07.01.2015 Views

Wake Vortex X-band radar monitoring : Paris-CDG airport ... - WakeNet

Wake Vortex X-band radar monitoring : Paris-CDG airport ... - WakeNet

Wake Vortex X-band radar monitoring : Paris-CDG airport ... - WakeNet

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Wake</strong> <strong>Vortex</strong> X-<strong>band</strong> <strong>radar</strong> <strong>monitoring</strong> :<br />

<strong>Paris</strong>-<strong>CDG</strong> <strong>airport</strong> 2008 Campaign<br />

Results & Perspectives<br />

Thales Air systems, Strategy Technology & Innovation Dept.<br />

F. Barbaresco


Short Summary of <strong>Wake</strong> <strong>Vortex</strong><br />

Radar Campaigns


• USA :<br />

WAKE VORTEX RADAR CAMPAIGNS<br />

• During 90’s different Radar trials have been<br />

made in US for wake vortex <strong>monitoring</strong> in<br />

clear Air with positive results for different<br />

<strong>band</strong>s.<br />

<strong>Wake</strong> <strong>Vortex</strong> Reflectivity was flat<br />

as a function of frequency<br />

DX04 S-<strong>band</strong> <strong>radar</strong><br />

AN/MPS-39<br />

C-<strong>band</strong> <strong>radar</strong><br />

3<br />

• EUROPE :<br />

• UK, GEC-MARCONI (1992) : detection at Range<br />

R = 2.8 Km with an S-<strong>band</strong> Radar (3 GHz) (DX<br />

04 Radar Campaign)<br />

• France, CNRS/CRPE (1992): detection at<br />

Range R = 0.5 Km with an UHF-<strong>band</strong> Radar<br />

(961 MHz) (PROUST Radar campaign)<br />

Thales Air Systems Division<br />

Proust UHF Band Radar


CLEAR AIR RADAR REFLECTIVITY OF WAKE VORTEX<br />

• Tests have revealed <strong>radar</strong> echoes in clear air.<br />

• Two mechanisms causing refractive index gradients are :<br />

• Radial Pressure (and therefore density) gradient in a columnar vortex arising<br />

