12.01.2015 Views

Indoor air pollution in a Mexican indigenous community: Evaluation ...

Indoor air pollution in a Mexican indigenous community: Evaluation ...

Indoor air pollution in a Mexican indigenous community: Evaluation ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

S C I E N C E O F T H E T O T A L E N V I R O N M E N T 3 9 0 ( 2 0 0 8 ) 3 6 2 – 3 6 8<br />

ava i l a b l e a t w w w. s c i e n c e d i r e c t . c o m<br />

w w w. e l s ev i e r. c o m / l o c a t e / s c i t o t e n v<br />

<strong>Indoor</strong> <strong>air</strong> <strong>pollution</strong> <strong>in</strong> a <strong>Mexican</strong> <strong>in</strong>digenous <strong>community</strong>:<br />

<strong>Evaluation</strong> of risk reduction program us<strong>in</strong>g biomarkers of<br />

exposure and effect<br />

Arturo Torres-Dosal, Iván N. Pérez-Maldonado⁎, Yolanda Jasso-P<strong>in</strong>eda,<br />

Rebeca I. Martínez Sal<strong>in</strong>as, Jorge A. Alegría-Torres, Fernando Díaz-Barriga<br />

Laboratorio de Toxicología Ambiental, Facultad de Medic<strong>in</strong>a, Avenida Venustiano Carranza 2405, 78210, San Luis Potosí, S.L.P., Mexico<br />

A R T I C L E I N F O<br />

Article history:<br />

Received 8 September 2006<br />

Received <strong>in</strong> revised form<br />

15 October 2007<br />

Accepted 16 October 2007<br />

Available onl<strong>in</strong>e 26 November 2007<br />

Keywords:<br />

Wood smoke<br />

Comet assay<br />

Carboxyhemoglob<strong>in</strong><br />

<strong>Indoor</strong> <strong>pollution</strong><br />

1-OHP<br />

A B S T R A C T<br />

<strong>Indoor</strong> <strong>air</strong> <strong>pollution</strong> can be an important risk factor for human health, consider<strong>in</strong>g that people<br />

spend more than 60% of their time <strong>in</strong>doors. Fifty percent of the world population and<br />

approximately 90% of the rural population <strong>in</strong> develop<strong>in</strong>g countries are us<strong>in</strong>g biomass as energy<br />

source. Lat<strong>in</strong> America represents 12% of the global consumption of biomass; <strong>in</strong> Mexico, 27<br />

million people use wood as an energy source. Therefore, <strong>in</strong> this study we evaluated a 3-stage<br />

risk reduction program. The stages were: 1) removal of <strong>in</strong>door soot adhered to roofs and<br />

<strong>in</strong>ternal walls; 2) pav<strong>in</strong>g the dirt floors; and 3) <strong>in</strong>troduction of a new wood stove with a metal<br />

chimney that expels smoke outdoors. The complete <strong>in</strong>tervention program was applied. In 20<br />

healthy subject residents from an <strong>in</strong>digenous <strong>community</strong> <strong>in</strong> San Luis Potosí, Mexico, we<br />

measured blood carboxyhemoglob<strong>in</strong> (% COHb), DNA damage (comet assay) <strong>in</strong> nucleated blood<br />

cells, and ur<strong>in</strong>ary 1-OHP levels before and after the program. Before <strong>in</strong>tervention <strong>in</strong>dividuals<br />

had a geometric mean COHb level of 4.93% and 53% of the population presented levels above<br />

2.5% considered a safe level. However, <strong>in</strong> all the studied <strong>in</strong>dividuals the levels of COHb were<br />

reduced to below 2.5% (mean level 1.0%) one month after the <strong>in</strong>tervention. Moreover, when<br />

compared, DNA damage <strong>in</strong> people exposed before the <strong>in</strong>tervention was higher (5.8±1.3 of Tail<br />

Moment) than when the program was <strong>in</strong>troduced (2.8±0.9 of Tail Moment) (PN0.05) and a same<br />

trend was observed with ur<strong>in</strong>ary 1-OHP levels; 6.71±3.58 μmol/mol creat<strong>in</strong><strong>in</strong>e was the<br />

concentration before <strong>in</strong>tervention; whereas, 4.80±3.29 μmol/mol creat<strong>in</strong><strong>in</strong>e was the one after<br />

the program. The results suggest that the <strong>in</strong>tervention program offers an acceptable risk<br />

reduction to those families that use biomass for food cook<strong>in</strong>g.<br />

© 2007 Elsevier B.V. All rights reserved.<br />

1. Introduction<br />

<strong>Indoor</strong> <strong>air</strong> <strong>pollution</strong> can be an important risk factor for human<br />

health, consider<strong>in</strong>g that people spend more than 60% of their<br />

time <strong>in</strong> their houses. Fifty percent of the world population and<br />

approximately 90% of the rural population <strong>in</strong> develop<strong>in</strong>g<br />

countries use biomass as energy source (WHO, 2000a). Some<br />

studies consider that Lat<strong>in</strong> America represents 12% of the global<br />

consumption of biomass (FAO, 1999). In Mexico, 27 million<br />

people use wood with an estimated daily consumption of 2.1 kg/<br />

<strong>in</strong>dividual (Masera et al., 2005).<br />

Biomass fuels used for domestic cook<strong>in</strong>g <strong>in</strong>clude: wood, crop<br />

residues, agricultural wastes, and animal dung, with wood be<strong>in</strong>g<br />

the most commonly used (WHO, 2000a). Biomass combustion<br />

emits a complex mixture of organic compounds and gases,<br />

which <strong>in</strong>clude carbon monoxide (CO), nitrogen and sulphur<br />

oxides (NO x and SO x ), aldehydes, polycyclic aromatic hydrocarbons<br />

(PAHs), volatile organic compounds (VOCs), chlor<strong>in</strong>ated<br />

⁎ Correspond<strong>in</strong>g author. Tel./fax: +52 48 262 354.<br />

E-mail address: ivannel<strong>in</strong>ho@hotmail.com (I.N. Pérez-Maldonado).<br />

0048-9697/$ – see front matter © 2007 Elsevier B.V. All rights reserved.<br />

doi:10.1016/j.scitotenv.2007.10.039


S C I E N C E O F T H E T O T A L E N V I R O N M E N T 3 9 0 ( 2 0 0 8 ) 3 6 2 – 3 6 8<br />

363<br />

Fig. 1 – Location of Tancuime <strong>in</strong> San Luis Potosi, Mexico.<br />

diox<strong>in</strong>s, breathable particulate matter (PM) with diameters b10<br />

microns (PM10), and free radicals (Albalak, 2001; Mishra, 2003).<br />

Moreover, wood users rely on simple and rustic stoves such as<br />

open “three-stone” fires and mud, clay, or metal stoves that<br />

result <strong>in</strong> <strong>in</strong>complete and <strong>in</strong>efficient combustion (Reddy et al.,<br />

