13.01.2015 Views

The angular homogeneity scale of the Universe - Centre for ...

The angular homogeneity scale of the Universe - Centre for ...

The angular homogeneity scale of the Universe - Centre for ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>The</strong> <strong>angular</strong> <strong>homogeneity</strong><br />

<strong>scale</strong> <strong>of</strong> <strong>the</strong> <strong>Universe</strong><br />

Alicia Bueno Belloso<br />

ITP, Heidelberg<br />

Work in collaboration with:<br />

David Alonso, Juan García-Bellido, Eusebio Sánchez and Javier Sánchez<br />

in preparation<br />

2 nd <strong>of</strong> September 2013<br />

DAMTP, Cambridge


Introduction: a homogeneous<br />

or fractal universe<br />

• Usual assumption: <strong>the</strong> <strong>Universe</strong> is homogeneous and isotropic on large <strong>scale</strong>s<br />

Alicia Bueno Belloso <strong>The</strong> <strong>angular</strong> <strong>homogeneity</strong> <strong>scale</strong> <strong>of</strong> <strong>the</strong> <strong>Universe</strong> 2 nd September 2013


Introduction: a homogeneous<br />

or fractal universe<br />

• Usual assumption: <strong>the</strong> <strong>Universe</strong> is homogeneous and isotropic on large <strong>scale</strong>s<br />

• Homogeneous regime is not realised on small <strong>scale</strong>s, due to <strong>the</strong> <strong>for</strong>m <strong>of</strong> <strong>the</strong><br />

spectrum <strong>of</strong> matter perturbations and to <strong>the</strong>ir evolution via gravitational collapse.<br />

Alicia Bueno Belloso <strong>The</strong> <strong>angular</strong> <strong>homogeneity</strong> <strong>scale</strong> <strong>of</strong> <strong>the</strong> <strong>Universe</strong> 2 nd September 2013


Introduction: a homogeneous<br />

or fractal universe<br />

• Usual assumption: <strong>the</strong> <strong>Universe</strong> is homogeneous and isotropic on large <strong>scale</strong>s<br />

• Homogeneous regime is not realised on small <strong>scale</strong>s, due to <strong>the</strong> <strong>for</strong>m <strong>of</strong> <strong>the</strong><br />

spectrum <strong>of</strong> matter perturbations and to <strong>the</strong>ir evolution via gravitational collapse.<br />

• <strong>The</strong> primordial spectrum <strong>of</strong> metric perturbations is predicted to be almost<br />

<strong>scale</strong>-invariant by inflation, still expect some level <strong>of</strong> inhomogeneities<br />

Alicia Bueno Belloso <strong>The</strong> <strong>angular</strong> <strong>homogeneity</strong> <strong>scale</strong> <strong>of</strong> <strong>the</strong> <strong>Universe</strong> 2 nd September 2013


Introduction: a homogeneous<br />

or fractal universe<br />

• Usual assumption: <strong>the</strong> <strong>Universe</strong> is homogeneous and isotropic on large <strong>scale</strong>s<br />

• Homogeneous regime is not realised on small <strong>scale</strong>s, due to <strong>the</strong> <strong>for</strong>m <strong>of</strong> <strong>the</strong><br />

spectrum <strong>of</strong> matter perturbations and to <strong>the</strong>ir evolution via gravitational collapse.<br />

• <strong>The</strong> primordial spectrum <strong>of</strong> metric perturbations is predicted to be almost<br />

<strong>scale</strong>-invariant by inflation, still expect some level <strong>of</strong> inhomogeneities<br />

• Different groups have argued that <strong>the</strong> <strong>Universe</strong> might not reach <strong>homogeneity</strong><br />

on large <strong>scale</strong>s, and that it behaves like a fractal…<br />

Pietronero. et al., 1997, Critical Dialogues in Cosmology, 24<br />

F. Sylos Labini, et al., Europhys. Letters 2009<br />

Alicia Bueno Belloso <strong>The</strong> <strong>angular</strong> <strong>homogeneity</strong> <strong>scale</strong> <strong>of</strong> <strong>the</strong> <strong>Universe</strong> 2 nd September 2013


Introduction: a homogeneous<br />

or fractal universe<br />

• Usual assumption: <strong>the</strong> <strong>Universe</strong> is homogeneous and isotropic on large <strong>scale</strong>s<br />

• Homogeneous regime is not realised on small <strong>scale</strong>s, due to <strong>the</strong> <strong>for</strong>m <strong>of</strong> <strong>the</strong><br />

spectrum <strong>of</strong> matter perturbations and to <strong>the</strong>ir evolution via gravitational collapse.<br />

