and secondary structural<br />

configurations, and to the large variation in the wind hazard with respect to<br />

distance to coast and other factors.<br />

5. Describe actions taken in light <strong>of</strong> the uncertainty analyses performed.<br />

The uncertainty analyses performed during the initial development <strong>of</strong> the<br />

model were crucial in determining optimal sample sizes and the relative<br />

importance <strong>of</strong> parameters. Subsequent analyses have been used to verify<br />

that the decisions made continue to be valid.<br />

6. For models submitted by modeling organizations, which have not previously<br />

provided this analysis to the Commission, Form S-5 was disclosed under Standard<br />

S-2 and will be used in the verification <strong>of</strong> Standard S-3.<br />

Not applicable.<br />

188


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Statistical Standards<br />

S-4 County Level Aggregation<br />

Disclosure<br />

At the county level <strong>of</strong> aggregation, the contribution to the error in loss cost<br />

estimates attributable to the sampling process shall be negligible.<br />

USWIND estimates loss costs in the mainland United <strong>State</strong>s from Texas to<br />

Maine on the basis <strong>of</strong> 511,500 stochastic storm simulation results. Of these,<br />

about 160,000 are <strong>Florida</strong> landfalling or bypassing events. Given the high<br />

resolution <strong>of</strong> the stochastic storm database, the contribution to the error in loss<br />

cost estimates induced by the sampling process is negligible.<br />

1. Describe the sampling plan used to obtain the average annual loss costs and output<br />

ranges. For a direct Monte Carlo simulation, indicate steps taken to determine sample<br />

size. For importance sampling design, describe the underpinnings <strong>of</strong> the design.<br />

USWIND estimates loss costs using a Latin Hypercube technique. The<br />

primary storm (e.g. radius, forward speed, filling rate) and site (e.g. friction,<br />

gust factor) parameters are all random variables in the model.<br />

189


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Statistical Standards<br />

S-5 Replication <strong>of</strong> Known Hurricane Losses<br />

The model shall estimate incurred losses in an unbiased manner on a<br />

sufficient body <strong>of</strong> past hurricane events from more than one company,<br />

including the most current data available to the modeler. This Standard<br />

applies separately to personal residential and, to the extent data are<br />

available, to mobile homes. Personal residential experience may be used to<br />

replicate structure-only and contents-only losses. The replications shall be<br />

produced on an objective body <strong>of</strong> loss data by county or an appropriate<br />

level <strong>of</strong> geographic detail.<br />

USWIND reasonably replicates incurred losses on a sufficient body <strong>of</strong> past<br />

hurricane events, including the most current data available to EQECAT.<br />

Disclosures<br />

1. Describe the nature and results <strong>of</strong> the analyses performed to validate the loss<br />

projections generated by the model.<br />

Overall reasonability/validity checks on historical storm estimates and<br />

expected annual loss estimates are continuously conducted on personal lines<br />

portfolios received from our clients.<br />

We are cautious about having false security with validations made against<br />

one or a few storms. We thus place limited value on Andrew loss<br />

comparisons. Unfortunately, portfolio exposures at the time <strong>of</strong> other historic<br />

storms are rare. However, the results USWIND has produced for Andrew<br />

simulations have been consistently within EQECAT’s and our client’s<br />

expectations. In addition to Andrew, we have done several studies comparing<br />

claims information from hurricane Opal, as well as for hurricane Alicia with<br />

losses produced by USWIND.<br />

Some <strong>of</strong> the validation comparisons performed are summarized in Form S-3.<br />

2. Provide a completed Form S-3, Five Validation Comparisons.<br />

See Form S-3 at the end <strong>of</strong> this section.<br />

190


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Statistical Standards<br />

S-6 Comparison <strong>of</strong> Projected Hurricane Loss Costs<br />

The difference, due to uncertainty, between historical and modeled annual<br />

average statewide loss costs shall be reasonable, given the body <strong>of</strong> data,<br />

by established statistical expectations and norms.<br />

The difference, due to uncertainty, between historical and modeled annual<br />

average statewide loss costs is statistically reasonable, as shown in the<br />

information provided below.<br />

Disclosures<br />

1. Describe the nature and results <strong>of</strong> the tests performed to validate the expected loss<br />

projections generated. If a set <strong>of</strong> simulated hurricanes or simulation trials was used<br />

to determine these loss projections, specify the convergence tests that were used and<br />

the results. Specify the number <strong>of</strong> hurricanes or trials that were used.<br />

The results <strong>of</strong> our model were validated by checking each component <strong>of</strong> the<br />

model separately. We took the following steps to validate the hazard<br />

component:<br />

a) Ensure that the frequency <strong>of</strong> the simulated storms matches against<br />

historical landfall frequency.<br />

b) Compare USWIND return period wind speed estimates by landfall<br />

location against other substantive research in this area.<br />

Steps a) and b) were used as the reasonability check for the hazard<br />

frequency (number <strong>of</strong> landfalls per year) and severity (expected wind speeds<br />

to be experienced every x years).<br />

Given reasonability <strong>of</strong> the hazard component <strong>of</strong> the model, loss estimates<br />

were compared to actual losses sustained by specific insurance companies.<br />

In addition, comparisons <strong>of</strong> statewide expected annual loss versus the<br />

average <strong>of</strong> all historical events impacting <strong>Florida</strong> in this century were<br />

compared in order to validate estimated losses.<br />

The expected annual loss estimates produced by USWIND are further<br />

checked for reasonability against alternative methods <strong>of</strong> obtaining the same<br />

results. Such methods include Monte Carlo simulations, analyses based<br />

solely on historical storms and actuarial techniques, and alternative methods<br />

using NHRS and historical frequency rates.<br />

Relativities <strong>of</strong> the expected annual loss estimates by geographic territory and<br />

by construction type have also been evaluated to ensure reasonableness.<br />

Convergence tests were also performed in order to ensure that USWIND<br />

produces stable results and that additional detail (i.e., simulated storms)<br />

191


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Statistical Standards<br />

would not significantly alter the result. The basis for our expected annual loss<br />

estimates is the modeling <strong>of</strong> 511,500 storms.<br />

2. Identify differences, if any, in how the model produces loss costs for specific<br />

historical events versus loss costs for events in the stochastic hurricane set.<br />

There are no differences in how the model produces loss costs for specific<br />

historical events versus loss costs for events in the stochastic hurricane set.<br />

3. Provide a completed Form S-4, Average Annual Zero Deductible <strong>State</strong>wide Loss<br />

Costs – Historical versus <strong>Model</strong>ed.<br />

See Form S-4 at the end <strong>of</strong> this section.<br />

192


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Statistical Standards<br />

Form S-1: Probability <strong>of</strong> <strong>Florida</strong> Landfalling Hurricanes per Year<br />

Complete the table below showing the probability <strong>of</strong> landfalling <strong>Florida</strong> hurricanes per year.<br />

<strong>Model</strong>ed probability should be rounded to four decimal places. The historical probabilities<br />

below have been derived from the Commission’s Official Hurricane Set. If the National<br />

Hurricane Center’s HURDAT or other hurricanes in addition to the Official Hurricane Set as<br />

specified in Standard M-1 are used by the modeler, then the historical probabilities should be<br />

modified accordingly. If the National Hurricane Center’s HURDAT is used, provide the<br />

HURDAT revision date.<br />

<strong>Model</strong> Results<br />

Probability <strong>of</strong> <strong>Florida</strong> Landfalling Hurricanes per Year<br />

Number<br />

Of Hurricanes<br />

Per Year<br />

Historical<br />

Probability<br />

<strong>Model</strong>ed<br />

Probability<br />

0 0.5887 0.5687<br />

1 0.2523 0.2907<br />

2 0.1215 0.1015<br />

3 0.0280 0.0291<br />

4 0.0000 0.0076<br />

5 0.0000 0.0018<br />

6 0.0000 0.0004<br />

7 0.0000 0.0001<br />

8 0.0000 0.0000<br />

9 0.0000 0.0000<br />

10 or more 0.0000 0.0000<br />

193


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Statistical Standards<br />

Form S-2: Probable Maximum Loss (PML)<br />

Provide projections <strong>of</strong> the insured loss for various probability levels using the hypothetical data<br />

set provided in the file named “FormA1Input06.xls.” Provide the total average annual loss for<br />

the PML distribution. If the methodology <strong>of</strong> your model does not allow you to produce a viable<br />

answer, please state so and why.<br />

Part A<br />

Return<br />

Time (years)<br />

Probability <strong>of</strong><br />

Exceedance<br />

Estimated<br />

Loss<br />

($)<br />

Top Event ________________<br />

10,000 0.01% 87,322,608<br />

5,000 0.02% 82,290,160<br />

2,000 0.05% 72,977,696<br />

1,000 0.10% 65,776,844<br />

500 0.20% 59,484,704<br />

250 0.40% 50,217,388<br />

100 1.00% 36,735,988<br />

50 2.00% 25,406,254<br />

20 5.00% 14,540,838<br />

10 10.00% 6,902,197<br />

5 20.00% 1,895,416<br />

Part B<br />

Mean (Total Average Annual Loss) 2,394,788<br />

Median 7,190<br />

Standard Deviation 6,962,786<br />

Interquartile Range 967,097<br />

Sample Size<br />

511,500 events<br />

194


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Statistical Standards<br />

Form S-3: Five Validation Comparisons<br />

A. Provide five validation comparisons <strong>of</strong> actual exposures and loss to modeled exposures and<br />

loss. These comparisons must be provided by line <strong>of</strong> insurance, construction type, policy<br />

coverage, county or other level <strong>of</strong> similar detail in addition to total losses. Include loss as a<br />

percent <strong>of</strong> total exposure. Total exposure represents the total amount <strong>of</strong> insured values (all<br />

coverages combined) in the area affected by the hurricane. This would include exposures for<br />

policies that did not have a loss. If this is not available, use exposures for only those policies<br />

that had a loss. Specify which was used. Also, specify the name <strong>of</strong> the hurricane event<br />

compared.<br />

B. Provide scatter plot(s) <strong>of</strong> modeled vs. historical losses for each <strong>of</strong> the five validation<br />

comparisons. (Plot the historical losses on the x-axis and the modeled losses on the y-axis.)<br />

