08.01.2015 Views

Weight and Cost Reduction of a Vehicle Component by Durability ...

Weight and Cost Reduction of a Vehicle Component by Durability ...

Weight and Cost Reduction of a Vehicle Component by Durability ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Weight</strong> <strong>and</strong> <strong>Cost</strong> <strong>Reduction</strong> <strong>of</strong> a <strong>Vehicle</strong><br />

<strong>Component</strong> <strong>by</strong> <strong>Durability</strong> Simulation<br />

Masaru Kabasawa<br />

Speaker:<br />

Dr.-Ing. R. Carmine<br />

Munich<br />

22.03.2006<br />

March 06<br />

- 1 -


Contents:<br />

• Objectives<br />

• CAE Approach for Fatigue Life Analysis<br />

• Modeling Procedure<br />

• Multi Body Simulation<br />

• Methodology <strong>of</strong> <strong>Durability</strong> Analysis<br />

• Fatigue Analysis for Road Load Data<br />

• Conclusion<br />

March 06<br />

- 2 -


Objectives:<br />

CAE based Assessment <strong>of</strong> the Structural Integrity <strong>of</strong><br />

an Air Suspension System<br />

<strong>Component</strong>s:<br />

• Frame<br />

• CLink<br />

(Trailing Arm)<br />

Tasks:<br />

• <strong>Cost</strong> <strong>and</strong> <strong>Weight</strong> <strong>Reduction</strong><br />

• Stress Recovery <strong>and</strong> Fatigue Life Analysis for Road Load Data<br />