from the rotational flow :<br />

6 ⎛ Pa<br />

⎞ ⎛ Pv<br />

⎞<br />

5⎛<br />

Pv<br />

⎞<br />

(n −1).<br />

10 = 77.<br />

6⎜<br />

⎟ + 64.<br />

8⎜<br />

⎟ + 3.<br />

77610 . ⎜<br />

2<br />

⎟<br />

⎝ T ⎠ ⎝ T ⎠ ⎝ T ⎠<br />

⎧n : refractive index of humid air for frequencies below 20 GHz<br />

⎪<br />

with ⎨Pa<br />

: the partial pressure (mb) of dry air ; Pv<br />

: the partial pressure (mb) of water vapour<br />

⎪<br />

⎩T : the temperature (K) , T ∞<br />

= 288K<br />

• Adiabatic transport of atmospheric fluid within a descending oval<br />

surrounding a vortex pair :<br />

[ n(z) ~ − n(z) ].<br />

with<br />

• Particulates were not involved (not f 4 Rayleigh scattering) .<br />

• The frequency dependence was not the Kolmogorov f 1/3<br />

• The role of Engine Exhaust :<br />

2<br />

6<br />

⎡<br />

⎤<br />

6 ρ(z)N RH(z)P ⎛<br />

⎞<br />

sat(Tz<br />

) 3.<br />

4910 .<br />

10 = − Δz⎢223<br />

+<br />

⎜76.<br />

7 +<br />

⎟⎥<br />

g ⎣ P(z) ⎝ T(z) ⎠⎦<br />

⎧N : Brünt-Väisälä Frequency (stratification parameter)<br />

⎪<br />

-1<br />

−1<br />

-1<br />

⎨at Sea Level : N = 0.<br />

014s<br />

(in Summer) N = 0.<br />

02s<br />

-0.<br />

03s<br />

(in W int er)<br />

⎪<br />

⎩Δz : Descend Altitude, and P = Pa<br />

+ Pv<br />

• RCS doesn’t change when the engine run at idle or full power<br />

• Exhaust diameter yields a partial pressure of vapour and a contribution<br />

which is much smaller than that due to temperature.<br />

4<br />

Thales Air Systems Division


Operational Needs for <strong>Wake</strong><br />

<strong>Vortex</strong> Monitoring


WAKE VORTEX MONITORING IN CRITICAL AREAS<br />

• <strong>Wake</strong> <strong>Vortex</strong> should be monitored In critical Areas (where<br />

% of occurences is high) :<br />

• Very Close to the Ground (0 to 400 ft)<br />

• Glide Path Intercept (3000 to 4000 ft)<br />

Figures<br />

From<br />

NATS<br />

Voluntary<br />

Reporting<br />

6<br />

Critical Area 2 :<br />

Glide Path Intercept<br />

• These Critical Areas should be monitored in All Weather<br />

conditions (Wet & Dry conditions, Fog, Rain,…)<br />

Thales Air Systems Division<br />

Critical Area 1 :<br />

Very close to the Ground


<strong>Wake</strong> <strong>Vortex</strong> Monitoring very close to the Ground<br />

• <strong>Wake</strong> <strong>Vortex</strong> behaviours very close to the<br />

ground have very complex causes that could<br />

change abrutly (e.g. Wind Squall or Fall,…) :<br />

Need for Real Time Monitoring<br />

• Ground Effect :<br />

vortices<br />

Secondary<br />

vortices<br />

• Wind Shear :<br />

• Transport :<br />

7<br />

Thales Air Systems Division


THALES X-BAND RADAR TRIALS


CHARACTERISTICS OF THALES X-BAND BOR-A550 RADAR<br />

Main Figures<br />

• Frequency : X Band (9.6 GHz for ORLY Campaign)<br />

• Minimal Range : 400 m<br />

• Maximal Range : 40 Km (limited to 2 km for WV)<br />

• Range Resolution : 40 m<br />

• Mechanical Tilt : +/- 24°<br />

• Beam Width (elevation/azimut): 4°/2.7°<br />

• Radial Velocity Range : +/- 26 m/s<br />

• Doppler Resolution (& High Resolution) : 0.2 m/s<br />

(0.04m/s)<br />

• Mechanical Scan Rate : 8°/s (sur 45° pour ORLY)<br />

• Peak transmit power: Classified<br />

• Data Link : RS232 (x2), RS432 (x2), Ethernet<br />

• Recording System : All range cells<br />

• external link Ethernet 20 Gb/s<br />

PRF = 3348 Hz<br />

F=9.6 GHz<br />

λ=c/F=3.125 cm<br />

V amb<br />

= λ.PRF/2<br />

V amb<br />

= 52.31 m/s<br />

(+/-26 m/s)<br />

9<br />

Thales Air Systems Division


Radar Sensor Campaigns funded by THALES<br />

• 2006 : <strong>Paris</strong> Orly Airport (Runway Monitoring)<br />

Orly 2006<br />

• From Mode S site (500 m from runway)<br />

• <strong>Wake</strong> <strong>Vortex</strong> Monitoring during departures<br />

• Weather conditions : Winter (clear air, rain)<br />

• 2007 : <strong>Paris</strong> Orly Airport (Glide Path Monitoring)<br />

• From Thales Limours Testbed Tower<br />

• <strong>Wake</strong> <strong>Vortex</strong> Monitoring during arrivals (Glide Path<br />

Intercept)<br />

• Weather Conditions : Autumn (highly turbulent<br />

atmosphere)<br />

• 2008 : <strong>Paris</strong> <strong>CDG</strong> Airport (CSPR Monitoring)<br />