Rather than using directly a specific published hurricane wind field, the winds underlying the<br />

modeled loss cost calculations must be produced by the model being evaluated and should be<br />

the wind field most emulated by the model.<br />

Validation comparisons for six companies and seven hurricanes are provided<br />

below and in Figures 27 through 30. Exposures shown are total values, not just<br />

those that experienced a loss. Note that some comparisons were performed for<br />

large insurers, and disclosing the true figures would amount to disclosing the<br />

insurer and that insurer’s confidential information. To disguise the identity in such<br />

cases, we have divided all exposures and losses by one constant; that constant<br />

may vary from comparison table to comparison table, but within one comparison<br />

the same constant was used on both exposure and loss.<br />

Note that slight differences between modeled and actual exposures in some<br />

comparisons result from slightly different mapping from ZIP Code to county,<br />

between USWIND and the insurer. The insurer provided ZIP Code and county,<br />

along with detailed address information, for every policy. The modeled county<br />

exposure entries in the tables shown below are the ones, USWIND automatically<br />

looked up, based on ZIP Code. By contrast, to provide actual exposure amounts,<br />

we accumulated exposures according to the county data the insurer provided<br />

with the data. If the user omitted the county name, but provided the ZIP Code, or<br />

if the insurer provided a different county name with a record than USWIND<br />

believes, then a discrepancy would occur. (Many ZIP Codes lie partly in one<br />

county, partly in another.) However, the discrepancies are small, and neither we<br />

nor the insurer felt that it indicated a significant error.<br />

195


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Statistical Standards<br />

(FORM S-3 CONTINUED)<br />

Totals by Company<br />

Company Event Year TIV ($M)<br />

Actual<br />

($M)<br />

USWIND<br />

($M)<br />

Difference<br />

A Opal 1995 222,270.00 112.91 116.86 3.5%<br />

B Andrew 1992 4,578.28 48.20 50.32 4.4%<br />

C Andrew 1992 1,229.95 19.93 19.12 -4.1%<br />

D Andrew 1992 793.41 30.75 29.93 -2.7%<br />

E Andrew 1992 608.67 29.02 30.96 6.7%<br />

F Charley 2004 495,664.85 1,210.76 1,289.61 6.5%<br />

F Frances 2004 495,664.85 736.71 778.96 5.7%<br />

F Ivan 2004 495,664.85 454.95 478.66 5.2%<br />

F Jeanne 2004 495,664.85 382.10 352.87 -7.6%<br />

F Wilma 2005 495,664.85 954.74 839.21 -12.1%<br />

10,000<br />

1,000<br />

<strong>Model</strong>ed Loss ($M)<br />

100<br />

10<br />

10 100 1,000 10,000<br />

Actual Loss ($M)<br />

Figure 27. Historical vs. <strong>Model</strong>ed Losses for Companies A to F<br />

196


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Statistical Standards<br />

(FORM S-3 CONTINUED)<br />

Company C by Line <strong>of</strong> Business<br />

Event LOB TIV ($M) Actual ($M)<br />

USWIND<br />

($M)<br />

Difference<br />

Andrew Mobile Homes 56.16 0.82 0.77 -6.1%<br />

Fire & Extended 11.80 0.16 0.24 52.9%<br />

Homeowners 1,017.47 17.28 16.54 -4.3%<br />

Renters/Tenants 10.99 0.13 0.09 -32.6%<br />

Landlord 74.29 1.00 1.07 6.9%<br />

Condominiums 59.25 0.54 0.41 -24.1%<br />

Total 1,229.95 19.93 19.12 -4.0%<br />

100 00<br />

10 00<br />

<strong>Model</strong>ed Loss ($M)<br />

1 00<br />

0.10<br />

0 01<br />

0.01 0.10 1.00 10.00 100.00<br />

Actual Loss ($M)<br />

Figure 28. Historical vs. <strong>Model</strong>ed Losses by LOB for Company C<br />

197


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Statistical Standards<br />

(FORM S-3 CONTINUED)<br />

Company D by County<br />

Event County TIV ($M) Actual ($M)<br />

USWIND<br />

($M)<br />

Difference<br />

Andrew Broward 234.51 0.50 0.52 4.2%<br />

Charlotte 25.64 0.00 0.00 0.0%<br />

Collier 44.65 0.18 0.21 14.2%<br />

Hendry 2.74 0.00 0.00 0.0%<br />

Martin 8.22 0.00 0.00 0.0%<br />

Miami-Dade 203.79 30.01 29.16 -2.8%<br />

Monroe 0.31 0.00 0.00 0.0%<br />

Total 793.41 30.75 29.94 -2.5%<br />

100 00<br />

10 00<br />

<strong>Model</strong>ed Loss ($M)<br />

1 00<br />

0.10<br />

0 01<br />

0.01 0.10 1.00 10.00 100.00<br />

Actual Loss ($M)<br />

Figure 29. Historical vs. <strong>Model</strong>ed Losses by County for Company D<br />

198


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Statistical Standards<br />

(FORM S-3 CONTINUED)<br />

Company E by Line <strong>of</strong> Business<br />

Event LOB TIV ($M) Actual ($M)<br />

USWIND<br />

($M)<br />

Difference<br />

Andrew Homeowner Form 1 0.15 0.02 0.02 -2.5%<br />

Homeowner Form 3 179.08 7.34 8.98 22.4%<br />

Homeowner Form 4 8.25 0.22 0.27 21.4%<br />

Homeowner Form 5 368.84 20.82 21.09 1.3%<br />

Homeowner Form 6 52.36 0.63 0.60 -5.3%<br />

Total 608.67 29.02 30.96 6.7%<br />

100.00<br />

10.00<br />

<strong>Model</strong>ed Loss ($M)<br />

1.00<br />

0.10<br />

0.01<br />

0.01 0.10 1.00 10.00 100.00<br />

Actual Loss ($M)<br />

Figure 30. Historical vs. <strong>Model</strong>ed Losses by LOB for Company E<br />

199


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Statistical Standards<br />

Form S-4: Average Annual Zero Deductible <strong>State</strong>wide Loss Costs –<br />

Historical versus <strong>Model</strong>ed<br />

A. Provide the average annual zero deductible statewide loss costs produced using the list <strong>of</strong><br />

hurricanes in the Base Hurricane Storm Set based on the 2002 <strong>Florida</strong> Hurricane<br />

Catastrophe Fund’s aggregate personal residential exposure data, as <strong>of</strong> August 1, 2003<br />

(hlpm2002.exe).<br />

B. Provide a comparison with the statewide loss costs produced by the model on an average<br />

industry basis.<br />

Average Annual Zero Deductible <strong>State</strong>wide Loss Costs<br />

Time Period Historical Hurricanes Produced by <strong>Model</strong><br />

Current Year $2.14 Billion $2.52 Billion<br />

Previous Year $1.87 Billion $2.38 Billion<br />

Second Prior $1.68 Billion $2.12 Billion<br />

Percentage Change Current<br />

Year/Previous Year<br />

Percentage Change Current<br />

Year/Second Prior<br />

14.5% 5.9%<br />

26.8% 18.7%<br />

C. Provide the 95% confidence interval on the differences between the mean <strong>of</strong> the historical<br />

and modeled loss.<br />

Based on the historical storm set for the 107 year experience period (1900<br />

through <strong>2006</strong>) provided by the Commission and using the <strong>Florida</strong> Hurricane<br />

Catastrophe Fund’s 2002 aggregated exposure data resulted in a statewide<br />

historical annual average zero deductible loss <strong>of</strong> $2.14 billion and a modeled<br />

annual average zero deductible loss <strong>of</strong> $2.52 billion.<br />

The difference can be shown to be statistically insignificant as follows:<br />

Let X i (i=1…81) represent the losses from the 81 historical events, which<br />

occurred over 107 years. Then the historical annual loss cost A is given by:<br />