March 06<br />

- 3 -


CAE Approach for Fatigue Life Analysis:<br />

Virtual Testing<br />

• CAE Process:<br />

• What<br />

Finite Element based Fatigue Simulation<br />

+ +<br />

From LMS NEWS (IGEL Test Rig)<br />

from LMS NEWS (BMW Model)<br />

March 06<br />

- 4 -


CAE Approach for Fatigue Life Analysis:<br />

Work Flow<br />

• CAE Process: Fatigue Life Analysis<br />

„Load Model“: Multibody Model <strong>of</strong> <strong>Vehicle</strong><br />

Input Data: Measured Wheel Loads (Forces + Moments)<br />

Output Data<br />

<strong>Component</strong> Loads<br />

F<br />

( t) M ( t)<br />

i<br />

,<br />

i<br />

„Stress Model“: FE Model <strong>Component</strong><br />

From LMS NEWS (BMW)<br />

r<br />

σ ( x,<br />

t)<br />

i<br />

Input Data: <strong>Component</strong> loads<br />

Output Data:<br />

Stress-Time Series<br />

on <strong>Component</strong><br />

Fatigue Life Prediction (FLP)<br />

Input Data: Stress-time Series on <strong>Component</strong><br />

With Courtesy <strong>of</strong> AUDI<br />

r<br />

d( x)<br />

N( r<br />

x)<br />

Output Data:<br />

Life to Crack Initiation<br />

(Base Material, Welded Joints)<br />

March 06<br />

- 5 -


Modeling Procedure:<br />

Multi Body System <strong>of</strong> Rear Suspension<br />

Damper<br />

Left<br />

Lateral<br />

Arms<br />

Air<br />

Spring<br />

Flexible<br />

Frame<br />

Rigid<br />

Axle<br />

Damper<br />

Right<br />

Flexible<br />

CLink<br />

Right<br />

March 06<br />

- 6 -


Modeling Procedure: Multi Body Modeling:<br />

Air Spring Characteristics<br />

Nonlinear Dynamic Spring Rate<br />

Dependent <strong>of</strong> Total <strong>Weight</strong>:<br />

Laden: 2800 lbf 85 psi<br />

Unladen: 1000 lbf 32 psi<br />

Measured Dynamic Spring Rate<br />

Laden<br />

Unladen<br />

Resulting Air Spring Curves<br />

xxx<br />

xxx<br />

xxx<br />

xxx<br />

xxx<br />

xxx<br />

March 06<br />

- 7 -


Modeling Procedure: Multi Body Modeling:<br />

Dampers Characteristic<br />

Nonsymmetric<br />

Configuration<br />

Two Damper Curves:<br />

S<strong>of</strong>t: 0-400<br />

psi<br />

Firm: 65 psi-up<br />

March 06<br />

- 8 -


Modeling Procedure: Multi Body Modeling:<br />

Bushing Characteristics<br />

• Bushing<br />

Locations<br />

• Axial<br />

• Radial<br />

• Conical<br />

• Torsional<br />

• Stiffness<br />

• Damping<br />

March 06<br />

- 9 -


Modeling Procedure: Multi Body Modeling:<br />

Axle as rigid body in Multi Body System<br />

• Mass Axle = 330 kg<br />

• Mass one Wheel = 38 kg<br />

• Total Mass = 406 kg<br />

4 connection points to Trailing Arm<br />

1 connection point to Connector Lateral Control Arms<br />

2 connection points to Air Springs<br />

2 connection points to Dampers<br />

2 connection points to the wheels<br />

March 06<br />

- 10 -


Modeling Procedure: Finite Element Modeling:<br />

Frame as flexible body<br />

• 53000 linear Shell Elements in NASTRAN, 1200 Seamweld Elements<br />

11 Connection Points<br />

to suspension components<br />

<strong>and</strong> ground:<br />

10*6 +1*3 = 63 Static modes<br />

10 normal modes<br />

67 Craig Bampton modes<br />

Structural Viscous Damping = 5%<br />

Mass = xxx<br />

March 06<br />

- 11 -


Modeling Procedure: Finite Element Modeling:<br />

CLink as flexible body (Variant 1)<br />

• 67000 Tet10 Elements<br />

• 29000 Tria6 Skinning Elements<br />

2 Connection Points to axle<br />

1 connection point to frame<br />

3*6 = 18 Static modes<br />

+<br />

10 normal modes<br />

-<br />

6 rigid body modes<br />

=<br />

22 Craig Bampton modes<br />

Casted Steel<br />

Mass : 100%<br />

<strong>Cost</strong> : 100%<br />

March 06<br />

- 12 -


Modeling Procedure: Finite Element Modeling:<br />

CLink as flexible body (Variant 2)<br />