• From Kbis Tower co-localized with Eurocontrol Lidar (2<br />

μm Windtracer)<br />

• <strong>Wake</strong> <strong>Vortex</strong> Monitoring during arrivals/departures on<br />

Closely Spaced Parallel runways<br />

• Weather Conditions : Summer (very hot, rain)<br />

Orly 2007<br />

<strong>CDG</strong> 2008<br />

10<br />

Thales Air Systems Division


11<br />

X-<strong>band</strong> Radar Sensor for Safety Case & Operational Use<br />

• <strong>Wake</strong> <strong>Vortex</strong> Monitoring in All Weather Conditions (light<br />

to heavy rain, fog, turbulent atmosphere,…)<br />

• Operational Use to track <strong>Wake</strong> <strong>Vortex</strong> (transport, decay,<br />

rebound) in extreme weather conditions :<br />

• Wind burst (wind under Cb, turbulent atmosphere, wind shear…)<br />

• No Wind (foggy weather,…)<br />

• Use for « Safety Case » by Data Collection :<br />

Thales Air Systems Division<br />

• Risks Assessment according to extreme wind conditions and no<br />

longer on mean wind conditions<br />

• Need for <strong>Wake</strong> <strong>Vortex</strong> Data in exhaustive cases of <strong>airport</strong> climatology<br />

(good/bad weather)<br />

• Fast Monitoring of very large volume (<strong>radar</strong> scanning) with<br />

high update rate (e.g. : 8°/s with mechanical scanning of<br />

BOR-A <strong>radar</strong>)<br />

• Highly sensitivity of Radar : <strong>monitoring</strong> of <strong>Wake</strong> <strong>Vortex</strong> for<br />

« medium » (high % of A320) aircrafts and not only « heavy /<br />

super heavy » (requested for traffic mix of « very light jets »)


LIDAR & RADAR WAKE VORTEX DOPPLER SIGNATURE<br />

LIDAR WAKE VORTEX DETECTION<br />

Post-processing<br />

Needed for Wind<br />

Inversion detection<br />

Angular<br />

Radar resolution<br />

Doppler <strong>radar</strong><br />

signature<br />

Doppler Lidar<br />

signature<br />

12<br />

Thales Air Systems Division


ORLY Airport Radar Campaign 2006


Radar (& Lidar Wind Profiler) Site at <strong>Paris</strong> Orly Airport<br />

WLS7 Lidar<br />

Wind Profiler<br />

14<br />

Thales Air Systems Division<br />

THALES<br />

BORA-550<br />

Radar


<strong>Wake</strong> <strong>Vortex</strong> Detection in All weather Conditions<br />

No Rain<br />

Minimum<br />

Temperature<br />

8 °<br />

Maximum<br />

Temperature<br />

14 °<br />

Rain Rate 0 mm<br />

Wind Speed 22 km/h<br />

Wind Direction : South<br />

Rain<br />

Minimum<br />

Temperature<br />

Maximum<br />

Temperature<br />

Rain Rate<br />

Wind Speed<br />

Wind Direction<br />

9 °<br />

12 °<br />

1.19 mm<br />

20 km/h<br />

South-<br />

East<br />

NO RAIN<br />

RAIN<br />

RCS of Medium Aircraft <strong>Wake</strong> <strong>Vortex</strong> : 0.01 m 2 S/N ≈ 15 dB (Range = 600 m)<br />

15<br />

Thales Air Systems Division


WAKE VORTEX PROFILING : RADAR DOPPLER ANALYSIS<br />

Spiral<br />

Geometry<br />

Tangential Speed<br />

Versus Radius<br />

0 m/s<br />

+/-<br />

26 m/s<br />

Cross-Wind Speed<br />

Speed Variance of<br />

Rain can measure<br />

EDR & TKE<br />

(air turbulence)<br />

0 m/s<br />

16<br />

r<br />

⎛ =<br />

bθ<br />

dr<br />

1 δ V<br />

ae ⇒ = br ⇒ b = ⎜ +<br />

r<br />

log 1<br />

dθ<br />

2π<br />

⎝ V<br />

Thales Air Systems Division<br />

⎞<br />

⎟<br />

⎠<br />

Time (s)


