09.01.2015 Views

Pseudo-spectral derivative of quadratic quasi-interpolant splines

Pseudo-spectral derivative of quadratic quasi-interpolant splines

Pseudo-spectral derivative of quadratic quasi-interpolant splines

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

356 S. Remogna<br />

To estimate‖E 1 ‖ ∞ we proceed as in [7] and [9].<br />

Firstly, we want to obtain a local bound for |E 1 (t)|, with t ∈ I p , 1≤ p≤k+ 1,<br />

and then we extend the results to the interval I.<br />

We define for any x∈J p and f ∈ C r (J p )<br />

R(x)= f(x)−<br />

r<br />

∑<br />

i=0<br />

f (i) (t)<br />

(x− t) i ,<br />

i!<br />

and to give a bound to|E 1 (t)| it is only necessary to estimate|Q ′ 2R(t)|, as shown in [9].<br />

Since t ∈ I p we have<br />

(10)<br />

∣ Q<br />

′<br />

2 R(t) ∣ ∣ ∣∣∣∣ p+3<br />

= ∑ R(t j )(Ñ 2 p+3<br />

j )′ (t)<br />

∣ ≤ ∑<br />

j=p−1<br />

j=p−1<br />

∣ R(t j ) ∣ ∣ ∣ ∣ (Ñ 2 j )′ (t) ∣ ∣ ,<br />

with Ñ0 2 = Ñ2 k+4 = 0 and R(t 0)=R(t k+4 )=0.<br />

In Lemma 1 and 2 we estimate ∣ R(t j ) ∣ ∣ ∣∣(Ñ and 2 j )′ (t) ∣ respectively.<br />

LEMMA 1. Let f ∈ C r (J p ), r=1,2. Then for i= p−1,..., p+3<br />

∣ R(t j ) ∣ (5/2) r+1<br />

≤ h r p<br />

r!<br />

ω( f(r) ,h p ,J p ).<br />

The pro<strong>of</strong> <strong>of</strong> Lemma 1 is similar to that given in Lemma 3.3 <strong>of</strong> [7] and then here<br />

we omit it.<br />

(11)<br />

and<br />

(12)<br />

(13)<br />

LEMMA 2. Suppose t ∈ I p . Then, for j = 3,...,k+1<br />

∣ (Ñ 2 1 )′ (t) ∣ ∣ ≤<br />

3<br />

δ p<br />

,<br />

∣ (Ñ 2 2 )′ (t) ∣ ∣ ≤<br />

5<br />

δ p<br />

,<br />

∣ (Ñ 2 j )′ (t) ∣ ∣ ≤<br />

6<br />

δ p<br />

,<br />

∣ (Ñ 2 k+3 )′ (t) ∣ ∣ ≤<br />

3<br />

δ p<br />

,<br />

∣ (Ñ 2 k+2 )′ (t) ∣ ∣ ≤<br />

5<br />

δ p<br />

.<br />

Pro<strong>of</strong>. From (5), for j = 3,...,k+1, we have<br />

∣ (Ñ 2 j) ′ (t) ∣ ∣ ≤|c j−1 ||N 2 j−1|+|b j ||N 2 j|+|a j+1 ||N 2 j+1|.<br />

Taking into account Lemma 2.1 <strong>of</strong> [9], we can bound the first <strong>derivative</strong> <strong>of</strong> the normalized<br />

B-<strong>splines</strong>{N 2 j }, obtaining<br />

(14)<br />

∣<br />

∣(Ñ 2 j )′ (t) ∣ ∣≤ 2 δ p<br />

(|c j−1 |+|b j |+|a j+1 |)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!