A = ∑ X i / 107 (where i = 1…81) = $2.14 Billion<br />

200


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Statistical Standards<br />

The standard error <strong>of</strong> A is given by:<br />

S.E (A) = SQRT(A 2 /81 + 81* Var ({X i }) /107 2 ) = $0.47 Billion<br />

where Var ({X i }) is the variance <strong>of</strong> the historical losses (from the 81 storms). This<br />

assumes that the X i have identical independent distributions and the frequency<br />

has a Poisson distribution.<br />

Using the t-test the two-tailed 90% confidence for the true annual loss cost<br />

interval (narrower than the 95% confidence interval) is given by the range:<br />

A1 = A - 1.671 * S.E (A) = $1.35 Billion<br />

A2 = A + 1.671 * S.E (A) = $2.92 Billion<br />

The modeled annual loss cost ($2.52 Billion) is within the above range, so the<br />

difference between the historical and the modeled results is not statistically<br />

significant.<br />

201


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Computer Standards<br />

Computer Standards<br />

C-1 Documentation<br />

A. The modeler shall maintain a primary document binder, containing a<br />

complete set <strong>of</strong> documents specifying the model structure, detailed<br />

s<strong>of</strong>tware description, and functionality. Development <strong>of</strong> each section<br />

shall be indicative <strong>of</strong> accepted s<strong>of</strong>tware engineering practices.<br />

EQECAT maintains all such documentation, and will have it available to the<br />

pr<strong>of</strong>essional team during the on-site visit.<br />

B. All computer s<strong>of</strong>tware (i.e., user interface, scientific, engineering,<br />

actuarial, data preparation, and validation) relevant to the modeler’s<br />

submission shall be consistently documented and dated.<br />

EQECAT maintains all such documentation, and will have it available to the<br />

pr<strong>of</strong>essional team during the on-site visit.<br />

C. Documentation shall be created separately from the source code.<br />

EQECAT maintains all such documentation, and will have it available to the<br />

pr<strong>of</strong>essional team during the on-site visit.<br />

202


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Computer Standards<br />

C-2 Requirements<br />

Disclosure<br />

The modeler shall maintain a complete set <strong>of</strong> requirements for each<br />

s<strong>of</strong>tware component as well as for each database or data file accessed by a<br />

component.<br />

EQECAT maintains such requirements and documentation, and will have it<br />

available to the pr<strong>of</strong>essional team during the on-site visit.<br />

1. Provide a description <strong>of</strong> the documentation for interface, human factors, functionality,<br />

documentation, data, human and material resources, security, and quality assurance.<br />

EQECAT maintains a set <strong>of</strong> documents describing the specifications and<br />

product requirements for user interfaces, database schema, client<br />

customizations, security considerations, user manuals, and references.<br />

The above documentation will be available to the pr<strong>of</strong>essional team during<br />

the on-site visit.<br />

203


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Computer Standards<br />

C-3 <strong>Model</strong> Architecture and Component Design<br />

The modeler shall maintain and document (1) detailed control and data flow<br />

diagrams and interface specifications for each s<strong>of</strong>tware component, and (2)<br />

schema definitions for each database and data file. Documentation shall<br />

be to the level <strong>of</strong> components that make significant contributions to the<br />

model output.<br />

The design levels <strong>of</strong> the s<strong>of</strong>tware have been documented, including s<strong>of</strong>tware<br />

components and interfaces, data files, and database elements. This<br />

documentation will be shown to the pr<strong>of</strong>essional team during the on-site visit.<br />

204


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Computer Standards<br />

C-4 Implementation<br />

A. The modeler shall maintain a complete procedure <strong>of</strong> coding guidelines<br />

consistent with accepted s<strong>of</strong>tware engineering practices.<br />

EQECAT maintains such a procedure.<br />

B. The modeler shall maintain a complete procedure used in creating,<br />

deriving, or procuring and verifying databases or data files accessed by<br />

components.<br />

EQECAT maintains such a procedure.<br />

C. All components shall be traceable, through explicit component<br />

identification in the flow diagrams, down to the code level.<br />

All components are traceable in this manner.<br />

D. The modeler shall maintain a table <strong>of</strong> all s<strong>of</strong>tware components affecting<br />

loss costs, with the following table columns: (1) Component name, (2)<br />

Number <strong>of</strong> lines <strong>of</strong> code, minus blank and comment lines; and (3)<br />

Number <strong>of</strong> explanatory comment lines.<br />

This table will be available for review by the pr<strong>of</strong>essional team.<br />

E. Each component shall be sufficiently and consistently commented so<br />

that a s<strong>of</strong>tware engineer unfamiliar with the code shall be able to<br />

comprehend the component logic at a reasonable level <strong>of</strong> abstraction.<br />

Yes, the source code is commented in this manner. Also, EQECAT maintains live<br />

intranet source code documentation for the analysis engines. The model is based<br />

upon published research modified as appropriate by EQECAT’s meteorological,<br />

engineering, and statistical personnel. System data is organized and maintained<br />

in tables, binary files, or flat files, depending upon the type <strong>of</strong> analysis. The<br />

underlying model including algorithm implementation and technical assumptions<br />

along with the procedures used for updating the system data will be available for<br />

review by the pr<strong>of</strong>essional team during the on-site visit. The overall system<br />

design has been implemented using standard s<strong>of</strong>tware engineering techniques.<br />

System documentation is maintained to define critical system functionality in<br />

terms <strong>of</strong> Data Flow Diagrams, Structure Charts, and the corresponding narratives<br />

which describe how each module functions. This information is available for onsite<br />

review.<br />

205


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Computer Standards<br />

Disclosure<br />

1. Specify the hardware, operating system, other s<strong>of</strong>tware, and all computer languages<br />

required to use the model.<br />

Details regarding the required hardware, operating system, and other<br />

s<strong>of</strong>tware are given in Standard G-1, Disclosure 2. The calculational<br />

components <strong>of</strong> the model have been developed in C++; other components<br />

have been developed in C++ and Java.<br />

206


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Computer Standards<br />

C-5 Verification<br />

A. General<br />

For each component, the modeler shall maintain procedures for<br />

verification, such as code inspections, reviews, calculation<br />

crosschecks, and walkthroughs, sufficient to demonstrate code<br />

correctness.<br />

The models have been extensively tested to verify that calculated results are<br />

consistent with the intended simulation approach. A variety <strong>of</strong> methods have<br />

been employed. These include algorithm verification through comparison to<br />

independently developed s<strong>of</strong>tware packages, hand calculations, and sensitivity<br />

analyses.<br />

Extensive validation testing <strong>of</strong> the s<strong>of</strong>tware generated wind fields has been<br />

performed to confirm that generated wind speeds are consistent with<br />

observations. Numerous analyses have been conducted using actual insurance<br />

portfolio data to confirm the reasonableness <strong>of</strong> resulting answers.<br />

B. Component Testing<br />

1. The modeler shall use testing s<strong>of</strong>tware to assist in documenting and<br />

analyzing all components.<br />

Testing s<strong>of</strong>tware is used to assist in documenting and analyzing all components.<br />

2. Unit tests shall be performed and documented for each component.<br />

Unit tests have been performed and documented for each component relevant to<br />

residential hurricane loss costs in <strong>Florida</strong>.<br />

3. Regression tests shall be performed and documented on incremental<br />

builds.<br />

A suite <strong>of</strong> automated regression tests is regularly run on the s<strong>of</strong>tware to ensure<br />

integrity <strong>of</strong> the various components as well as the results produced by the<br />

integrated system.<br />

Quality assurance documentation includes a description for each test case from<br />

the regression testing suite.<br />

4. Aggregation tests shall be performed and documented to ensure the<br />

correctness <strong>of</strong> all model components. Sufficient testing shall be<br />

performed to ensure that all components have been executed at least<br />

once.<br />

A suite <strong>of</strong> automated regression tests is regularly run on the s<strong>of</strong>tware to ensure<br />

integrity <strong>of</strong> the various components as well as the results produced by the<br />

integrated system.<br />

207


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Computer Standards<br />

C. Data Testing<br />

1. The modeler shall use testing s<strong>of</strong>tware to assist in documenting and<br />

analyzing all databases and data files accessed by components.<br />

Testing s<strong>of</strong>tware is used to assist in documenting and analyzing all databases<br />

and data files accessed by components.<br />

2. The modeler shall perform and document integrity, consistency, and<br />

correctness checks on all databases and data files accessed by the<br />

components.<br />

Client data is extensively tested during the import process into the EQECAT<br />

system to confirm its accuracy. Field level validation is performed to confirm that<br />

every data element within each record falls within known ranges. Data not falling<br />

within known ranges is marked as an error or a warning in a log depending upon<br />

the severity <strong>of</strong> the problem. Child/parent and other key relationships are also<br />

checked. A summary log is displayed at the end <strong>of</strong> import process denoting the<br />

number records which have warnings or errors.<br />

Disclosures<br />

1. <strong>State</strong> whether the model produces the same loss costs if it runs the same information<br />

more than once without changing the seed <strong>of</strong> the random number generator.<br />