WAKE VORTEX PROFILING : WAKE VORTEX AGE<br />

Positive<br />

Time/Doppler<br />

slopes<br />

Zero<br />

Time/Doppler<br />

slopes<br />

17<br />

Thales Air Systems Division<br />

Low speed<br />

Negative<br />

Time/Doppler<br />

slopes<br />

Negative<br />

Time/Doppler<br />

slopes


<strong>Wake</strong> <strong>Vortex</strong> Detection in Clear Air at 7 Km<br />

7000 m<br />

Line of sight<br />

Recording conditions<br />

• 29 th November '06<br />

• scanning mode<br />

• scan angle 45°<br />

• scan rate 8°/s<br />

• long transmit pulse<br />

• distance up to 7 km<br />

• without rain<br />

45°<br />

Wind<br />

18<br />

Thales Air Systems Division


<strong>Wake</strong> <strong>Vortex</strong> Circulation Computation<br />

= k<br />

3<br />

.2 nd<br />

moment<br />

[ S(V ) ] 2 / 3<br />

i<br />

<strong>Wake</strong> <strong>Vortex</strong> Doppler Frequencies Extraction<br />

(Pre-Processing : CFAR on Doppler axis)<br />

Γ ∝<br />

Γ Vmax<br />

2<br />

2 V [ S(<br />

V )]<br />

V<br />

∫<br />

min<br />

V<br />

V<br />

max<br />

∫ [ S(<br />

V ) ] i<br />

min<br />

i<br />

i<br />

2/3<br />

2/3<br />

dV<br />

dV<br />

i<br />

i<br />

19<br />

Thales Air Systems Division


Advanced Processing Chain: 3 Patents<br />

μ<br />

N<br />

2<br />

*<br />

∑ f<br />

n−1<br />

( k).<br />

bn−<br />

1(<br />

k −1)<br />

+ 2.<br />

N − n k = n+<br />

1<br />

= −<br />

N<br />

1<br />

2<br />

2<br />

∑ f<br />

n−1<br />

( k)<br />

+ bn−<br />

1(<br />

k −1)<br />

N − n k = n+<br />

1<br />

Regularized Autoregressive<br />

Burg Algorithm<br />

(Thales Patent 1)<br />

n<br />

n−1<br />

∑<br />

k = 1<br />

β<br />

+ 2.<br />

( n)<br />

k<br />

n−1<br />

∑<br />

k = 0<br />

. a<br />

β<br />

( n−1)<br />

k<br />

( n)<br />

k<br />

. a<br />

. a<br />

( n−1)<br />

n−k<br />

( n−1)<br />

2<br />

k<br />

Doppler & Image Processing<br />

For <strong>Wake</strong> <strong>Vortex</strong><br />

Monitoring & Profiling<br />

(Thales Patent 3)<br />

CFAR<br />

On<br />

frequency<br />

d<br />

2<br />

with<br />

(1) (2)<br />

( θ , θ )<br />

δ<br />

(1,2)<br />

i<br />