1997; WHO, 1997).<br />

Health problems associated with <strong>in</strong>door <strong>air</strong> <strong>pollution</strong><br />

<strong>in</strong>clude acute lower respiratory <strong>in</strong>fection among children,<br />

chronic respiratory pulmonary disease (COPD) (WHO, 2002),<br />

asthma (Mishra, 2003; Wallace et al., 2003) low birth weight<br />

(Boy et al., 2002), and an <strong>in</strong>creased risk of tuberculosis (Mishra<br />

et al., 1999). Other reports have described that wood smoke is a<br />

risk factor for several types of cancer, <strong>in</strong>clud<strong>in</strong>g: nasopharyngeal<br />

carc<strong>in</strong>oma, laryngeal, oral (Clifford, 1972; Franco et al.,<br />

1989; P<strong>in</strong>tos et al., 1998) and lung (WHO, 2000b).<br />

S<strong>in</strong>ce carbon monoxide (CO) is probably the most important<br />

s<strong>in</strong>gle contam<strong>in</strong>ant emitted dur<strong>in</strong>g combustion of wood (Viau<br />

et al., 2000), determ<strong>in</strong>ation of its concentration is also important.<br />

In <strong>in</strong>dustrialized countries, concentration limits have<br />

been set at 10 mg/m 3 for outdoor ambient <strong>air</strong>, while occupational<br />

exposure limits lie around 29–55 mg/m 3 (Viau et al.,<br />

2000). Monitor<strong>in</strong>g of <strong>pollution</strong> and personal exposures <strong>in</strong><br />

biomass-burn<strong>in</strong>g households has shown concentration many<br />

times higher than those <strong>in</strong>dustrialized countries (Smith, 1987;<br />

Ezzati et al., 2000; Smith et al., 2000; Smith, 1993; Kammen,<br />

1995; Smith, 1988; Terblanche et al., 1994). For example, CO was<br />

monitored <strong>in</strong> traditional houses <strong>in</strong> Burundi, India, that use<br />

wood combustion as a major energy source, the study revealed<br />

mean concentration of CO reach<strong>in</strong>g 115 mg/m 3 , a value greatly<br />

above the limit <strong>in</strong> <strong>in</strong>dustrialized countries.<br />

A marker use to <strong>in</strong>directly assess CO exposure is carboxyhemoglob<strong>in</strong><br />

(COHb) that reflects b<strong>in</strong>d<strong>in</strong>g of CO to the hem<br />

portion of hemoglob<strong>in</strong>. A concentration of COHb b2.5% is currently<br />

considered safe (Kle<strong>in</strong>man, 2000). The lowest level of<br />

COHb, at which adverse effects are observed, ranges from 2.9 to<br />

3% (Estrella et al., 2005). Moreover, COHb concentrations N5%<br />

are associated with effects, such as neurobehavioral function,<br />

imp<strong>air</strong>ed visual function, task performance, and ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g<br />

alertness (WHO, 1999; EPA, 2000; Raub and Benignus, 2002).<br />

Polycyclic aromatic hydrocarbons (PAHs) are a group of<br />

three- and four-r<strong>in</strong>g compounds that are formed as a result of<br />

<strong>in</strong>complete combustion. Thus, the exposure to PAHs has also<br />

been used <strong>in</strong> <strong>in</strong>door <strong>air</strong> <strong>pollution</strong> studies (Naumova et al., 2002;<br />

Ohura et al., 2005). Because PAH exposure occurs as a mixture of<br />

compounds, and because pyrene is almost always found <strong>in</strong> this<br />

mixture, pyrene and its metabolite 1-hydroxypyrene (1-OHP) are<br />

considered appropriate surrogate markers of total PAH exposure<br />

(Jacob and Seidel, 2002).<br />

Wood combustion products such as sulfur dioxide, nitrogen<br />

dioxide, total suspended particulate (TSP), PM2.5, PM10, CO,<br />

VOCs, diox<strong>in</strong>s and total hydrocarbons have also been shown to<br />

be mutagenic (Tokiwa et al., 1985; Gao et al., 1994; Y<strong>in</strong> et al., 1998)<br />

and genotoxic <strong>in</strong> “<strong>in</strong> vitro” studies (Brits et al., 2004), <strong>in</strong> exposed<br />

animals (Y<strong>in</strong> et al., 1994) and <strong>in</strong> human populations (Y<strong>in</strong> et al.,<br />

1998; Maffei et al., 2005; Ozturk et al., 2002; Pandey et al., 2005).<br />

On the other hand, diverse <strong>in</strong> vitro, animal and human studies<br />

<strong>in</strong>dicate that exposure to PAH (emitted dur<strong>in</strong>g combustion)<br />

causes genotoxicity (Cebulska-Wasilewska et al., 2005; Xue and<br />

Warshawsky, 2005; Zhao et al., 2004; Lemiere et al., 2004).<br />

Tak<strong>in</strong>g all this <strong>in</strong>formation <strong>in</strong>to account, it is evident that<br />

wood smoke is a serious problem and that <strong>in</strong>tervention<br />

programs are needed to reduce <strong>in</strong>door exposure <strong>in</strong> people that<br />

use biomass as energy source. Therefore, the aim of this study<br />

was to evaluate a risk reduction program us<strong>in</strong>g biomarkers of<br />

exposure (COHb and 1-OHP) and a biomarker of effect (DNA<br />

damage).


364 S C I E N C E O F T H E T O T A L E N V I R O N M E N T 3 9 0 ( 2 0 0 8 ) 3 6 2 – 3 6 8<br />

2. Methods<br />

2.1. Population<br />

We studied 20 healthy subjects (ten houses; 10 children aged<br />

5–17 years and 10 adults aged 20–35 years) residents from the<br />

<strong>in</strong>digenous <strong>community</strong> of Tancuime, Aquismón <strong>in</strong> San Luis<br />

Potosi (Fig. 1). This <strong>community</strong> has 300 families liv<strong>in</strong>g <strong>in</strong><br />

similar conditions. The studied <strong>in</strong>dividuals had a similar<br />

ethnic and socioeconomic background and had lived <strong>in</strong> their<br />

<strong>community</strong> s<strong>in</strong>ce they were born. After <strong>in</strong>formed consent was<br />

obta<strong>in</strong>ed, a questionn<strong>air</strong>e was applied and blood and ur<strong>in</strong>e<br />

samples were taken. Samples of peripheral blood were<br />

collected <strong>in</strong>to hepar<strong>in</strong>ized bottles. The questionn<strong>air</strong>e registered<br />

characteristics such as age, weight, height, smoke<br />

tobacco exposure, pr<strong>in</strong>cipally. Also with this <strong>in</strong>strument, we<br />

registered household and sociodemographic characteristics,<br />

occupation of family members, and food habits. All the<br />

families <strong>in</strong> the study had a low <strong>in</strong>come; they were us<strong>in</strong>g<br />

wood as the only fuel source for food cook<strong>in</strong>g, they live <strong>in</strong><br />

traditional dwell<strong>in</strong>gs (wood-made walls and roof), and usually<br />

spend 60% of their time <strong>in</strong>doors, the average number of<br />

members <strong>in</strong> each family was 5. Anthropometrics assessment<br />

was used for evaluation of the nutritional status.<br />

2.2. Intervention program<br />

An <strong>in</strong>itial census survey of the study area was used to identify<br />

homes with open fires stoves, <strong>in</strong>door soot adhered to roofs and<br />