Yes, it will produce the same loss costs.<br />

2. Provide an overview <strong>of</strong> the component testing procedures.<br />

A suite <strong>of</strong> automated regression tests is regularly run on the s<strong>of</strong>tware to ensure<br />

integrity <strong>of</strong> the various components as well as the correctness and consistency <strong>of</strong><br />

results produced by the integrated system.<br />

208


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Computer Standards<br />

C-6 <strong>Model</strong> Maintenance and Revision<br />

Disclosure<br />

A. The modeler shall maintain a clearly written policy for model revision,<br />

including verification and validation <strong>of</strong> revised components, databases,<br />

and data files.<br />

EQECAT has a clearly written policy for model revision with respect to<br />

methodologies and data, including verification and validation <strong>of</strong> revised<br />

components, databases, and data files.<br />

B. A revision to any portion <strong>of</strong> the model that results in a change in any<br />

<strong>Florida</strong> residential hurricane loss cost shall result in a new model<br />

version number.<br />

A revision to any portion <strong>of</strong> the model that results in a change in any <strong>Florida</strong><br />

residential hurricane loss cost results in a new model version number.<br />

C. The modeler shall use tracking s<strong>of</strong>tware to identify all errors, as well as<br />

modifications to code, data, and documentation.<br />

EQECAT uses tracking s<strong>of</strong>tware to identify all errors, as well as modifications to<br />

code, data, and documentation.<br />

EQECAT’s policies and procedures for model revision will be made available to<br />

the pr<strong>of</strong>essional team during the on-site visit.<br />

1. Identify procedures used to maintain code, data, and documentation.<br />

EQECAT has a series <strong>of</strong> ISO procedures regarding the maintenance <strong>of</strong> code,<br />

data, and documentation, and these will be made available to the pr<strong>of</strong>essional<br />

team.<br />

209


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Computer Standards<br />

C-7 Security<br />

Disclosure<br />

The modeler shall have implemented and fully documented security<br />

procedures for: (1) secure access to individual computers where the<br />

s<strong>of</strong>tware components or data can be created or modified, (2) secure<br />

operation <strong>of</strong> the model by clients, if relevant, to ensure that the correct<br />

s<strong>of</strong>tware operation cannot be compromised, (3) anti-virus s<strong>of</strong>tware<br />

installation for all machines where all components and data are being<br />

accessed, and (4) secure access to documentation, s<strong>of</strong>tware, and data in<br />

the event <strong>of</strong> a catastrophe.<br />

In accordance with standard industry practices, EQECAT has in place security<br />

procedures for access to code, data, and documentation, including disaster<br />

contingency, and for maintenance <strong>of</strong> anti-virus s<strong>of</strong>tware on all machines where<br />

code and data are accessed. Procedures are also in place to ensure that<br />

licensees <strong>of</strong> the model cannot compromise the correct operation <strong>of</strong> the s<strong>of</strong>tware.<br />

These procedures will be made available to the pr<strong>of</strong>essional team during the onsite<br />

visit.<br />

1. Describe methods used to ensure the security and integrity <strong>of</strong> the code, data, and<br />

documentation.<br />

The model can only be used by authorized users. Authorized user accounts<br />

are created by a trusted administrator. The program files <strong>of</strong> the model are in<br />

machine code and can not be reverse engineered or tampered with. The data<br />

files (vulnerability curves, hazard etc.) are in binary format and can not be<br />

tampered with. The output from the model is always labeled with the analysis<br />

parameters and other information needed to repeat a particular analysis -<br />

thus, reports <strong>of</strong> the program can not be misused or altered to present<br />

incorrect information.<br />

210


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Appendices<br />

Appendix 1 - Credentials <strong>of</strong> Selected Personnel<br />

211


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Appendices<br />

CREDENTIALS<br />

Dr. James R. (Bob) Bailey has over 15 years experience as a technical consultant, researcher,<br />

and project manager. His doctoral work in Civil Engineering included an emphasis on wind<br />

engineering, specifically wind effects on buildings and components. He is experienced in<br />

subjects related to construction materials, solid mechanics, dynamics, numerical analysis,<br />

structural analysis and design. He served as a consultant to NASA by performing an on-site<br />

inspection at the Marshall Space Flight Center to assess the structural integrity <strong>of</strong> buildings<br />

subject to tornado winds. He also has performed on-site inspections <strong>of</strong> commercial high-rise<br />

buildings in Dallas to evaluate the performance <strong>of</strong> structurally-glazed window glass systems<br />

subject to extreme wind events. He is a member <strong>of</strong> the API subcommittee that is developing a<br />

new wind loading specification for drilling masts and derricks. Dr. Bailey holds a Ph.D., M.S.,<br />

and B.S. in Civil Engineering from Texas Tech University.<br />

Dr. James J. Johnson, Consultant to EQECAT, has more than 30 years <strong>of</strong> project management<br />

and civil/nuclear engineering experience, serving the insurance/reinsurance, Fortune 500, and<br />

nuclear (domestic and international) industries. From its creation in 1994 until 2000 he headed<br />

the EQECAT division, a group that provides catastrophic risk management services to the global<br />

insurance and reinsurance industries, including catastrophe modeling s<strong>of</strong>tware, portfolio and<br />

single site analysis, risk management consulting, training, and information. In addition, Dr.<br />

Johnson has participated in the development, implementation, and teaching <strong>of</strong> seismic risk and<br />

seismic margin assessment methodologies. He has participated in seismic PRAs <strong>of</strong> over 20<br />

nuclear power plants. His participation encompasses many aspects including hazard definition,<br />

seismic response and uncertainty determination, detailed walkdowns, and fragility assessment.<br />

Dr. Johnson has contributed to over 80 technical reports and journal articles and is a member <strong>of</strong><br />

the Earthquake Engineering Research Institute, American Society <strong>of</strong> Civil Engineers, and other<br />

technical organizations. Dr. Johnson holds a Ph.D. and M.S. in civil engineering from the<br />

University <strong>of</strong> Illinois, and a B.C.E. in civil engineering from the University <strong>of</strong> Minnesota. He is<br />

also a licensed Civil Engineer in California.<br />

Dr. Mahmoud Khater, Senior Vice President <strong>of</strong> EQECAT, has more than 20 years <strong>of</strong><br />

engineering experience in natural hazards risk and reliability assessment; in the insurance,<br />

power, industrial, and commercial sectors; and in the behavior <strong>of</strong> structures and lifelines under<br />

seismic and wind loading. His experience includes seismic, fire, and hurricane hazard and risk<br />

assessments for single buildings, lifeline systems, and portfolios <strong>of</strong> properties. Since joining<br />

EQECAT, Dr. Khater has served as EQECAT’s project and technical manager for the<br />

development <strong>of</strong> state-<strong>of</strong>-the-art probabilistic analysis computer programs for application to civil<br />

engineering problems, seismic risk analysis and hurricane risk assessment. Responsibilities have<br />

included several earthquake and hurricane structural response analyses and portfolio analyses.<br />

Dr. Khater holds a Ph.D. in structural engineering from Cornell University, and a M.Sc. and<br />

M.Bc. in structural engineer from Cairo University in Egypt. He is an active member in the<br />

Earthquake Engineering Research Institute and the American Society <strong>of</strong> Engineers.<br />

Dr. Omar Khemici has over 20 years <strong>of</strong> extensive pr<strong>of</strong>essional experience in structural<br />

engineering and natural hazard risk assessment and mitigation. As a Director for EQECAT, he<br />

provides technical direction and support to a variety <strong>of</strong> key projects. He performed the QA<br />

verification <strong>of</strong> different USWIND modules through hand calculations, and participated in the<br />

212


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Appendices<br />

development <strong>of</strong> the USWIND and USQUAKE vulnerability functions. He recently<br />

participated in the development <strong>of</strong> the USWildfire. Dr. Khemici is project manager for jobs<br />

with the primary insurance, reinsurance companies, and financial institutions. Dr. Khemici<br />

graduated from Stanford University in 1982 and is a licensed Civil Engineer in California.<br />

Raymond Kincaid, Senior Vice President <strong>of</strong> EQECAT, has more than 20 years <strong>of</strong> experience in<br />

natural hazards risk management. For the last 10 years he has directed the GUI portion <strong>of</strong> the<br />

development <strong>of</strong> several s<strong>of</strong>tware products used to assess and manage insurance portfolio risk<br />

resulting from catastrophic events including hurricanes, earthquakes, high winds, and flood.<br />

Products developed under his guidance include USWIND, USQUAKE, UKWIND and<br />

UKFLOOD. He also has extensive experience in the design and analysis <strong>of</strong> structures to resist<br />

extreme loadings including earthquakes, hurricane, blast, and nuclear weapons effects. Mr.<br />

Kincaid has directed major natural phenomena and seismic hazard analysis programs for<br />

numerous government, manufacturing and commercial clients. Representative clients include the<br />

Department <strong>of</strong> Energy, U.S. Postal Service, Allendale Insurance, Pacific Bell, Anheuser-Busch,<br />