n 1<br />

⎛ 1 1+<br />

δ<br />

= ∑ − ( n − i).<br />

⎜ ln<br />

i=<br />

1 ⎝ 2 1−δ<br />

(1)<br />

μi<br />

− μ<br />

=<br />

1−<br />

μ μ<br />

(1)<br />

i<br />

(2)<br />

i<br />

(2)*<br />

i<br />

(1,2)<br />

i<br />

(1,2)<br />

i<br />

Doppler Entropy Based on<br />

Information Geometry<br />

(Thales Patent 2)<br />

⎞<br />

⎟<br />

⎠<br />

2<br />

Radon/Hough<br />

Γ = γ<br />

2<br />

V<br />

max<br />

∫<br />

V<br />

.<br />

V<br />

min<br />

[ S(<br />

V )]<br />

max<br />

∫ [ S(<br />

V ) ] i<br />

V<br />

V<br />

min<br />

2<br />

i<br />

i<br />

2/3<br />

2/3<br />

dV<br />

dV<br />

<strong>Wake</strong> <strong>Vortex</strong> Circulation<br />

20 Thales Air Systems Division<br />

i<br />

i<br />

HR Autoregressive Doppler & Entropy<br />

Implemented in C language :<br />

3 times faster than real time by<br />

use of 4 Threads with Quadri-Core PC<br />

Γ0<br />

r<br />

V ( r)<br />

= ⇒ V ( r)<br />

= α.<br />

r<br />

2π<br />

. rc<br />

rc<br />

⎛ V ⎞<br />

r =<br />

bθ<br />

1 δ<br />

ae ⇒ b = ⎜ +<br />

r<br />

log 1 ⎟<br />

2π<br />

⎝ V ⎠<br />

<strong>Wake</strong> <strong>Vortex</strong> Geometry


ORLY Airport / Limours Radar Campaign 2007


Limours (site Thales) : September 2007<br />

22<br />

Thales Air Systems Division


<strong>Wake</strong> <strong>Vortex</strong> Monitoring In Glide Path Intercept<br />

23<br />

<strong>Wake</strong> <strong>Vortex</strong><br />

Rollups<br />

Thales Air Systems Division<br />

Vertical Scanning<br />

From Limours Tesbed<br />

Tower (Orly Glide<br />

Path Intercept :<br />

Altitude 1500 m)<br />

In Highly Turbulent<br />

Atmosphere !!<br />

<strong>Wake</strong> <strong>Vortex</strong><br />

Rollups


<strong>CDG</strong> Airport Radar Campaign 2008


Radar Sensor Deployment at <strong>CDG</strong> Airport<br />

27R<br />

27L<br />

Horizontal Scanning<br />

Vertical<br />

Scanning<br />

26R<br />

08L<br />

26L<br />

08R<br />

25<br />

Thales Air Systems Division


Runway WV Detection : West Configuration Procedure<br />

<strong>Wake</strong> <strong>Vortex</strong> Detection based on Doppler Entropy<br />