<strong>in</strong>ternal walls and dirt floors. Thus, for the <strong>in</strong>tervention we<br />

offered 1) removal of <strong>in</strong>door soot adhered to roofs and <strong>in</strong>ternal<br />

walls, 2) pav<strong>in</strong>g dirt floors, and 3) an improved stove (the Patzari<br />

stove), which is constructed us<strong>in</strong>g sand, clay and cement; it also<br />

has a metal chimney that expels the smoke outdoors (Masera<br />

et al., 2007). The complete 3-stage risk reduction program was<br />

applied <strong>in</strong> all houses studied. We applied a questionn<strong>air</strong>e to<br />

confirm that the improved stove was well accepted by people <strong>in</strong><br />

the <strong>community</strong>. The program was <strong>in</strong>troduced <strong>in</strong> ten <strong>in</strong>digenous<br />

houses dur<strong>in</strong>g August 2005; we assessed exposure to carbon<br />

monoxide, PAHs (1-OHP) and DNA damage previously and one<br />

month after the <strong>in</strong>tervention program.<br />

Table 2 – Levels of ur<strong>in</strong>ary 1-OHP before and after risk<br />

reduction program<br />

Stage N Mean±SD (μmol/mol Cr) a Range (μmol/mol Cr)<br />

Before 20 6.72 ±3.58⁎ 1.1–17.8<br />

After 20 4.80±3.29 0.35–18.20<br />

Ur<strong>in</strong>ary 1-OHP was measured as stated <strong>in</strong> Methods.<br />

a Values are geometric data.<br />

⁎pb0.05 when compared after <strong>in</strong>tervention.<br />

and West, (1984). Briefly, 25 μl of whole blood were added to<br />

3 ml of an hemolyz<strong>in</strong>g solution (KH 2 PO 4 /K 2 HPO 4 , 0.01 mol/L,<br />

pH 6.85) <strong>in</strong> a small test tube and mixed. After 5 m<strong>in</strong>, 0.1 ml of<br />

this mixture was <strong>in</strong>troduced <strong>in</strong>to a test tube, which already<br />

conta<strong>in</strong>ed 1.15 ml of a dilut<strong>in</strong>g solution (25 mg of sodium<br />

hydrosulfite <strong>in</strong> 20 ml of buffer just before use). After 10 m<strong>in</strong> the<br />

absorbance was read at 420 and 432 nm aga<strong>in</strong>st a matched test<br />

tube conta<strong>in</strong><strong>in</strong>g only COHb dilut<strong>in</strong>g solution.<br />

2.4. Determ<strong>in</strong>ation of ur<strong>in</strong>ary 1-OHP<br />

We quantified 1-OHP follow<strong>in</strong>g the method described by<br />

Jongeneelen et al. (1987) and Kuusimaki et al. (2004). Under our<br />

conditions, the method detection limits were 0.24 μg/L. Intralaboratory<br />

reproducibility was 16%. The repeatability precision<br />

was 6.0% and recoveries averaged 99%. The ur<strong>in</strong>ary 1-OHP concentrations<br />

were adjusted by ur<strong>in</strong>ary creat<strong>in</strong><strong>in</strong>e. Ur<strong>in</strong>ary creat<strong>in</strong><strong>in</strong>e<br />

was determ<strong>in</strong>ed by the Jaffe colorimetric method, (1982).<br />

2.5. DNA damage<br />

In this work DNA damage was evaluated us<strong>in</strong>g the comet<br />

assay. S<strong>in</strong>gle cell gel electrophoresis was performed as<br />

previously described (Yañez et al., 2003)<br />

2.6. Statistics<br />

To satisfy normality criteria the levels of COHb, ur<strong>in</strong>ary 1-OHP<br />

and Tail Moment were logarithm-transformed. Therefore, all<br />

2.3. Carboxyhemoglob<strong>in</strong> determ<strong>in</strong>ation<br />

COHb was measured by a spectrometry assay and expressed<br />

as a percentage of plasma hemoglob<strong>in</strong> as described by Beutler<br />

Table 1 – Levels of carboxyhemoglob<strong>in</strong> before and after<br />

the risk reduction program<br />

Mean S.D. %b2.5 b %N2.5 c Range<br />

(% COHb) a (% COHb) a (% COHb)<br />

Before 4.9⁎ 4.3 45 55 1.05–13.88<br />

After 1.0 0.14 100 0.0 0.65–1.30<br />

The % of carboxyhemoglob<strong>in</strong> was measured as stated <strong>in</strong> Methods.<br />

a Values are geometric data.<br />

b Percentage of people with levels of carboxyhemoglob<strong>in</strong> below 2.5%.<br />

c Percentage of people with levels of carboxyhemoglob<strong>in</strong> above 2.5%.<br />

⁎pb0.05 when compared after <strong>in</strong>tervention.<br />

Fig. 2 – DNA damage <strong>in</strong> people before and after the risk<br />

reduction program. DNA damage was measured us<strong>in</strong>g the<br />

comet assay (Tail Moment), as stated <strong>in</strong> Methods. Values<br />

are geometric data. ( * ) p b0.05 when compared to before<br />

<strong>in</strong>tervention. (A) Tail Moment before <strong>in</strong>tervention. (B) Tail<br />

Moment after <strong>in</strong>tervention.