3M, Northrop, Unisys, General Foods, Litton, Parker-Hannifin, and Rockwell International.<br />

Thomas I. Larsen, Senior Vice President <strong>of</strong> EQECAT, has more than 15 years <strong>of</strong> pr<strong>of</strong>essional<br />

structural engineering, research, computer programming, and project management experience.<br />

He recently participated in the development <strong>of</strong> the USWIND and USQUAKE natural<br />

catastrophe financial risk assessment s<strong>of</strong>tware programs. This includes project management for<br />

analyses for selected clients, review <strong>of</strong> the s<strong>of</strong>tware methodology for consistency and<br />

completeness, and compilation <strong>of</strong> post-earthquake/hurricane damage and loss experience data.<br />

Prior work at EQECAT includes natural catastrophe hazard (earthquake and related perils such<br />

as tsunami and fire following, hurricane and other windstorm, and volcano) and/or risk analysis<br />

for many different regions including Australia, Chile, Iceland, Italy, New Zealand, Puerto Rico,<br />

the Sakhalin Islands, and the Caspian Sea area. Mr. Larsen holds a M.Eng. in structural<br />

engineering from the University <strong>of</strong> California in Berkeley and B.S. in structural engineering<br />

from Stanford University. He is presently a licensed civil engineer in California.<br />

David F. Smith has more than 10 years <strong>of</strong> pr<strong>of</strong>essional experience in hurricane model design,<br />

natural hazard research, s<strong>of</strong>tware development, and project management. He recently<br />

participated in the development <strong>of</strong> the USWIND and USQUAKE natural catastrophe financial<br />

risk assessment s<strong>of</strong>tware programs. This includes development <strong>of</strong> the hazard portions <strong>of</strong> both<br />

programs, risk analyses for selected clients, and review <strong>of</strong> the s<strong>of</strong>tware methodology for<br />

consistency and completeness. Mr. Smith also managed the development <strong>of</strong> the hazard portion <strong>of</strong><br />

the EQECAT hurricane/typhoon models for Japan and the Caribbean. Prior work at EQECAT<br />

includes natural catastrophe hazard and/or risk analysis for many different regions including<br />

Puerto Rico, Jamaica, Costa Rica, the Philippines, and Japan. Mr. Smith holds a M.S. in<br />

geophysics from Yale University and a B.S. in mathematics from the University <strong>of</strong> Chicago.<br />

213


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Appendices<br />

Appendix 2 - Independent Review<br />

214


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Appendices<br />

The Engineering, Statistical, and Scientific Validity <strong>of</strong> EQECAT<br />

USWIND <strong>Model</strong>ing S<strong>of</strong>tware<br />

IMPLICATIONS FOR CATASTROPHE MODELING WITHIN THE<br />

COMMERCIAL HIGHLY PROTECTED RISK PROPERTY INSURANCE INDUSTRY<br />

Peter J. Kelly<br />

Lixin Zeng<br />

Arkwright Mutual Insurance Company<br />

Abstract<br />

The validity <strong>of</strong> EQECAT USWIND 1 modeling s<strong>of</strong>tware is reviewed from several perspectives.<br />

Using several external sources for hurricane data, it is found that the storm data set represents the<br />

historical and expected long term storm patterns well and generally without bias. By reviewing<br />

storm damage estimates against a theoretical understanding <strong>of</strong> the wind effects on structures as<br />

well as actual experience, it was found that the model’s damage estimates reasonably reflect the<br />

physical properties <strong>of</strong> force and damage and that the system has no systematic bias in its damage<br />

estimation logic. One minor shortcoming in damage estimation was uncovered in the manner that<br />

USWIND uses geocoding during initial data import, especially for areas with very large zip<br />

codes. The vendor has corrected this problem in subsequent versions <strong>of</strong> the s<strong>of</strong>tware.<br />

All in all, the EQECAT modeling package represents a very well conceived and thoroughly<br />

researched natural disaster modeling environment for hurricanes. External data and expert<br />

opinion have been incorporated into the s<strong>of</strong>tware. Our independent experiments as well as the<br />

advice <strong>of</strong> meteorological and structural experts lead us to conclude that the systems is an<br />

excellent tool for managing the risk <strong>of</strong> natural disasters in the commercial property insurance<br />

industry.<br />

Presented November 7, 1996 at the ACI Conference for Catastrophe Reinsurance, New York,<br />

NY.<br />

Author information: peter_kelly@arkwright.com and lixin_zeng@arkwright.com<br />

1 USWIND is a trademark <strong>of</strong> EQECAT, Incorporated, headquartered in San Francisco.<br />

215


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Appendices<br />

Introduction<br />

Use <strong>of</strong> natural disaster modeling s<strong>of</strong>tware for windstorm exposures has increased in recent years<br />

with the advent <strong>of</strong> improved s<strong>of</strong>tware and the increase in natural disaster-caused damage during<br />

the most recent 10 years. For insurers in the Highly Protected Risk (HPR) commercial property<br />

marketplace, these s<strong>of</strong>tware programs represent an important advance and a significant<br />

challenge. While some insurers take the time to calibrate these systems by examining the damage<br />

estimates that come from s<strong>of</strong>tware, few take the time to review the probabilistic and scientific<br />

content <strong>of</strong> these systems in light <strong>of</strong> recent research and advances in the scientific community.<br />

This is unfortunate because based on our experience, the damage-based error to portfolio<br />

calculations will generally be well less than one order <strong>of</strong> magnitude, but errors due to the<br />

probabilistic and scientific components <strong>of</strong> the system can be several orders <strong>of</strong> magnitude.<br />

In this paper, we first survey the current research on the long term probabilistic characteristics <strong>of</strong><br />

tropical cyclones conducted at governmental agencies and scientific community. The scientific<br />

basis <strong>of</strong> the USWIND tropical cyclone modeling component <strong>of</strong> the s<strong>of</strong>tware are then assessed.<br />

Next, the design <strong>of</strong> the wind damage calculation is reviewed. Based on this assessment, the<br />

validity <strong>of</strong> the s<strong>of</strong>tware is tested and evaluated through a series <strong>of</strong> experiments; first to validate<br />

the damage calculations and then to validate the probabilistic storm database, which because <strong>of</strong><br />

its proprietary nature, requires a special simulation process.<br />

The s<strong>of</strong>tware that was used in all analysis presented in this paper is USWIND 3.07.05.<br />

I. An assessment <strong>of</strong> current scientific research<br />

Tropical cyclone (TC) is a generic term for hurricane, typhoon and other tropical vortices. A<br />

severe TC is the most devastating natural disaster in terms <strong>of</strong> property damage and loss <strong>of</strong> life.<br />

Studying TC activity is therefore one <strong>of</strong> the most important objectives <strong>of</strong> meteorological<br />

agencies and scientific communities around the world. For insurers' underwriting and/or<br />

reinsurance decision making, accurate long term probabilistic characteristics <strong>of</strong> TC activity is<br />

needed. Both observational and theoretical studies have been undertaken to address these issues:<br />

Direct historical observations: the National Hurricane Center (NHC) has archived reliable<br />

observations <strong>of</strong> the North Atlantic basin (including the North Atlantic Ocean, Caribbean Sea, and<br />

Gulf <strong>of</strong> Mexico) TC activity since 1886 and eastern Pacific observations since 1949. The data<br />

captured includes position <strong>of</strong> storm center, central pressure, and maximum sustained wind speed<br />

every six hours. Based on the data, scientists at NOAA/National Weather Service calculated the<br />

probability distributions <strong>of</strong> TC (in particular, hurricane) frequency, intensity and track<br />

parameters along the 3000 miles coast line <strong>of</strong> the eastern and southeastern United <strong>State</strong>s [Ho et<br />

al., 1987; Neumann, 1987]. The results <strong>of</strong> these studies are widely used by storm-surge<br />

modelers, climate researchers, and insurers.<br />

216


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Appendices<br />

General circulation model (GCM) simulations: GCM is the numerical simulation <strong>of</strong> atmospheric<br />

and oceanic circulation based on our knowledge <strong>of</strong> dynamics and physics. High speed computers<br />

and advanced observing technology (e.g. environmental satellites) have enabled researchers to<br />

study TC activity with unprecedented detail. The latest work in this area has been undertaken by<br />

scientists at Max-Plank Institute for Meteorology in Germany [Bengtsson et al. 1995]. They run<br />

their GCM on time scales from five years to multi-decades, and have successfully simulated<br />

realistic TC activity globally. 2<br />

Observational study and GCM simulation have their respective advantages and shortcomings.<br />

The former is directly based on historical data but representativeness <strong>of</strong> the available data is<br />

uncertain and needs to be further assessed. The latter is based on physics and thus is more robust.<br />