• <strong>The</strong> primordial spectrum <strong>of</strong> metric perturbations is predicted to be almost<br />

<strong>scale</strong>-invariant by inflation, still expect some level <strong>of</strong> inhomogeneities<br />

• Different groups have argued that <strong>the</strong> <strong>Universe</strong> might not reach <strong>homogeneity</strong><br />

on large <strong>scale</strong>s, and that it behaves like a fractal…<br />

• … while o<strong>the</strong>r groups claim <strong>the</strong> opposite result!!<br />

Pietronero. et al., 1997, Critical Dialogues in Cosmology, 24<br />

F. Sylos Labini, et al., Europhys. Letters 2009<br />

Scrimgeour, M., et al., 2012, MNRAS, 425, 116<br />

Nadathur, S. 2013, MNRAS, 434, 398<br />

Alicia Bueno Belloso <strong>The</strong> <strong>angular</strong> <strong>homogeneity</strong> <strong>scale</strong> <strong>of</strong> <strong>the</strong> <strong>Universe</strong> 2 nd September 2013


Introduction: a homogeneous<br />

or fractal universe<br />

• To measure this transition observationally, large survey volume is necessary<br />

Alicia Bueno Belloso <strong>The</strong> <strong>angular</strong> <strong>homogeneity</strong> <strong>scale</strong> <strong>of</strong> <strong>the</strong> <strong>Universe</strong> 2 nd September 2013


Introduction: a homogeneous<br />

or fractal universe<br />

• To measure this transition observationally, large survey volume is necessary<br />

• Ideal <strong>for</strong> photometric galaxy redshift surveys such as DES<br />

<strong>The</strong> Dark Energy Survey Collaboration, arXiv:0510346, 2005<br />

Alicia Bueno Belloso <strong>The</strong> <strong>angular</strong> <strong>homogeneity</strong> <strong>scale</strong> <strong>of</strong> <strong>the</strong> <strong>Universe</strong> 2 nd September 2013


Introduction: a homogeneous<br />

or fractal universe<br />

• To measure this transition observationally, large survey volume is necessary<br />

• Ideal <strong>for</strong> photometric galaxy redshift surveys such as DES<br />

Due to photometric uncertainty<br />

Radial in<strong>for</strong>mation is lost<br />

<strong>The</strong> Dark Energy Survey Collaboration, arXiv:0510346, 2005<br />

Alicia Bueno Belloso <strong>The</strong> <strong>angular</strong> <strong>homogeneity</strong> <strong>scale</strong> <strong>of</strong> <strong>the</strong> <strong>Universe</strong> 2 nd September 2013


Introduction: a homogeneous<br />

or fractal universe<br />

• To measure this transition observationally, large survey volume is necessary<br />

• Ideal <strong>for</strong> photometric galaxy redshift surveys such as DES<br />

Due to photometric uncertainty<br />

Radial in<strong>for</strong>mation is lost<br />

Must use estimator with only <strong>angular</strong> info<br />

Advantage: Angles are model-independent!<br />

<strong>The</strong> Dark Energy Survey Collaboration, arXiv:0510346, 2005<br />

Alicia Bueno Belloso <strong>The</strong> <strong>angular</strong> <strong>homogeneity</strong> <strong>scale</strong> <strong>of</strong> <strong>the</strong> <strong>Universe</strong> 2 nd September 2013


<strong>The</strong> fractal dimension<br />

• To study <strong>the</strong> transition to <strong>homogeneity</strong><br />

fractality <strong>of</strong> <strong>the</strong> galaxy<br />

distribution<br />

Alicia Bueno Belloso <strong>The</strong> <strong>angular</strong> <strong>homogeneity</strong> <strong>scale</strong> <strong>of</strong> <strong>the</strong> <strong>Universe</strong> 2 nd September 2013


<strong>The</strong> fractal dimension<br />

• To study <strong>the</strong> transition to <strong>homogeneity</strong><br />

fractality <strong>of</strong> <strong>the</strong> galaxy<br />

distribution<br />

• Fractal dimension is also useful to quantify clustering<br />

Alicia Bueno Belloso <strong>The</strong> <strong>angular</strong> <strong>homogeneity</strong> <strong>scale</strong> <strong>of</strong> <strong>the</strong> <strong>Universe</strong> 2 nd September 2013