Time<br />

26R<br />

Departure<br />

26L<br />

Arrival<br />

Range<br />

West Configuration<br />

Procedure<br />

STARING<br />

ANTENNA<br />

MODE<br />

26<br />

Thales Air Systems Division


<strong>Wake</strong> <strong>Vortex</strong> transport by High cross-Wind<br />

Time<br />

Range<br />

STARING<br />

ANTENNA<br />

MODE<br />

Range<br />

Cell n-3<br />

RC m-6<br />

RC m-5<br />

Range<br />

Cell n-2<br />

Range<br />

Cell n-1<br />

RC m-4<br />

RC m-3<br />

RC m-2<br />

Range<br />

Cell n<br />

27<br />

Thales Air Systems Division<br />

time<br />

RC m-1<br />

RC m<br />

RC m RC m<br />

time


<strong>Wake</strong> <strong>Vortex</strong> transport by Cross-Wind<br />

28<br />

Thales Air Systems Division


<strong>Vortex</strong> Transport : Doppler Analysis<br />

RNG 1 to 6 (6 x 40 m = 200 m)<br />

Time<br />

rebound<br />

Range<br />

29<br />

Thales Air Systems Division


<strong>Vortex</strong> Transport : Doppler Analysis<br />

RNG 3 and 4<br />

Time<br />

Mature <strong>Vortex</strong><br />

Range<br />

30<br />

Thales Air Systems Division


Vertical Scanning : East Configuration Procedure<br />

Image of High Resolution<br />

Doppler Entropy<br />

<strong>Wake</strong> <strong>Vortex</strong> Roll-up<br />

(Arrival)<br />

31<br />

Thales Air Systems Division


Vertical Scanning : East Configuration Procedure<br />

Image of High Resolution<br />

Doppler Entropy<br />

32<br />

Thales Air Systems Division


Vertical Scanning : West configuration<br />

<strong>Wake</strong> <strong>Vortex</strong> Roll-up<br />

(Departure)<br />

Image of High Resolution<br />

Doppler Entropy<br />

33<br />

Thales Air Systems Division


WV Roll-ups Evolution : West Config. Procedure<br />

West Config.<br />

Procedure<br />

34<br />

Thales Air Systems Division<br />

Image of High Resolution<br />

Doppler Entropy


Image of High Resolution<br />

Doppler Entropy<br />

<strong>Wake</strong> <strong>Vortex</strong> Roll up<br />

1rst Runway (Departure)<br />

2nd Runway (Arrival)<br />

35<br />

Thales Air Systems Division


<strong>CDG</strong> Radar Campaign Data<br />

Exploitation


<strong>Wake</strong> <strong>Vortex</strong> Position & Circulation (strength in m 2 /s) along runway<br />

1700<br />

Position des vortex au cours du temps<br />

WV roll-ups<br />

position<br />

1300<br />

Position des vortex au cours du temps<br />

WV roll-ups<br />

position<br />

Case distance<br />

1600<br />

1500<br />

1400<br />

1300<br />

vortex 1 position<br />

vortex 2 position<br />

Case distance<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

vortex 1 position<br />

vortex 2 position<br />

1200<br />

1 2 3 4 5 6 7<br />

600<br />

1 2 3 4 5 6<br />

Numéro de balayage<br />

Numéro de balayage<br />

18 0<br />

Circulation des vortex au cours du temps en m²/s<br />

WV roll-ups<br />

Circulation<br />

350<br />

Circulation des vortex au cours du temps en m²/s<br />

WV roll-ups<br />

Circulation<br />

16 0<br />

300<br />

14 0<br />

12 0<br />

250<br />

10 0<br />

80<br />

vortex1 circulation<br />

vortex2 circulation<br />

200<br />

150<br />

vortex1 circulation<br />

vortex2 circulation<br />

60<br />

40<br />

20<br />

10 0<br />

50<br />

0<br />

1 2 3 4 5 6 7<br />

0<br />

1 2 3 4 5 6<br />

Numéro de balayage<br />

Numéro d e b alayag e<br />

37<br />

5 s per scan (35 s)<br />

Position around 1500 m<br />

With Cross-Wind<br />

Thales Air Systems Division<br />

5 s per scan (30 s)<br />

Position around 1000 m<br />

Without Cross-Wind


Occurrences of <strong>Wake</strong> <strong>Vortex</strong> Position versus Wind conditions<br />

38<br />

Thales Air Systems Division


Coordination with Eurocontrol & ADP<br />

• Debriefing meeting has been organized, 18 th of July in<br />

Eurocontrol Bretigny, with persons in charge of Lidar<br />

exploitation to :<br />

• Present first exploitations of <strong>radar</strong> data records<br />

• Define File template (date, WV position, WV Circulation) to<br />

concatenate all results for benchmarking with Lidar<br />

• Debriefing meeting has been organized with ADP & DSNA ,<br />

25 th of September, with G. Batistella, Guillaume Auquier & Jean<br />

Jezequel to:<br />

• Present first results<br />

• Thank ADP for their logistic support<br />

• First Excel File has been transmitted to Eurocontrol, the 7 th of<br />

November & new results in December<br />

• Exhaustive <strong>CDG</strong> Trials Exploitation is in progress :<br />

• Vertical Staring antenna & Vertical Scanning mode<br />

• Horizontal Scanning<br />

39<br />

Thales Air Systems Division


CONCLUSION


Thales Radar Trials Synthesis<br />

• <strong>Paris</strong> ORLY AIRPORT Campaign has proved that X-<strong>band</strong> Thales<br />