• 10000 linear Quad4 Elements<br />

• 300 linear Seam Weld Elements<br />

22 Craig Bampton Modes<br />

Welded Sheet<br />

Mass : 50%<br />

<strong>Cost</strong> : 75%<br />

March 06<br />

- 13 -


Methodology <strong>of</strong> <strong>Durability</strong> Analysis:<br />

General Work Flow<br />

Wheel Forces<br />

Multi Body Simulation<br />

Craig Bampton<br />

Displacement<br />

Modes<br />

Craig Bampton<br />

Load Cases<br />

Finite Element<br />

Modal Analysis<br />

Modal Participation<br />

Factor Histories<br />

Craig Bampton<br />

Stress Modes<br />

Generation <strong>of</strong> Local<br />

Stress Tensor History<br />

And Damage Evaluation<br />

Stress Amplitude<br />

Distribution<br />

Damage Distribution<br />

March 06<br />

- 14 -


Multibody Simulation:<br />

Input Static Loads: Three Load Cases<br />

Each Load Case consists <strong>of</strong> two forces<br />

at tire contact patch point<br />

Results: : Hot Spots at Brackets<br />

Lateral Wheel Forces:xxx N<br />

Vertical Wheel Forces:<br />

xxx N<br />

Longitudinal Wheel Forces: xxx N<br />

March 06<br />

- 15 -


Multibody Simulation :<br />

Input Data: Load Histories Road Load Data<br />

Drive Fully Laden: Load Histories at Wheel Contact Patch<br />

Load <strong>Weight</strong>: xxx lbf xxx N / Wheel<br />

• Fz left side<br />

• Fz right side<br />

March 06<br />

- 16 -


Fatigue Analysis for Road Load Data:<br />

Result: Multi Body Simulation<br />

March 06<br />

- 17 -


Methodology <strong>of</strong> <strong>Durability</strong> Analysis:<br />

General Work Flow<br />

Wheel Forces<br />

Multi Body Simulation<br />

Craig Bampton<br />

Displacement<br />

Modes<br />

Craig Bampton<br />

Load Cases<br />

Finite Element<br />

Modal Analysis<br />

Modal Contribution<br />

Factor Histories<br />

Craig Bampton<br />

Stress Modes<br />

Generation <strong>of</strong> Local<br />

Stress Tensor History<br />

And Damage Evaluation<br />

Stress Amplitude<br />

Distribution<br />

Damage Distribution<br />

March 06<br />

- 18 -


Methodology <strong>of</strong> <strong>Durability</strong> Analysis:<br />

Step 1: Stress Recovery for Transient Loads<br />

(stress) mode shapes<br />

…<br />

β 1 (t)<br />

modal contribution<br />

factor histories<br />

[ c ij ] 1<br />

[ c ij ] m<br />

modal influence<br />

coefficients:<br />

β m (t)<br />

time, t<br />

e σ ij (t) = ∑ m [ c ij • β(t)<br />

] m<br />

March 06<br />

- 19 -


Methodology <strong>of</strong> <strong>Durability</strong> Analysis:<br />

Fatigue Life Prediction for Sheet Material<br />

Stress-Life Approach:<br />

e σ x<br />

e τ xy<br />

e σ ξ<br />

e τ ξη<br />

e σ y<br />

α<br />

FE-result<br />

result: Elastic Stresses<br />

• initiation <strong>and</strong> growth <strong>of</strong><br />

small cracks<br />

analyze potentially critical<br />

(crack) planes<br />

evaluate uni-axial pseudo-<br />

stress history in each plane<br />

simultaneous treatment <strong>of</strong><br />

all planes to find most<br />

severe damage<br />

maximum damage defines<br />

critical plane<br />

March 06<br />

- 20 -


Methodology <strong>of</strong> <strong>Durability</strong> Analysis:<br />

Fatigue Life Prediction for Sheet Material<br />

Critical Plane Approach:<br />

e<br />

σ x<br />

S<br />

e<br />

τ xy<br />

e<br />

σ ξ<br />

e<br />

τ ξη<br />

March 06<br />

e<br />

σ y<br />

N<br />

α<br />

e<br />

σ ξ<br />

e<br />

τ ξη<br />

e<br />

σ x<br />

e<br />

σ y<br />

e<br />

τ xy<br />

ξη<br />

α = 0 o<br />

- 21 -<br />

time<br />

damage accumulation<br />

10 o ... 160 o<br />

...<br />

...<br />

...<br />

time<br />

e<br />

σ ξ<br />

e<br />

τ ξη<br />

170 o<br />

time<br />

damage accumulation<br />

D(α=0 o ) D(α=170 o )<br />

D = max[ D(α) ]