<strong>The</strong> fractal dimension<br />

• To study <strong>the</strong> transition to <strong>homogeneity</strong><br />

fractality <strong>of</strong> <strong>the</strong> galaxy<br />

distribution<br />

• Fractal dimension is also useful to quantify clustering<br />

• How do we specify this<br />

Correlation integral<br />

C 2 (r) = 1 N<br />

NX<br />

nP (n; r, N) / r 3<br />

n=0<br />

D 2 (r) ⌘ d log C 2(r)<br />

d log r<br />

! 3<br />

Volume<br />

As <strong>homogeneity</strong><br />

is approached<br />

Alicia Bueno Belloso <strong>The</strong> <strong>angular</strong> <strong>homogeneity</strong> <strong>scale</strong> <strong>of</strong> <strong>the</strong> <strong>Universe</strong> 2 nd September 2013


<strong>The</strong> fractal dimension<br />

• To study <strong>the</strong> transition to <strong>homogeneity</strong><br />

fractality <strong>of</strong> <strong>the</strong> galaxy<br />

distribution<br />

• Fractal dimension is also useful to quantify clustering<br />

• How do we specify this<br />

C 2 (r) = 1 N<br />

NX<br />

nP (n; r, N) / r 3<br />

Correlation integral<br />

• Departures from D 2 = 3 due to:<br />

- Clustering<br />

- Shot noise<br />

n=0<br />

D 2 (r) ⌘ d log C 2(r)<br />

d log r<br />

! 3<br />

Volume<br />

As <strong>homogeneity</strong><br />

is approached<br />

J. S. Bagla, J. Yadav and T. R. Seshadri, 2007, MNRAS, 390:829<br />

Alicia Bueno Belloso <strong>The</strong> <strong>angular</strong> <strong>homogeneity</strong> <strong>scale</strong> <strong>of</strong> <strong>the</strong> <strong>Universe</strong> 2 nd September 2013


<strong>The</strong> fractal dimension<br />

• Angular <strong>homogeneity</strong> index:<br />

Spheres<br />

Spherical caps <strong>of</strong> radius θ<br />

Alicia Bueno Belloso <strong>The</strong> <strong>angular</strong> <strong>homogeneity</strong> <strong>scale</strong> <strong>of</strong> <strong>the</strong> <strong>Universe</strong> 2 nd September 2013


<strong>The</strong> fractal dimension<br />

• Angular <strong>homogeneity</strong> index:<br />

Spheres<br />

Spherical caps <strong>of</strong> radius θ<br />

G 2 (✓) / V (✓) =2⇡(1 cos ✓)<br />

Non-trivial dependence on θ<br />

Alicia Bueno Belloso <strong>The</strong> <strong>angular</strong> <strong>homogeneity</strong> <strong>scale</strong> <strong>of</strong> <strong>the</strong> <strong>Universe</strong> 2 nd September 2013


<strong>The</strong> fractal dimension<br />

• Angular <strong>homogeneity</strong> index:<br />

Spheres<br />

Spherical caps <strong>of</strong> radius θ<br />

H 2 (✓) ⌘ d log G 2(✓)<br />

d log V (✓) ! 1<br />

G 2 (✓) / V (✓) =2⇡(1 cos ✓)<br />

As <strong>homogeneity</strong><br />

is approached<br />

Non-trivial dependence on θ<br />

Alicia Bueno Belloso <strong>The</strong> <strong>angular</strong> <strong>homogeneity</strong> <strong>scale</strong> <strong>of</strong> <strong>the</strong> <strong>Universe</strong> 2 nd September 2013


<strong>The</strong> fractal dimension<br />

• Angular <strong>homogeneity</strong> index:<br />

Spheres<br />

Spherical caps <strong>of</strong> radius θ<br />

H 2 (✓) ⌘ d log G 2(✓)<br />

d log V (✓) ! 1<br />

• Modelling H 2 (θ):<br />

G 2 (✓) / V (✓) =2⇡(1 cos ✓)<br />

As <strong>homogeneity</strong><br />

is approached<br />

H 2 (✓) = 1+w(✓)<br />

1+ ¯w(✓)<br />

Non-trivial dependence on θ<br />

1<br />

¯N(✓)<br />

Fiducial cosmology: (⌦ m , ⌦ ⇤ , ⌦ b ,h, 8,n s )=(0.3, 0.7, 0.049, 0.67, 0.8, 0.96)<br />

Alicia Bueno Belloso <strong>The</strong> <strong>angular</strong> <strong>homogeneity</strong> <strong>scale</strong> <strong>of</strong> <strong>the</strong> <strong>Universe</strong> 2 nd September 2013