However, GCM’s high computational demand limits its ability to fully resolve TC activity and<br />

keeps it from being widely adopted.<br />

Bengtsson et al. [1995] compared a GCM simulation to the observations <strong>of</strong> TC experience<br />

during a period <strong>of</strong> twenty years. It was found that the GCM and observations reveal similar<br />

frequency and geographical and seasonal distributions <strong>of</strong> TC activity. This comparison serves as<br />

an independent verification to the validity <strong>of</strong> the observational data. However, detailed<br />

examination <strong>of</strong> the data set showed that the early observations are biased toward higher hurricane<br />

activity because the wind measurements were biased high prior to the 1960s. An empirical<br />

correction was designed by Landsea [1993], and is used in our investigation.<br />

2 A GCM designed for regional climatology study is usually teamed with a nested LAM (limited<br />

area model) in order to obtain a resolution fine enough to describe the region <strong>of</strong> interest. Studies<br />

have demonstrated encouraging results <strong>of</strong> the GCM/LAM simulation <strong>of</strong> regional climate in<br />

Europe [Giorgi et al., 1990] and North America [Hewitson and Crane, 1992]. The regional<br />

distribution <strong>of</strong> important climatic variables are shown to be realistically reproduced. In<br />

particular, Giorgi et al. [1990] illustrated the ability <strong>of</strong> the GCM/LAM to provide detailed<br />

features <strong>of</strong> European winter storms.<br />

Admittedly, no attempt has yet to be made to simulate tropical cyclones with a GCM/LAM. As Bengtsson [1995]<br />

showed that a GCM itself can simulate the TC activities with reasonable accuracy, it is our belief that future<br />

GCM/LAM work will substantially improve such simulations. We plan to work with experts in this field to initiate<br />

studies along this path.<br />

217


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Appendices<br />

II. The scientific basis <strong>of</strong> the EQECAT s<strong>of</strong>tware USWIND<br />

USWIND is a wind storm hazard modeling s<strong>of</strong>tware package developed by EQECAT, Inc. for<br />

the eastern and southeastern United <strong>State</strong>s, Hawaii and Puerto Rico. Given detailed location<br />

structural information and insurance policy financial information (e.g. building location,<br />

construction and content type, total insured value, deductible, reinsurance, etc.), USWIND<br />

calculates the annual expected damage in dollar amount and percentage. Additionally, it<br />

estimates non-exceedance damage at any given probability level (e.g. the 95% non-exceedance<br />

damage). This program consists <strong>of</strong> three main steps: (1) construction <strong>of</strong> an applicable probability<br />

storm data set, and (2) damage calculations based on this data set, and (3) financial analysis<br />

(which is not part <strong>of</strong> this study.)<br />

The scientific basis for the first step stems from the study by Ho et al. [1987, see section I],<br />

which is documented in NOAA Technical Report - NWS 38. The probability distributions <strong>of</strong><br />

landfalling hurricanes along the eastern and southeastern United <strong>State</strong>s are calculated based on<br />

historical observations. Although the history <strong>of</strong> TC records is not long (about 100 years), the<br />

observational data have been proven to be reasonably representative. An example <strong>of</strong> such prove<br />

is the agreement between the observations and GCM simulation [Bengtsson et al., 1995].<br />

The probability distributions <strong>of</strong> TC activity are then sampled by a computer simulation scheme<br />

(Latin-Hypercubic simulation with variance reduction) to create a data set including 465,000<br />

storms. The characteristics (such as location, intensity, etc.) <strong>of</strong> these storms is stochastically<br />

assigned. These storms are then imposed on an insurance portfolio.<br />

218


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Appendices<br />

III. The damage estimation component <strong>of</strong> the EQECAT s<strong>of</strong>tware USWIND<br />

Storm damage is determined by accumulating site specific calculations. These calculations<br />

incorporate wind field information from the probability storm data set and individual location<br />

engineering considerations (e.g. construction, ro<strong>of</strong>ing, and cladding.) The damage calculation<br />

itself is a function <strong>of</strong> the projected maximum wind speed, peak gusts, and storm surge. The<br />

factors are the independent variables in a model for which the dependent variable is the percent<br />

<strong>of</strong> damage that results from a storm. The functions which relate wind speed to damage are called<br />

“vulnerability” curves within the industry. EQECAT provides a set <strong>of</strong> vulnerability functions<br />

with its s<strong>of</strong>tware. Each curve represents a vulnerability function for different structure types.<br />

Customized vulnerability functions can also be created for unique locations by creating new<br />

curves, or by combining the existing EQECAT’s curves.<br />

The resulting site damage is adjusted for the financial structure <strong>of</strong> the insurance policy including<br />

local or policy deductible, limits, and site specific (“facultative”) reinsurance recoveries. These<br />

net amounts are then accumulated and adjusted for portfolio level (“treaty”) reinsurance<br />

recoveries.<br />

IV. Assessing the Simulated EQECAT USWIND Damage Calculation<br />

As a 150 year old commercial property engineering company with an insurance capacity,<br />

Arkwright has developed a process for estimating individual site wind damage which is very<br />

complex. Initially, general storm parameters are taken into consideration. These storm<br />

parameters include wind speed, storm diameter and shape, forward speed and direction, central<br />

and external barometric pressure, and rainfall. Before translating this data in localized forces,<br />

local terrain data are analyzed. This terrain information consists <strong>of</strong> elevation, distance from<br />

coast, roughness, drainage, nearby structures (as well as storage and vegetation), and local tide<br />

patterns. The final component <strong>of</strong> input to the process is the local facility structural engineering<br />

information. This structural information includes ro<strong>of</strong> construction (design, geometry, flashing,<br />

and anchorage), overall building envelope design and openings, wall construction (material,<br />

design, cladding, and glass), canopies and overhangs, and contents information (amount,<br />

susceptibility to water and wind damage, and desirability to looters.)<br />

From these inputs an Arkwright engineer can estimate the resulting forces that can be expected<br />

to be exerted upon a building during a storm. These forces include the overall wind field, number<br />

and speed <strong>of</strong> projectiles, storm and tidal surge, wind gusts (speed, pattern, and duration), and salt<br />

deposit (for corrosion damage estimation.)<br />

For a given pr<strong>of</strong>ile <strong>of</strong> forces exerted upon a well defined structure, an experienced property<br />

engineer can then estimate (through theory and experience) resulting damage. This part <strong>of</strong> the<br />

process begins with identification <strong>of</strong> the likely initial failure mode (ro<strong>of</strong> uplift, balcony collapse,<br />

etc.) The likely failure mode is a function <strong>of</strong> the most exposed structural component. In addition<br />

to assessing what structural component will fail, the extent <strong>of</strong> failure must be estimated -- based<br />

on the forces exerted upon the structure. Next, any subsequent or resulting failure must be<br />

219


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Appendices<br />

estimated in order to complete the chain <strong>of</strong> damage producing events. Lastly, based on many<br />

losses and financial guidelines 3 , the financial extent <strong>of</strong> the event is determined.<br />

In an ideal modeling environment, this entire process would be represented in a detailed<br />

calculation that would take place for every storm and for every structure. Based on computing<br />

power, intended use, and inherent uncertainties in other parts <strong>of</strong> the model (the probabilistic<br />

storm data set), such a detailed approach is simply not practical within an application such as<br />

USWIND.<br />

The approach that EQECAT has chosen is to incorporate vulnerability curves for standard<br />

structure types. These vulnerability curves were developed by EQECAT using research done by<br />

Dr. Kishor Mehta (Director <strong>of</strong> the Wind Engineering Research Center) and Dr. James McDonald<br />

(Director <strong>of</strong> the Institute for Disaster Research) at Texas Tech University, where damage<br />

analysis for storms for the last 25 years has been conducted. In addition to this work, EQECAT<br />

used claims data from all the major storms <strong>of</strong> the last 30 years that is contained in the National<br />

Hurricane Research Project at Travelers. This data was analyzed by Dr. Don G. Friedman and<br />

John Mangano. Additionally, EQECAT used internal investigations <strong>of</strong> hurricanes Andrew, Iniki,<br />

Marilyn, Bob, Opal, and typhoon Angela as well as claims data from hurricanes Hugo, Andrew,<br />

Iniki, and Opal from companies that participated in the development <strong>of</strong> USWIND.<br />

While this research record is impressive, Arkwright also has extensive and well documented loss<br />

experience. With this data in hand and since the vulnerability curves can be customized, the issue<br />

<strong>of</strong> validity testing for the vulnerability curves is not as important as it is for the mathematical and<br />

meteorological content <strong>of</strong> the system. After an extensive calibration exercise, Arkwright<br />

developed a library <strong>of</strong> customized vulnerability curves. In addition to the customized curves<br />

however, Arkwright does use some curves that come directly form the EQECAT set, so the<br />

provided vulnerability functions do warrant review.<br />

The first test used to validate the vulnerability curves was to compare the changes in damage to<br />

the changes in the kinetic energy at different wind speeds. With all other things being equal, the<br />

damage should be proportional to the square <strong>of</strong> the velocity (wind speed) because it is closely<br />

related to the pressure that the wind exerts on a building. The well know formula for kinetic<br />

energy bears this out. The formula for kinetic energy is<br />

K.E. = 1/2 m v 2<br />

where m = mass <strong>of</strong> air, and<br />

v = velocity (wind speed)<br />

Since properties (especially commercial properties) withstand considerable force before any<br />

damage results, the proportionality that we wish to test is:<br />

i. D = 0 ; for v d < v x<br />

ii. D ~ 1/2 m (v x - v d ) 2 ; for v x > v d<br />

where D = damage to building,<br />

v x = velocity (wind speed), and<br />

3 These guidelines include the standard regional costs <strong>of</strong> materials and labor as well as increased, or inflated, cost <strong>of</strong><br />

construction after a natural disaster due to a high demand for construction materials and personnel<br />