Methodology <strong>of</strong> <strong>Durability</strong> Analysis:<br />

Fatigue Life Prediction for Seam Welds:<br />

RxMS Approach:<br />

• LMS Virtual.Lab combines a<br />

shell based FE model <strong>and</strong> a 3D<br />

fine model to simulate the<br />

stress tensor histories in the<br />

weld toe <strong>and</strong> root.<br />

• RxMS SN-curve<br />

log(S)<br />

Seam Weld SN curve<br />

log(N)<br />

F<br />

M<br />

Coarse<br />

Model<br />

Transition<br />

Matrix<br />

Fine<br />

Model<br />

σ<br />

s<br />

s<br />

F M<br />

All stress<br />

concentration<br />

factors<br />

K t<br />

R03MS<br />

R = 0.3 mm for weld toes <strong>and</strong> root<br />

March 06<br />

- 22 -


Methodology <strong>of</strong> <strong>Durability</strong> Analysis:<br />

Fatigue Life Prediction for Seam Weld:<br />

LMS Virtual.Lab Seam Weld Analysis:<br />

• Automates the well accepted<br />

RxMS approach.<br />

• No FE mesh adaptations<br />

required<br />

• Automatic detecting <strong>of</strong> seam<br />

welds – location <strong>and</strong> type<br />

• High Amount <strong>of</strong> accurate<br />

solid models for seam welds<br />

in open database<br />

Subframe Mercedes Benz<br />

March 06<br />

- 23 -


Methodology <strong>of</strong> <strong>Durability</strong> Analysis:<br />

Fatigue Life Prediction for Seam Weld:<br />

Seam Weld Modelling:<br />

Congruent mesh for two welded sheets<br />

shell elements<br />

March 06<br />

- 24 -


Methodology <strong>of</strong> <strong>Durability</strong> Analysis:<br />

Fatigue Life Prediction for Seam Weld<br />

Automated Seam Welds Recognition<br />

March 06<br />

- 25 -


Methodology <strong>of</strong> <strong>Durability</strong> Analysis:<br />

General Work Flow<br />

Wheel Forces<br />

Multi Body Simulation<br />

Craig Bampton<br />

Displacement<br />

Modes<br />

Craig Bampton<br />

Load Cases<br />

Finite Element<br />

Modal Analysis<br />

Modal Participation<br />

Factor Histories<br />

Craig Bampton<br />

Stress Modes<br />

Generation <strong>of</strong> Local<br />

Stress Tensor History<br />

And Damage Evaluation<br />

Stress Amplitude<br />

Distribution<br />

Damage Distribution<br />

March 06<br />

- 26 -


Fatigue Analysis for Road Load Data:<br />

Input Data: Stress Tensor Histories<br />

• Multi Body Simulation creates 22 Modal Contribution Factor<br />

Histories assigned to the 22 Craig Bampton Modes<br />

MPFH<br />

CB Modes<br />

e σ ij (t) = ∑ m [ c ij • β(t)<br />

] m<br />

March 06<br />

- 27 -


Fatigue Analysis for Road Load Data:<br />

Input Parameters: Seam Welds<br />

• The seam weld type is recognized automatically<br />

• For the seam weld type there is assigned the right micro<br />

model <strong>of</strong> the seam weld shape automatically<br />

SN-curve<br />

selected:<br />

R03MS Steel (R=-1)<br />

Slope: : 3.75<br />

Endurance Limit:<br />

• 331 MPa<br />

• 5*10 6 cycles<br />

March 06<br />

- 28 -


Fatigue Analysis for Road Load Data:<br />

Input Data: Casted Steel & Sheet Material<br />

• Materials Data<br />

Stress – Cycles to crack initiation curve<br />

• Critical Plane Approach (Mode 1)<br />

March 06<br />

- 29 -


Fatigue Analysis for Road Load Data:<br />

Stress Analysis for C-Links (Variant 1)<br />

• Max. Stress Amplitude far below endurance limit<br />

• Safety Factor to Endurance Limit is 4.6<br />

• Damage Value is zero all over the structure<br />

Casted Steel<br />

Mass : 100%<br />

<strong>Cost</strong> : 100%<br />

March 06<br />

- 30 -


Fatigue Analysis for Road Load Data:<br />

Stress Analysis for C-Links (Variant 2)<br />

• Max. Stress Amplitude far below endurance limit<br />

• Safety Factor to Endurance Limit is 4.3<br />

• Damage Value is zero all over the structure<br />

Welded Sheets<br />

Mass : 50%<br />

<strong>Cost</strong> : 75%<br />

March 06<br />

- 31 -


Fatigue Analysis for Road Load Data:<br />

Seam Weld Analysis for C-Links (Variant 2)<br />

• Hot Spot 1 is at overlap joint <strong>of</strong> additional sheet<br />

• Hot Spot 2 is at seam weld end <strong>of</strong> overlap joint<br />

• 2.000.000 repeats <strong>of</strong> the simulated block until crack initiation<br />

HS2:<br />

HS1:<br />

March 06<br />

- 32 -


Conclusion <strong>of</strong> Fatigue Life Analysis :<br />

• Results <strong>of</strong> Fatigue Life Analysis for C-Links<br />

(Trailing<br />

Arms):<br />

• Stress Amplitudes for both Variants are far below Endurance<br />

Limit, Safety Factors are near to each other<br />

• There were identified two Hotspots for the Seamwelds<br />

• The casted steel CLink can be substituted <strong>by</strong> the welded sheet<br />

construction<br />

• Further Tasks:<br />

• Compare Strain Gage Measurement results at Test Rig with<br />

Simulation Results<br />

• Compare Crack Initiation Locations (Hot Spots)<br />

Test Rig - Simulation : Location + Life Time<br />

March 06<br />

- 33 -

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!