S C I E N C E O F T H E T O T A L E N V I R O N M E N T 3 9 0 ( 2 0 0 8 ) 3 6 2 – 3 6 8<br />

365<br />

differences were observed <strong>in</strong> COHb levels when the studied<br />

population was divided by gender or age groups.<br />

Ur<strong>in</strong>ary 1-OHP was used to assess the exposure to PAHs<br />

(Table 2). Results show that the geometric mean level of 1-OHP<br />

before <strong>in</strong>tervention was significantly higher <strong>in</strong> studied people<br />

(6.71±3.58 μmol/mol Cr) than after the program (4.80±3.29 μmol/<br />

mol Cr).<br />

The amount of DNA damage <strong>in</strong> the studied people is depicted<br />

<strong>in</strong> Fig. 2. When compared, DNA damage <strong>in</strong> people<br />

exposed before the <strong>in</strong>tervention was higher (5.8±1.3 of Tail<br />

Moment) than when the program was <strong>in</strong>troduced (2.8±0.9 of<br />

Tail Moment) (Pb0.05). When the studied population was<br />

divided by gender or age groups, we did not observe differences<br />

<strong>in</strong> Tail Moment.<br />

Moreover, significant positive correlation was obta<strong>in</strong>ed<br />

between ur<strong>in</strong>ary 1-OHP and DNA damage <strong>in</strong> blood cells<br />

(Fig. 3a). This correlation was lost when the <strong>in</strong>tervention program<br />

was implemented (Fig. 3b).<br />

4. Discussion<br />

Fig. 3 – Relation between 1-OHP ur<strong>in</strong>ary and DNA damage.<br />

(a) Correlation before <strong>in</strong>tervention program. (b) Correlation<br />

after <strong>in</strong>tervention program.<br />

results are presented as geometric means. For COHb analyses<br />

subjects were divided accord<strong>in</strong>g to COHb levels, us<strong>in</strong>g as a<br />

cutoff po<strong>in</strong>t the concentration of COHb level considered to be<br />

safe (2.5%) (Kle<strong>in</strong>man, 2000). Mean COHb levels, ur<strong>in</strong>ary 1-OHP<br />

and Tail Moment before and after <strong>in</strong>tervention were compared<br />

us<strong>in</strong>g p<strong>air</strong>ed-t test. For all statistical analyses we used Jmp<strong>in</strong><br />

Start Statistics Software 5.0 (SAS Institute).<br />

3. Results<br />

Among the studied volunteers, 65% were females, and 100% of<br />

the participants were not smokers, cot<strong>in</strong><strong>in</strong>e negative (data not<br />

shown). All families were us<strong>in</strong>g wood as the only combustible<br />

available for food cook<strong>in</strong>g.<br />

Table 1 shows the geometric mean COHb level <strong>in</strong> all<br />

subjects studied before and after <strong>in</strong>tervention. Before <strong>in</strong>tervention<br />

all <strong>in</strong>dividuals had a geometric mean COHb level of<br />

4.93% and 55% of those people presented COHb levels above<br />

2.5% considered a safe level. Moreover, this 55% of people had<br />

geometric mean COHb levels of 8.39%. However, <strong>in</strong> all the<br />

studied <strong>in</strong>dividuals the levels of COHb were reduced to below<br />

2.5% (mean level 1.0%) one month after <strong>in</strong>tervention. No<br />

<strong>Indoor</strong> <strong>air</strong> <strong>pollution</strong> has been considered a serious public health<br />

issue <strong>in</strong> Mexico (SSA, 2002). In this regard, Riojas-Rodriguez et al.<br />

(2001), and Zuk et al., (2007), studied the impact of improved<br />

wood burn<strong>in</strong>g stoves on <strong>in</strong>door <strong>air</strong> <strong>pollution</strong> <strong>in</strong> rural communities<br />

<strong>in</strong> Chiapas and Michoacán, Mexico; <strong>in</strong> both studies the use<br />

of stoves reduced the mean levels of PM10 and PM2.5. Moreover,<br />

Riojas-Rodriguez et al. (2001), observed improvements <strong>in</strong> respiratory<br />

symptoms.<br />

We designed a risk reduction program for rural communities<br />

similar to Riojas-Rodriguez et al. (2001) and Zuk et al.<br />

(2007). This program <strong>in</strong>cluded three components: 1) removal of<br />

<strong>in</strong>door soot adhered to roofs and <strong>in</strong>ternal walls; 2) pav<strong>in</strong>g dirt<br />

floors; and 3) <strong>in</strong>troduction of a new wood stove with a metal<br />

chimney that expels smoke outdoors. In this work we are<br />

present<strong>in</strong>g the results of the health impact of such a program,<br />

as we studied biomarkers of exposure (percentage of COHb,<br />

and ur<strong>in</strong>ary 1-OHP) and a biomarker of effect (DNA damage <strong>in</strong><br />

blood cells), before and after the program.<br />

It has been shown that the ma<strong>in</strong> <strong>in</strong>door sources of environmental<br />

CO are smok<strong>in</strong>g and domestic fuel combustion<br />

(Coll<strong>in</strong>gs et al., 1990; Kle<strong>in</strong>man, 2000; Puente-Maestu et al.,<br />

1998). Even a relatively low CO exposure may <strong>in</strong>crease COHb<br />

levels <strong>in</strong> human peripheral blood (Raub and Benignus, 2002).<br />

Higher levels of COHb have been observed <strong>in</strong> smokers compared<br />

with no smokers. In addition, children liv<strong>in</strong>g <strong>in</strong><br />

houses with smokers, wood, coal or gas heat<strong>in</strong>g system<br />

exhibit an <strong>in</strong>crement <strong>in</strong> COHb levels (Vazquez et al., 1997).<br />

The observed COHb levels <strong>in</strong> our study before <strong>in</strong>tervention<br />

were very high, almost half of the <strong>in</strong>dividuals (55%) had a<br />

COHb level consistent with levels associated with effects<br />

(N2.5% of COHb; Raub and Benignus, 2002; WHO, 1999; EPA,<br />

2000). Moreover, <strong>in</strong> comparison with others scenarios, the<br />

mean COHb levels reported <strong>in</strong> our study (4.9%) are high. For<br />

example, a gradient of COHb levels was observed <strong>in</strong> children<br />

with different type of heat<strong>in</strong>g system; COHb concentration<br />

were 0.88 ± 1.34% for wood and coal heat<strong>in</strong>g, 0.58 ± 0.97%<br />

for gas heat<strong>in</strong>g, and 0.28 ± 0.4% for electric system (Vazquez<br />

et al., 1997).


366 S C I E N C E O F T H E T O T A L E N V I R O N M E N T 3 9 0 ( 2 0 0 8 ) 3 6 2 – 3 6 8<br />

In the present study, the geometric mean ur<strong>in</strong>ary 1-OHP<br />

concentration was 6.72 μmol/mol creat<strong>in</strong><strong>in</strong>e (range: 1.1–17.8)<br />

before <strong>in</strong>tervention and it decreased to 4.80 μmol/mol<br />

creat<strong>in</strong><strong>in</strong>e (range: 0.35–18.20) after the program. Both values<br />

are higher than the mean ur<strong>in</strong>ary 1-OHP concentrations from<br />

people throughout the world (range: 0.03–0.76 μmol/mol<br />

creat<strong>in</strong><strong>in</strong>e) (Lev<strong>in</strong>e, 1995; Zhao et al., 1992). These values are<br />

also higher than levels observed <strong>in</strong> people liv<strong>in</strong>g <strong>in</strong> traditional<br />

houses from rural districts <strong>in</strong> Burundi (1.50 μmol/mol creat<strong>in</strong><strong>in</strong>e,<br />

range: 0.26–15.62), that use wood as the pr<strong>in</strong>cipal fuel<br />

(Viau et al., 2000). We don't know the type of wood burned <strong>in</strong><br />