220


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Appendices<br />

v d = velocity (wind speed) where damage ceases to be zero.<br />

Focusing on equation ii and removing the constants (1/2, and m) which only affect the scale <strong>of</strong><br />

the proportionality , we get:<br />

D ~ (v x - v d ) 2<br />

To test this comparison, we ran a simple test using individual facilities <strong>of</strong> varying structure types<br />

using the scenario storm capability <strong>of</strong> USWIND and compiled damage statistics for various wind<br />

speeds. One example <strong>of</strong> these analyses is presented in figure 1 where the damage estimates for<br />

an industrial high rise building with average cladding is reviewed.<br />

USWIND Damage Estimate Calculation<br />

For a single facility at various wind speeds<br />

70<br />

75<br />

80<br />

90<br />

100<br />

110<br />

120<br />

130<br />

140<br />

150<br />

160<br />

170<br />

180<br />

190<br />

Sq. <strong>of</strong> Wind Speed (Axis 1) /<br />

Facility Damage (Axis 2)<br />

Wind Speed (MPH)<br />

Square <strong>of</strong> Wind Speed<br />

USWIND Damage<br />

Figure 1. A comparison <strong>of</strong> the USWIND estimated wind damage at a commercial<br />

facility versus the square <strong>of</strong> the difference between the wind speed and the<br />

point at which damage ceases to be zero (v d ); for this example, the point v d<br />

was 70 mph. A constant or proportionality <strong>of</strong> .0018 was included for<br />

scaling.<br />

Visually, the test for proportionality is well met. A generally well held structural engineering<br />

principle may explain the difference observed between the damage curve and the kinetic energy<br />

curve in the center <strong>of</strong> the chart. This principle relates to loss control -- mitigating factors that<br />

help to minimize the damage when a loss occurs. Loss control is especially effective in<br />

commercial properties where measures such as bracing, flashing, and protection for storage are<br />

likely to be employed. Loss control measures tend to be effective at moderate to severe wind<br />

speeds (below 150 mph, for instance) and the damage falls below that expected from a<br />

theoretical kinetic energy standpoint as the loss control measures mitigate the damage. At<br />

catastrophic wind speeds however (above 150 mph), the loss control measures cease to be as<br />

effective as the wind forces overcome the capability <strong>of</strong> the measures to withstand the energy,<br />

giving way, and allowing failure to such an extent that the damage appears far more consistent<br />

with the theoretical kinetic energy curve.<br />

221


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Appendices<br />

The next test was an analysis <strong>of</strong> actual losses to see if the damage calculations had any<br />

systematic bias. To do this, 58 <strong>Florida</strong> locations were randomly chosen and damage from<br />

hurricane Andrew from 1992 was adjusted for inflation and compared to the results from a<br />

“scenario storm” from the historical storm dataset <strong>of</strong> USWIND. When this was done, the totals<br />

were very close. The actual losses after adjusting for inflation for these locations totaled<br />

approximately $100 million and the estimate from USWIND was high by $14 million.<br />

Furthermore, <strong>of</strong> the 58 locations, 28 estimates were below the location damage and 30 were<br />

above the location damage. This data is presented graphically in figure 2. Here a 45-degree line<br />

is drawn and the distribution pattern <strong>of</strong> USWIND/actual loss points can be observed. In a system<br />

with perfect prediction, all points would lie on the line. In a system with random error, the points<br />

will not lie on the line, but there will be equal numbers and an even pattern <strong>of</strong> points above the<br />

line and below.<br />

Hurricane Andrew Damage Comparison<br />

USWIND estimates versus actual losses<br />

USWIND Estimates<br />

100,000,000<br />

10,000,000<br />

1,000,000<br />

100,000<br />

10,000<br />

1,000<br />

100<br />

10<br />

1<br />

1 100 10,000 1,000,000 100,000,000<br />

Actual Losses<br />

Figure 2. A comparison <strong>of</strong> actual versus USWIND modeled damage for 58 actual<br />

locations within <strong>Florida</strong> using hurricane Andrew.<br />

Our conclusions from a damage perspective then is that USWIND properly models the physical<br />

properties <strong>of</strong> forces versus damage and that the system has no systematic bias in its damage<br />

estimation logic.<br />

222


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Appendices<br />

V. EQECAT USWIND - Validity <strong>of</strong> the probabilistic storm data set<br />

The main challenge to the evaluation <strong>of</strong> the probabilistic storm data set is that the data are not<br />

available to the user due to their proprietary nature. To alleviate this problem, a special<br />

simulation experiment is designed.<br />

We created a uniform portfolio consisting <strong>of</strong> commercial buildings located 10 miles apart along<br />

the coast <strong>of</strong> the eastern and southeastern United <strong>State</strong>s. They have the same construction type,<br />

content and insurance policy. This portfolio is used as input to USWIND, whose probabilistic<br />

calculation gives the annual expected and non-exceedance damage at these locations (Figure 3).<br />

Because the portfolio is uniform, all <strong>of</strong> the geographical variability in damage is due to the<br />

probabilistic distribution <strong>of</strong> USWIND’s storm data set, and is independent <strong>of</strong> the damage<br />

calculation. Therefore, a comparison <strong>of</strong> the damage variability with the geographical distribution<br />

<strong>of</strong> hurricane activity will independently verify whether or not the probabilistic storm data set is<br />

consistent with observations.<br />

3.5<br />

3<br />

USWIND Damage Distribution<br />

For an evenly distributed uniform portfolio<br />

Damage Percentage<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

100<br />

350<br />

600<br />

850<br />

1100<br />

1350<br />

1550<br />

1800<br />

2050<br />

2260<br />

2510<br />

2760<br />

Milepost Location (every 10 miles) from Texas to Maine<br />

mean<br />

90th percentile<br />

Figure 3. USWIND estimated annual Damage (%) to the uniform portfolio. There<br />

is a building every 10 nautical miles. Solid line: expected; dashed line:<br />

90% non-exceedance.<br />

To compare this simulated damage calculation against historical data, actual storm experience<br />

will be reviewed. The two aspects <strong>of</strong> hurricane activity most relevant to wind damage are<br />

hurricane frequency and intensity, shown in Figures 4a and 4b, respectively. Data for these<br />

graphs comes from NOAA Technical Report - NWS 38.<br />

223


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Appendices<br />

US Landfalling Hurricanes<br />

Actual experience 1886-1995<br />

20<br />

18<br />

16<br />

Number <strong>of</strong> Hurricanes<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

130<br />

310<br />

490<br />

670<br />

850<br />

1030<br />

1210<br />

1390<br />

1570<br />

1750<br />

1930<br />

2110<br />

2290<br />

2470<br />

Milepost Location (every 60 miles) from Texas to Maine<br />

2650<br />

3010<br />

Figure 4a. Number <strong>of</strong> landfalling hurricanes along the eastern US coast (1886-1995). Data from North<br />

Atlantic Tropical Cyclone Best Track Data from National Hurricane Center.<br />

100<br />

90<br />

US Maximum Sustained 1-minute Wind Speeds<br />

Actual experience 1886-1995<br />

Wind Speed (MPH)<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

130<br />

310<br />

490<br />

670<br />

850<br />

1030<br />

1210<br />

1390<br />

1570<br />

1750<br />

1930<br />

2110<br />

2290<br />

2470<br />

Milepost Location (every 60 miles) from Texas to Maine<br />

2650<br />

3010<br />

Figure 4b. One-minute sustained maximum wind speed <strong>of</strong> landfalling along the eastern<br />

and southeastern US coast (during the period <strong>of</strong> 1886-1995.) Data from North<br />

Atlantic Tropical Cyclone Best Track Data from National Hurricane Center.<br />

These two parameters (hurricane frequency and intensity) are combined to form an estimate <strong>of</strong><br />

wind damage based on the fact that wind damage is proportional to the square <strong>of</strong> the wind speed<br />

224


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Appendices<br />

and the associated kinetic energy (see section IV.) This estimate is then compared with<br />

USWIND calculation (Figure 5a).<br />

2.5<br />

Mean Damage Comparison; USWIND vs Historical Estimate<br />

For an evenly distributed uniform portfolio<br />

Damage Percentage<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

100<br />

350<br />

600<br />

850<br />

1100<br />

1350<br />

1550<br />

1800<br />

2050<br />

2260<br />

2510<br />

2760<br />

Milepost Location (every 10 miles) from Texas to Maine<br />

USWIND<br />

Historical<br />

Figure 5a. Annual expected wind damage (solid line: USWIND; dashed line:<br />

independent estimate based on historical data).<br />

The geographical distribution <strong>of</strong> their difference is shown in Figure 5b. The two estimates<br />

generally agree well along about 70% <strong>of</strong> the coast line. USWIND estimates, however,<br />

demonstrate some noticeable difference from historical data: (1) much larger than expected local<br />

variations <strong>of</strong> damage near miles post 1400 (southern <strong>Florida</strong>); (2) consistent underestimate at the<br />

eastern part <strong>of</strong> Gulf coast (mile post 100 - 600); (3) overestimate at west <strong>Florida</strong> and New<br />