BOR-A550 Radar can :<br />

• Detect <strong>Wake</strong> <strong>Vortex</strong> (RCS of 0.01 m 2 on medium aircraft) :<br />

• In all weather conditions (wet & dry at short range < 2 Km)<br />

• In Staring & Scanning Mode<br />

• In real Time / Update Rate of 11 s on 90° scan sector<br />

• Localize <strong>Wake</strong> <strong>Vortex</strong><br />

• in range/azimuth<br />

• With resolution : 40 m x 1°<br />

• Characterize <strong>Wake</strong> <strong>Vortex</strong> by :<br />

• Geometry (Spiral)<br />

• Age (Young, mature, old, decaying)<br />

• Strength : Circulation (m 2 /s)<br />

• Characterize ambient air (in Rain Conditions)<br />

• Wind (based on Doppler & post-processing)<br />

• Ambient Air Turbulence (EDR & TKE)<br />

Medium Aircraft<br />

<strong>Wake</strong> <strong>Vortex</strong> RCS<br />

0.01 m 2<br />

(e.g. : Airbus A320)<br />

X-BAND BOR-A550 RADAR IS AVAILABLE & CAN BE DEPLOYED<br />

, AS SOON AS 2009, ON LARGE EUROPEAN AIRPORTS<br />

(<strong>Paris</strong> <strong>CDG</strong>, London Heathrow, Francfort, …) for SESAR studies<br />

41<br />

Thales Air Systems Division


Main Objective : Ground wake detection, tracking & alert<br />

Orly trials 2006 & <strong>CDG</strong> 2008<br />

WIMS<br />

(in TMA)<br />

Data<br />

Broadcast<br />

Approach & Tower<br />

Controller<br />

Ground Radar<br />

Horizontal/Vertical scanning<br />

of Runways<br />

Limours trials 2007<br />

crosswind<br />

WV Predictor<br />

Data-Link<br />

(WV Alerts)<br />

WV controller HMI<br />

WV Alarm<br />

Ground Radar<br />

Vertical scanning<br />

of Glide Path Intercept<br />

crosswind<br />

Data<br />

Broadcast<br />

Pilot<br />

42<br />

Thales Air Systems Division


Complementarities of Radar/Lidar Sensors<br />

• Radar & Lidar are complementary sensors in all weather operations<br />

• THALES has proved by derisking campaign (<strong>Paris</strong> Orly/<strong>CDG</strong>) that X-<strong>band</strong><br />

Radar & Lidar are complementary for <strong>Wake</strong> <strong>Vortex</strong> Monitoring :<br />

• US Campaign has proved (Westheimer Aiport Campaign) that X-<strong>band</strong> &<br />

Lidar are compementary for Wind Monitoring<br />

43<br />

Thales Air Systems Division<br />

Presented at <strong>Wake</strong>net USA 2008


Acknowledgements<br />

ADP (<strong>Paris</strong> Airport) Radar Team (Orly)<br />

• Jean-Paul Lecorre<br />

• Jean-Marc Receveau<br />

• Daniel Duong<br />

• Gilbert Herbulot<br />

DSNA<br />

• André Simonetti<br />

• Alfred Harter<br />

• Jean Jezequel<br />

Direction des Aires Aéronautiques (ADP <strong>CDG</strong>) :<br />

• Gérard Batistella<br />

• Guillaume Auquier<br />

Eurocontrol « <strong>Wake</strong> <strong>Vortex</strong> » Team :<br />

• Andrew Harvey<br />

• Antoine Vidal (visit during Orly 2006 Radar Trials)<br />

• Vincent Treve (visit during Orly 2007 & <strong>CDG</strong> 2008 Radar Trials)<br />

• Jean-Pierre Nicolaon (visit during Orly 2007 Radar Trials)<br />

44<br />

Thales Air Systems Division


Thank you for your attention<br />

Leonardo Da Vinci

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!