Burundi, but it is possible that the difference <strong>in</strong> exposure<br />

between Mexico (our study) and Burundi is the type of wood<br />

used. It has been shown that different emission rates of PAHs<br />

and other compounds are dependent on fuel and burn<strong>in</strong>g<br />

conditions (Jenk<strong>in</strong>s et al., 1996; Zhang and Smith, 1999;<br />

Mcdonald et al., 2000).<br />

Our data suggest that DNA damage <strong>in</strong> lymphocytes is at<br />

least partially related to exposure to wood smoke, as a relationship<br />

was found between DNA damage <strong>in</strong> lymphocytes and<br />

levels of 1-OHP <strong>in</strong> ur<strong>in</strong>e of people studied before the program<br />

(Fig. 3). Furthermore, DNA damage decreased after the program<br />

was implemented (Fig. 2.). In addition, evidence of<br />

genotoxic effects <strong>in</strong> human exposed to biomass fuel smoke<br />

has been shown (Pandey et al., 2005; Musthapa et al., 2004).<br />

DNA damage assessed with the comet assay <strong>in</strong> lymphocytes<br />

was reported <strong>in</strong> rural Indian women exposed to biomass fuel<br />

smoke (Pandey et al., 2005). In that study, Olive Tail Moment<br />

was 3.83±0.15 (Pandey et al., 2005). In another study, an<br />

<strong>in</strong>crease frequency of micronucleus and chromosomal aberrations<br />

were found <strong>in</strong> exposed women (Musthapa et al., 2004).<br />

Moreover, relationships between 1-OHP ur<strong>in</strong>ary and early<br />

genotoxic effects: siter chromatid exchanges (SCE), micronuclei<br />

(MC), and DNA damage (assessed with comet assay) has<br />

been shown (Buchet et al., 1995; Vanhummelen et al., 1993;<br />

Siw<strong>in</strong>ska et al., 2004).<br />

Usually, risk reduction programs for <strong>in</strong>door <strong>air</strong> <strong>pollution</strong><br />

caused by biomass combustion only <strong>in</strong>clude the <strong>in</strong>stallation of<br />

a stove with a chimney (Chapman et al., 2005; Smith-Sivertsen<br />

et al., 2004; Khushk et al., 2005; Naeher et al., 2000). Those<br />

programs were evaluated either through a decrease of <strong>in</strong>door<br />

<strong>air</strong> <strong>pollution</strong> (Riojas-Rodriguez et al., 2001; Naeher et al., 2000;<br />

Khushk et al., 2005; Zuk et al., 2007) and/or by a reduction <strong>in</strong> the<br />

<strong>in</strong>cidence of diseases related with this k<strong>in</strong>d of contam<strong>in</strong>ation<br />

(Riojas-Rodriguez, et al., 2001; Chapman et al., 2005; Boy et al.,<br />

2000; Smith-Sivertsen et al., 2004). We believe that our study<br />

represents an improvement <strong>in</strong> this area, as we <strong>in</strong>stalled a stove<br />

with a metal chimney that expels smoke outdoors, but also<br />

<strong>in</strong>door soot adher<strong>in</strong>g to roofs and <strong>in</strong>ternal walls was removed,<br />

and dirt floors were paved (it has been shown that biomass<br />

burn<strong>in</strong>g might be the major orig<strong>in</strong> of PAHs <strong>in</strong> rural soil; Zhang<br />

et al., 2006). It is important to mention that soot is a s<strong>in</strong>k of<br />

several chemicals generated dur<strong>in</strong>g combustion (Jonker and<br />

Koelmans, 2002a, 2002b) and moreover, an extremely slow<br />

desorption of PAHs from soot has been demonstrated (Jonker<br />

et al., 2005). Therefore, although we do not have <strong>in</strong>formation<br />

regard<strong>in</strong>g the importance of each stage <strong>in</strong> risk reduction, the<br />

elim<strong>in</strong>ation of soot sources (<strong>in</strong> roofs, walls and dirt floor) is a<br />

relevant action consider<strong>in</strong>g that this material is a s<strong>in</strong>k of<br />

hydrophobic compounds such as PAHs and Diox<strong>in</strong>s. Children<br />

and adults can be exposed to this material, by <strong>in</strong>halation<br />

(<strong>in</strong>door <strong>air</strong> particles), <strong>in</strong>gestion (dust particles) or direct dermal<br />

exposure.<br />

This work was a pilot study and although with the limitation<br />

<strong>in</strong> sample size, the improvement <strong>in</strong> exposure (1-0HP, and COHb)<br />

and effect (comet assay) was so homogeneous that the State<br />

Government of San Luis Potosi, us<strong>in</strong>g the precautionary pr<strong>in</strong>ciple<br />

has expanded the program to different communities. We<br />

are follow<strong>in</strong>g our studies <strong>in</strong> these sites.<br />

Acknowledgments<br />

This work was supported by grants from the Consejo Nacional<br />

de Ciencia y Tecnología, Mexico, FOMIX SLP (FMSLP-2005-CO1-<br />

26), Instituto Potos<strong>in</strong>o de la Juventud and Club Rotario San Luis<br />

Potosí, UNION 2000.<br />

“The work described <strong>in</strong> the manuscript was conducted <strong>in</strong><br />

accordance with national and <strong>in</strong>stitutional guidel<strong>in</strong>es for the<br />

protection of human subjects.”<br />

R E F E R E N C E S<br />

Albalak R. <strong>Indoor</strong> respirable particulate matter concentrations<br />

from an open fire, improved cookstove, and LPG/open fire<br />

comb<strong>in</strong>ation <strong>in</strong> a rural Guatemalan <strong>community</strong>. Environ Sci<br />

Technol 2001;35:2650–5.<br />

Beutler E, West C. Simplified determ<strong>in</strong>ation of carboxyhemoglob<strong>in</strong>.<br />

Cl<strong>in</strong> Chem 1984;30:871–4.<br />

Boy E, Bruce N, Delgado H. Birth weight and exposure to kitchen<br />

wood smoke dur<strong>in</strong>g pregnancy <strong>in</strong> rural Guatemala. Environ<br />

Health Perspect 2002;110:109–14.<br />

Boy E, Bruce N, Smith KR, Delgado H. Fuel efficiency of an<br />

improved wood-burn<strong>in</strong>g stove <strong>in</strong> rural Guatemala: implication<br />

for health, environment and development. Energy Susta<strong>in</strong> Dev<br />