England coasts.<br />

Detailed analysis and investigation with EQECAT revealed that the cause for the difference is<br />

USWIND’s inconsistent handling <strong>of</strong> user-supplied lat/lon coordinates during portfolio data<br />

import. Specifically, USWIND sometimes incorrectly assigns zip code centroid locations to<br />

properties rather than using the user-supplied lat/lon coordinates. The problem generally occurs<br />

when street address is missing. Because <strong>of</strong> this problem, USWIND’s probabilistic storm<br />

calculation will effectively treat buildings as if they are at the center <strong>of</strong> the zip code zone in<br />

which they are located, unless users manually enter the distance to the coastline. As a result, a<br />

building in a larger zip code zone is treated as if it were farther from the coast than one in a<br />

smaller zip code zone, and consequently is expected to sustain less wind damage. For example,<br />

most <strong>of</strong> the Gulf coast states have larger zip code zones than New England states do, USWIND<br />

estimate tend to be lower in former than in the latter area. The sharp local minimums around mile<br />

post 1400 (Figure 5b) are also found to be located in large zip code zones <strong>of</strong> the Everglades.<br />

225


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Appendices<br />

Mean Damage Difference; USWIND vs Historical Estimate<br />

For an evenly distributed uniform portfolio<br />

200%<br />

Estimate Diff. (USW-Hist)/Hist<br />

150%<br />

100%<br />

50%<br />

0%<br />

-50%<br />

-100%<br />

100<br />

350<br />

600<br />

850<br />

1100<br />

1350<br />

1550<br />

1800<br />

2050<br />

2260<br />

2510<br />

2760<br />

Milepost Location (every 10 miles) from Texas to Maine<br />

Figure 5b. Comparison <strong>of</strong> annual expected damage estimates by USWIND and<br />

historical data (USWIND estimates versus historical estimates; historical<br />

estimates used as the basis.)<br />

EQECAT worked closely with Arkwright after Arkwright identified this problem to determine<br />

just how and why the problem was occurring. Based on this work, EQECAT has indicated that<br />

they have corrected the problem in version 4.0 <strong>of</strong> the s<strong>of</strong>tware. An analysis <strong>of</strong> this correction is<br />

not included in this report, but a preliminary test <strong>of</strong> the correction performed at EQECAT’s<br />

headquarters and reviewed jointly by Arkwright and EQECAT indicates that the correction does<br />

indeed fix the problem.<br />

VI. USWIND Summary and Implications for the Insurance Industry<br />

Our simulation experiment confirms that the historical hurricane observations are an appropriate<br />

basis for tropical cyclone disaster modeling. These observations are indeed reflected in the<br />

USWIND probabilistic data base. Also, the damage calculations are reliable and generally<br />

without bias.<br />

As was mentioned in section V, EQECAT has listened to, help document, and correct the one<br />

problem encountered in this study. Based on early analysis, version 4.0 will correct the problem<br />

and for the time being (until upgrade to 4.0 is done at Arkwright), Arkwright will use an<br />

empirical correction for the lat/lon zip code centroid problem.<br />

The implications <strong>of</strong> this work for the commercial highly protected risk property insurance<br />

industry lie as much in the process <strong>of</strong> completing the work than in the conclusions. Certainly, the<br />

discovery <strong>of</strong> any systematic bias would have been worthy <strong>of</strong> discovery. Since the natural hazard<br />

modeling s<strong>of</strong>tware is used to make multi-million dollar reinsurance decisions as well as capacity<br />

226


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Appendices<br />

allocation decisions, any error or bias in the s<strong>of</strong>tware could prove extremely costly. However,<br />

based on our work, the s<strong>of</strong>tware is free <strong>of</strong> bias and as a result, Arkwright can confidently<br />

incorporate USWIND into decisions about capacity or reinsurance.<br />

The day-to-day operational implications for Arkwright that stem from the lessons learned in<br />

completing this study are significant. They include the following:<br />

(1) The s<strong>of</strong>tware combines the expertise <strong>of</strong> structural engineering, meteorological, mathematical,<br />

statistical, and economic scientists with the expertise <strong>of</strong> finance, accounting, and insurance<br />

pr<strong>of</strong>essionals. Apparently because <strong>of</strong> the diversity <strong>of</strong> expertise in these disciplines among their<br />

potential customers, vendors <strong>of</strong> natural disaster modeling packages invest far too little in<br />

documentation and as a result, validity assessment and damage calibration are activities that were<br />

very difficult and time consuming. Whatever the reasons behind the documentation issue, the<br />

insurer must take responsibility for creating a controlled production environment where tests can<br />

be completed and analysis can be done. An insurer should also expect to invest significant time<br />

in building expertise in using a natural disaster modeling package.<br />

(2) Validating the s<strong>of</strong>tware is a very worthwhile exercise because it provides a benchmark for<br />

new releases <strong>of</strong> the program. It also has the benefit <strong>of</strong> fostering a stronger relationship between<br />

the designers <strong>of</strong> the s<strong>of</strong>tware and the scientists within the insurer’s organization. Doing this<br />

requires a significant investment in time, money, and people, but the alternative is to write<br />

insurance with less than complete understanding <strong>of</strong> the risks involved. The insight that is gained<br />

by doing such an analysis is enormous. As a result <strong>of</strong> this work, new understandings and indeed<br />

new questions arose concerning the portfolio and the reinsurance program. For Arkwright,<br />

performing this study raised as many questions about the unique characteristics <strong>of</strong> the insurance<br />

portfolio (to be addressed through subsequent research) as it settled about the s<strong>of</strong>tware.<br />

(3) The potential customer set for these packages is relatively small but the functionality is<br />

relatively rich. Because <strong>of</strong> this, it is very likely that a customer will encounter (because <strong>of</strong> the<br />

combinations <strong>of</strong> the structure, the storm, the policy, and the reinsurance) a situation that has<br />

never been seen in s<strong>of</strong>tware development. In light <strong>of</strong> this, the insurer must form and maintain a<br />

strong relationship with the support organization <strong>of</strong> the vendor. A validation exercise, by its<br />

design is likely to manifest this situation. While the experience can be trying and even frustrating<br />

for both parties, the long term result is well worth the effort as the insurer gains a greater<br />

understanding <strong>of</strong> the peril and the s<strong>of</strong>tware and the vendor gains a better understanding <strong>of</strong> the<br />

client.<br />

227


The <strong>Florida</strong> Commission on Hurricane Loss Projection Methodology<br />

Appendices<br />

References<br />

Bengtsson-L., Botzet-M. and Esch-M., Hurricane-type vortices in a general circulation model,<br />

Tellus, vol. 47A, no. 2, pp.175-196, Feb. 1995.<br />

Giorgi-F., Rosaria-M. and Visconti-G., Use <strong>of</strong> a limited-area model nested in a general<br />

circulation model for regional climate simulation over Europe, Journal <strong>of</strong> Geophysical Research,<br />

vol. 95, no. D11, pp. 18413-31, 20 Oct. 1990.<br />

Hewitson-B. and Crane-R-G., Regional climates in the GISS global circulation model: synopticscale<br />

circulation, Journal <strong>of</strong> Climate, vol. 5, no. 9, pp. 1002-11, Sept. 1992.<br />

Ho-F., Su-J., Hanevich-K., Smith-R. and Richards-F., Hurricane climatology for the Atlantic and<br />

Gulf Coast <strong>of</strong> The United <strong>State</strong>s, NOAA Technical Report NWS 38, April, 1987.<br />

Landsea-C-W., A climatology <strong>of</strong> intense (or major) Atlantic hurricanes, Monthly Weather<br />

Review, vol. 121, no. 6, pp. 1703-13, June 1993.<br />

Nuemann, C., The National Hurricane Center risk analysis program, NOAA Technical Memo<br />

NWS NHC 38, November, 1987.<br />

228


Frankfurt, Germany<br />

49-6192-979104<br />

Fax 49-6192-979105<br />

London, UK<br />

44-207-377-4501<br />

Fax 44-207-377-4575<br />

Oakland, CA<br />

510-817-3100<br />

Fax 510-633-1048<br />

Paris, France<br />

33-1-44-79-01-01<br />

Fax 33-1-44-79-01-05<br />

Tokyo, Japan<br />

81-3-3830-3480<br />

Fax 81-3-3830-3481<br />

Warrington, UK<br />

44-1925-287300<br />

Fax 44-1925-287303<br />

Wilmington, DE<br />

302-239-7310<br />

Fax 302-239-0306

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!