2000;2:21–9.<br />

Brits E, Schoeters G, Verschaeve L. Genotoxicity of PM10 and<br />

extracted organics collected <strong>in</strong> an <strong>in</strong>dustrial, urban and rural<br />

area <strong>in</strong> Flanders, Belgium. Environ Res 2004;96:109–18.<br />

Buchet JP, Ferreira M, Burrion JB, Leroy T, Kirsch-Volders M, Van<br />

Hummelen P, et al. Tumour markers <strong>in</strong> serum, polyam<strong>in</strong>es and<br />

modified nucleosides <strong>in</strong> ur<strong>in</strong>e, and cytogenetic aberration <strong>in</strong><br />

lymphocytes of workers exposed to polycyclic aromatic<br />

hydrocarbons. Am J Ind Med 1995;27:523–43.<br />

Cebulska-Wasilewska A, Wiechec A, Panek A, B<strong>in</strong>kova B, Sram RJ,<br />

Farmer PB. Influence of environmental exposure to<br />

PAHs on the susceptibility of lymphocytes to DNA-damage<br />

<strong>in</strong>duction and on their rep<strong>air</strong> capacity. Mutat Res<br />

2005;588:73–81.<br />

Chapman RS, He X, Bl<strong>air</strong> AE, Lan Q. Improvement <strong>in</strong> household<br />

stoves and risk of chronic obstructive pulmonary disease <strong>in</strong><br />

Xuanwei, Ch<strong>in</strong>a: retrospective cohort study. BMJ<br />

2005;331:1050–6.<br />

Clifford P. Carc<strong>in</strong>ogens <strong>in</strong> the nose and throat: nasopharyngeal<br />

carc<strong>in</strong>oma <strong>in</strong> Kenya. Proc R Soc Med 1972;65:682–6.<br />

Coll<strong>in</strong>gs DA, Sithole SD, Mart<strong>in</strong> KS. <strong>Indoor</strong> woodsmoke <strong>pollution</strong><br />

caus<strong>in</strong>g lower respiratory diseases <strong>in</strong> children. Trop Doct<br />

1990;20:151–5.<br />

Estrella B, Estrella R, Oviedo J, Narváez X, Reyes MT, Gutiérrez M,<br />

et al. Acute respiratory diseases and carboxyhemoglob<strong>in</strong><br />

status <strong>in</strong> school children of Quito, Ecuador. Environ Health<br />

Perspect 2005;113:607–11.<br />

EPA, U. S. Environmental Protection Agency. Air quality criteria for<br />

carbon monoxide. EPA 600/P-99/001F. Wash<strong>in</strong>gton, D.C. Office


S C I E N C E O F T H E T O T A L E N V I R O N M E N T 3 9 0 ( 2 0 0 8 ) 3 6 2 – 3 6 8<br />

367<br />

of Research and Development, U. S. Environmental Protection<br />

Agency; 2000<br />

Ezzati M, Mb<strong>in</strong>da BM, Kammen DM. Comparison of emission<br />

and residential exposure from traditional and improved<br />

biofuel stoves <strong>in</strong> rural Kenya. Environ Sci Technol<br />

2000;34:578–83.<br />

FAO. The Challenge of rural energy poverty <strong>in</strong> develop<strong>in</strong>g<br />

countries. World Energy Council and Food and Agriculture<br />

Organization of the United Nations; 1999.<br />

Franco EL, Kowalski LP, Oliveira BV, Curado MP, Pereira RN, Silva<br />

ME, et al. Risk factors for oral cancer <strong>in</strong> Brazil: a case control<br />

study. Int J Cancer 1989;43:992–1000.<br />

Gao ZX, Tang MD, Yi YZ. Prelim<strong>in</strong>ary study on health effects <strong>in</strong> the<br />

residents exposed to the liquefied petroleum gas. Zhonghua<br />

Yufang Yixue Zazhi 1994;28:154–7.<br />

Jacob J, Seidel A. Biomonitor<strong>in</strong>g of polycyclic aromatic hydrocarbons<br />

<strong>in</strong> human ur<strong>in</strong>e. J Chromatogr B Analyt Technol Biomed Life Sci<br />

2002;778:31–47.<br />

Jaffe rate colorimetric method, 1982. Jaffe rate colorimetric<br />

method for measurement of creat<strong>in</strong><strong>in</strong>e <strong>in</strong> plasma and ur<strong>in</strong>e.<br />

Astra creat<strong>in</strong><strong>in</strong>e chemistry module operat<strong>in</strong>g and service<br />

<strong>in</strong>structions X015-555592A. Brea, Calif. Beckman Instruments,<br />

Inc.; 1982<br />

Jenk<strong>in</strong>s BM, Jones AD, Turn SQ, Williams RB. Emission factors for<br />

polycyclic aromatic hydrocarbons from biomass burn<strong>in</strong>g.<br />

Environ Sci Technol 1996;30:2462–9.<br />

Jongeneelen FJ, Anzion RB, Henderson PT. Determ<strong>in</strong>ation of<br />

hydroxylated metabolites of polycyclic aromatic hydrocarbons<br />

<strong>in</strong> ur<strong>in</strong>e. J Chromatogr 1987;413:227–32.<br />

Jonker MT, Hawthorne SB, Koelmans AA. Extremely slowly<br />

desorb<strong>in</strong>g polycyclic aromatic hydrocarbons from soot and<br />

soot-like materials: evidence by supercritical fluid<br />

extraction. Environ Sci Technol 2005;39(20):7889–95<br />

[Oct 15].<br />

Jonker MTO, Koelmans AA. Sorption of polycyclic aromatic<br />

hydrocarbons and polychlor<strong>in</strong>ated biphenyls to soot<br />

and soot-like materials <strong>in</strong> the aqueous environment:<br />

mechanistic considerations. Environ Sci Technol<br />

2002a;36:3725–34.<br />

Jonker MTO, Koelmans AA. Extraction of polycyclic aromatic<br />

hydrocarbons from soot and sediment: solvent evaluation and<br />

implications for sorption mechanism. Environ Sci Technol<br />

2002b;36:4107–13.<br />

Kammen DM. Cookstoves for the develop<strong>in</strong>g world. Sci Am<br />

1995;273:63–7.<br />

Khushk WA, Fatmi Z, White F, Kadir MM. Health and social impacts<br />

of improved stoves on rural women: a pilot <strong>in</strong>tervention <strong>in</strong><br />

S<strong>in</strong>dh, Pakistan. <strong>Indoor</strong> Air 2005;15:311–6.<br />

Kle<strong>in</strong>man MT. Carbon monoxide: evaluation of current California<br />

<strong>air</strong> quality standards with respect to protection of children.<br />

Prepared for California Air Resources Board, California Office<br />

of Environmental Health Hazard Assessment. Irv<strong>in</strong>e, CA:<br />

University of California Irv<strong>in</strong>e; 2000. [Departament of<br />

Community and Environmental Medic<strong>in</strong>e].<br />

Kuusimaki L, Peltonen Y, Mutanen P, Peltonen K, Savela K. Ur<strong>in</strong>ary<br />

hydroxy-metabolites of naphthalene, phenanthrene and pyrene<br />

as markers of exposure to diesel exhaust. Int Arch Occup Environ<br />

Health 2004;77:23–30.<br />

Lemiere S, Cossu-Leguille C, Bispo A, Jourda<strong>in</strong> MJ, Lanhers MC,<br />

Burnel D, et al. Genotoxicity related to transfer of oil spill<br />

pollutants from mussels to mammals via food. Environ Toxicol<br />

2004;19:387–95.<br />

Lev<strong>in</strong>e JO. First <strong>in</strong>ternational workshop on hydroxypyrene as a<br />

biomarker for PAH exposure <strong>in</strong> man—summary and conclusions.<br />

Sci Total Environ 1995;163:164–8.<br />

Maffei F, Hrelia P, Angel<strong>in</strong>i S, Carbone F, Cantelli Forti G, Barbieri A,<br />

et al. Effects of environmental benzene: micronucleus<br />

frequencies and haematological values <strong>in</strong> traffic police<br />

work<strong>in</strong>g <strong>in</strong> an urban area. Mutan Res 2005;583:1–11.<br />

Masera O, Diaz R, Berrueta V. From cookstoves to cook<strong>in</strong>g systems:<br />

the <strong>in</strong>tegrated program on susta<strong>in</strong>able household energy use<br />

<strong>in</strong> Mexico. Energy Susta<strong>in</strong> Dev 2005;9:25–36.<br />

Masera O, Edwards R, Armendariz-Arnez C, Berrueta V, Johnson M,<br />

Rojas-Bracho L, et al. Impact of Patsari improved cookstoves on<br />

<strong>in</strong>door <strong>air</strong> quality <strong>in</strong> Michoacán, Mexico. Energy Susta<strong>in</strong> Dev<br />

2007;11:45–56.<br />

Mcdonald JD, Ziel<strong>in</strong>ska B, Fujita EM, Sagebiel JC, Chow JC, Watson<br />

JG. F<strong>in</strong>e particle and gaseous emission rates from residential<br />

wood combustion. Environ Sci Technol 2000;34:2080–91.<br />

Mishra VK, Retherford RD, Smith KR. Biomass cook<strong>in</strong>g fuels and<br />

prevalence of tuberculosis <strong>in</strong> India. Int J Infect Dis<br />

1999;3:119–29 [Spr<strong>in</strong>g].<br />

Mishra V. Effect of <strong>in</strong>door <strong>air</strong> <strong>pollution</strong> from biomass combustion<br />

on prevalence of asthma <strong>in</strong> the elderly. Environ Health<br />

Perspect 2003;111:71–8.<br />

Musthapa MS, Lohani M, Tiwari S, Mathur N, Prasad R, Rahman Q.<br />

Cytogenetic biomonitor<strong>in</strong>g of Indian women cook<strong>in</strong>g with<br />

biofuels: micronucleus and chromosomal aberration test <strong>in</strong><br />

peripheral blood lymphocytes. Environ Mol Mutagen<br />

2004;43:243–9.<br />

Naeher LP, Smith KR, Leaderer BP, Mage D, Grajeda R. <strong>Indoor</strong> and<br />

outdoor PM2.5 and CO <strong>in</strong> high- and low-density Guatemalan<br />

villages. J Expo Anal Environ Epidemiol 2000;10:544–51.<br />

Naumova YY, Eisenreich SJ, Turp<strong>in</strong> BJ, Weisel CP, Morandi MT,<br />

Colome SD, et al. Polycyclic aromatic hydrocarbons <strong>in</strong> the<br />

<strong>in</strong>door and outdoor <strong>air</strong> of three cities <strong>in</strong> the U.S. Environ Sci<br />

Technol 2002;36:2552–9.<br />

Ohura T, Noda T, Amagai T, Fusaya M. Prediction of personal<br />

exposure to PM2.5 and carc<strong>in</strong>ogenic polycyclic aromatic<br />

hydrocarbons by their concentration <strong>in</strong> residential<br />

microenvironments. Environ Sci Technol 2005;39:5592–9.<br />

Ozturk S, Vatanserver S, Cefle K, Palanduz S, Guler K, Erten N, et al.<br />

Acute wood or coal exposure with carbon monoxide <strong>in</strong>toxication<br />

<strong>in</strong>duces sister chromatid exchange. J Toxicol Cl<strong>in</strong> Toxicol<br />

2002;40:115–20.<br />

Pandey AK, Bajpayee M, Parmar, Rastogi SK, Mathur N, Seth PK, et al.<br />

DNA damage <strong>in</strong> lymphocytes of rural Indian women exposed to<br />

biomass fuel smoke as assessed by the Comet Assay. Environ<br />

Mol Mutagen 2005;45:435–41.<br />

P<strong>in</strong>tos J, Franco EL, Kowalski LP, Oliveira BV, Curado MP.<br />

Use of wood stoves and risk of cancers of the upper<br />

aero-digestive tract: a case-control study. Int J Epidemiol<br />

1998;27:936–40.<br />

Puente-Maestu L, Bahonza N, Perez MC, Ruiz de Ona JM, Rodríguez<br />

Hermosa JL, Tatay E. Relationship between tobacco smoke<br />

exposure and the concentration of carboxyhemoglob<strong>in</strong> and<br />

hemoglob<strong>in</strong>. Arch Bronconeumol 1998;34:339–43.<br />

Raub JA, Benignus VA. Carbon monoxide and the nervous system.<br />

Neurosci Biobehav Rev 2002;26:925–40.<br />

Reddy AKN, Williams RH, Johansson TB. Energy after Rio: prospects<br />

and challenges. New York: United Nations Development<br />

Programme; 1997.<br />

Riojas-Rodriguez H, Romano-Riquer P, Santos-Burgoa C, Smith KR.<br />

Household firewood use and the health of children and women<br />

of Indian communities <strong>in</strong> Chiapas, Mexico. Int J Occup Environ<br />

Health 2001;7(1):44–53.<br />

Secretaria de Salud de México (SSA). Programa de Acción: Salud<br />

Ambiental. Primera Edición970-721-064-8; 2002.<br />

Smith KR. Fuel combustion, <strong>air</strong> <strong>pollution</strong>, and health: the situation<br />

<strong>in</strong> develop<strong>in</strong>g countries. Annu Revi Energy Environ<br />

1993;18:529–66.<br />

Smith KR. Biofuels, <strong>air</strong> <strong>pollution</strong>, and health: a global review. New<br />

York: Plenum Press; 1987.<br />

Smith KR. Air <strong>pollution</strong>: assess<strong>in</strong>g total exposure <strong>in</strong> develop<strong>in</strong>g<br />

countries. Environment 1988;30:16–34.<br />

Smith KR, Samet JM, Romieu I, Bruce N. <strong>Indoor</strong> <strong>air</strong> <strong>pollution</strong> <strong>in</strong><br />

develop<strong>in</strong>g countries and acute lower respiratory <strong>in</strong>fections <strong>in</strong><br />

children. Thorax 2000;55:518–32.


368 S C I E N C E O F T H E T O T A L E N V I R O N M E N T 3 9 0 ( 2 0 0 8 ) 3 6 2 – 3 6 8<br />

Smith-Sivertsen T, Diaz E, Bruce N, Diaz A, Khalakd<strong>in</strong>a A, Schei<br />

MA, et al. Reduc<strong>in</strong>g <strong>in</strong>door <strong>air</strong> <strong>pollution</strong> with a randomized<br />

<strong>in</strong>tervention design—a presentation of the stove <strong>in</strong>tervention<br />

study <strong>in</strong> the Guatemala Highlands. Nor Epidemiol<br />

2004;14:137–143.<br />

Siw<strong>in</strong>ska E, Mielzynska D, Kapka L. Association between ur<strong>in</strong>ary<br />

1-hydroxypyrene and genotoxic effects <strong>in</strong> coke oven workers.<br />

Occup Environ Med 2004;61:e10.<br />

Terblanche P, Nel R, Gold<strong>in</strong>g T. Household energy sources <strong>in</strong> South<br />

Africa: an overview of the impact of <strong>air</strong> <strong>pollution</strong> on human<br />

health. South Africa: Pretoria; 1994 [CSIR Environmental<br />

Services and Department of M<strong>in</strong>eral and Energy Aff<strong>air</strong>s].<br />

Tokiwa H, Nakagawa R, Horikawa K. Mutagenic/carc<strong>in</strong>ogenic<br />

agents <strong>in</strong> <strong>in</strong>door pollutants; the d<strong>in</strong>itropyrenes generated by<br />

kerosene heaters and fuel gas and liquefied petroleum gas<br />

burners. Mutat Res 1985;157:39–47.<br />

Vanhummelen P, Gennart JP, Buchet JP, Lauwerys R, Kirsch-Volders<br />

M. Biological markers <strong>in</strong> PAHs exposed workers and controls.<br />

Mutat Res 1993;300:231–9.<br />

Vazquez P, Lopez-Herce J, Galaron P, Morello-God<strong>in</strong>o C.<br />

Carboxyhemoglob<strong>in</strong> levels and risk factors of carbon<br />

monoxide poison<strong>in</strong>g <strong>in</strong> children. Med Cl<strong>in</strong> (Barc)<br />

1997;108:1–3.<br />

Viau C, Hakizimana M, Bouchard M. <strong>Indoor</strong> exposure to polycyclic<br />

aromatic hydrocarbons and carbon monoxide <strong>in</strong> traditional<br />

houses <strong>in</strong> Burundi. Int Arch Occup Environ Health<br />

2000;73:331–8.<br />

Wallace LA, Mitchell H, O'Connor GT, Neas L, Lippmann M, Kattan<br />

M, et al. Particle concentrations <strong>in</strong> <strong>in</strong>ner-city homes of children<br />

with asthma: the effect of smok<strong>in</strong>g, cook<strong>in</strong>g, and outdoor<br />

<strong>pollution</strong>. Environ Health Perspec 2003;111:1265–72.<br />

WHO. Health and environment <strong>in</strong> susta<strong>in</strong>able development.<br />

Geneva, Switzerland: World Health Organization; 1997.<br />

WHO. Environmental health criteria 213, carbon monoxide. IPCS,<br />

International Programme on Chemical Safety. Second Ed.<br />

Geneva, Switzerland: World Health Organization; 1999.<br />

WHO. Bullet<strong>in</strong> of the World Health Organization, 78(9). 2000a.<br />

WHO. Address<strong>in</strong>g the l<strong>in</strong>ks between <strong>in</strong>door <strong>air</strong> <strong>pollution</strong>, household<br />

energy and human health. Based on the WHO-USAID Global<br />

Consultation on the Health Impact of <strong>Indoor</strong> Air Pollution and<br />

Household Energy <strong>in</strong> Develop<strong>in</strong>g Countries (Meet<strong>in</strong>g report)<br />

Wash<strong>in</strong>gton, DC; 2000b.<br />

WHO. The health effects of <strong>in</strong>door <strong>air</strong> <strong>pollution</strong> exposure <strong>in</strong><br />

develop<strong>in</strong>g countries; 2002. WHO/SDE/OEH/02.05.<br />

Xue W, Warshawsky D. Metabolic activation of polycyclic and<br />

heterocyclic aromatic hydrocarbons and DNA damage: a<br />

review. Toxicol Appl Pharmacol 2005;206:73–93.<br />

Yañez L, García-Nieto E, Rojas E, Carrizales L, Mejía J, Calderón J, et al.<br />

DNA damage <strong>in</strong> blood cells from children exposed to arsenic and<br />

lead <strong>in</strong> a m<strong>in</strong><strong>in</strong>g area. Environ Res 2003;93:231–40.<br />

Y<strong>in</strong> XJ, Liu JZ, Li YS, Kong XH, Liu H. Mutagenicity and <strong>in</strong>duction<br />

of drug-metaboliz<strong>in</strong>g enzyme activity by LPG combustion<br />

particulates <strong>in</strong> rats. Biomed Environ Sci 1994;7:346–56.<br />

Y<strong>in</strong> XJ, Liu JZ, Kong XH, Chu JH, Wang H, Xiao ZX. Mutagenicity of<br />

ur<strong>in</strong>e from <strong>in</strong>dividuals exposed to LPG combustion products.<br />

Biomed Environ Sci 1998;11:251–7.<br />

Zhang HB, Luo YM, Wong MH, Zhao QG, Zhang GL. Distribution<br />

and concentrations of PAHs <strong>in</strong> Hong Kong soils. Environ Pollut<br />

2006;141:107–14.<br />

Zhang J, Smith KR. Emissions of carbonyl compounds from various<br />

cookstoves <strong>in</strong> Ch<strong>in</strong>a. Environ Sci Technol 1999;33:2311–20.<br />

Zhao ZH, Quan WY, Tian DH. The relationship between polynuclear<br />

aromatic hydrocarbons <strong>in</strong> ambient <strong>air</strong> and 1-hydroxypyrene <strong>in</strong><br />

human ur<strong>in</strong>e. J Environ Sci Health 1992;A27:1949–66.<br />

Zhao HW, Y<strong>in</strong> XJ, Frazer D, Barger MW, Siegel PD, Millecchia L, et al.<br />

Effects of pav<strong>in</strong>g asphalt fume exposure on genotoxic and<br />

mutagenic activities <strong>in</strong> the rat lung. Mutat Res 2004;557:137–49.<br />

Zuk M, Rojas L, Blanco S, Serrano P, Cruz J, Angeles F, et al. The<br />

impact of improved wood-burn<strong>in</strong>g stoves on f<strong>in</strong>e particulate<br />

matter concentrations <strong>in</strong> rural <strong>Mexican</strong> homes. J Expo Sci<br />

Environ Epidemiol 2007;17:224–32.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!