Results I:<br />

<strong>the</strong> <strong>the</strong>oretical model<br />

• Projection effects (redshift bin size):<br />

Alicia Bueno Belloso <strong>The</strong> <strong>angular</strong> <strong>homogeneity</strong> <strong>scale</strong> <strong>of</strong> <strong>the</strong> <strong>Universe</strong> 2 nd September 2013


• Bias:<br />

Results I:<br />

<strong>the</strong> <strong>the</strong>oretical model<br />

Alicia Bueno Belloso <strong>The</strong> <strong>angular</strong> <strong>homogeneity</strong> <strong>scale</strong> <strong>of</strong> <strong>the</strong> <strong>Universe</strong> 2 nd September 2013


• Cosmological parameters:<br />

1.005<br />

Results I:<br />

<strong>the</strong> <strong>the</strong>oretical model<br />

H 2 (θ) <strong>for</strong> 0.5 < z < 0.6 <strong>for</strong> different values <strong>of</strong> w<br />

1.000<br />

0.995<br />

0.990<br />

H 2 (θ)<br />

0.985<br />

0.980<br />

0.975<br />

0.970<br />

0.965<br />

w = - 0.4<br />

w = - 0.8<br />

w = - 1.0<br />

w = - 1.2<br />

0.960<br />

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0<br />

θ (deg)<br />

Alicia Bueno Belloso <strong>The</strong> <strong>angular</strong> <strong>homogeneity</strong> <strong>scale</strong> <strong>of</strong> <strong>the</strong> <strong>Universe</strong> 2 nd September 2013


Measuring H 2 (θ)<br />

• Complications when measuring D 2 (θ) or H 2 (θ):<br />

- Non-homogeneous radial selection function<br />

- Imperfections (fiber collisions, star contamination, CCD saturation…)<br />

Alicia Bueno Belloso <strong>The</strong> <strong>angular</strong> <strong>homogeneity</strong> <strong>scale</strong> <strong>of</strong> <strong>the</strong> <strong>Universe</strong> 2 nd September 2013


Measuring H 2 (θ)<br />

• Complications when measuring D 2 (θ) or H 2 (θ):<br />

- Non-homogeneous radial selection function<br />

- Imperfections (fiber collisions, star contamination, CCD saturation…)<br />

• Solve this complications<br />

N (r) ⌘ 1 XN c<br />

N c<br />

use random catalogues<br />

i=1<br />

n d i (


Measuring H 2 (θ)<br />

• Complications when measuring D 2 (θ) or H 2 (θ):<br />

- Non-homogeneous radial selection function<br />

- Imperfections (fiber collisions, star contamination, CCD saturation…)<br />

• Solve this complications<br />

N (r) ⌘ 1 XN c<br />

N c<br />

use random catalogues<br />

• 3 estimators:<br />

1. Use only spheres within <strong>the</strong> survey volume<br />

2. Use only spheres within <strong>the</strong> survey volume + random catalogues<br />

with observational effects from data<br />

3. Consider also spheres outside survey volume corrected with random<br />

catalogues<br />

i=1<br />

n d i (


Results II:<br />

Mock catalogues<br />

• 100 lognormal mock catalogues with fiducial cosmology, z =0.03 and b=1<br />

1.002<br />

H 2 (θ) <strong>for</strong> 0.5 < z < 0.6 comparing <strong>the</strong>ory and 100 mock catalogues<br />

1.000<br />

0.998<br />

H 2 (θ)<br />

0.996<br />

0.994<br />

1.0005<br />

1.0000<br />

0.9995<br />

0.992<br />

0.9990<br />

0.990<br />

5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5<br />

<strong>The</strong>ory prediction<br />

Mock catalogues, estimator 2<br />

Mock catalogues, esitmator 3<br />

0.988<br />

0 1 2 3 4 5 6 7 8 9 10<br />

θ (deg)<br />

Alicia Bueno Belloso <strong>The</strong> <strong>angular</strong> <strong>homogeneity</strong> <strong>scale</strong> <strong>of</strong> <strong>the</strong> <strong>Universe</strong> 2 nd September 2013


Results II:<br />

Mock catalogues vs fractals<br />

• 100 fractal realisations using a 2D random walk<br />

1.00<br />

P (✓ d < ✓) =<br />

H 2 (θ) <strong>for</strong> 0.5 < z < 0.6 comparing mocks and fractal realisations<br />

( 1 ✓ < ✓0<br />

⇣<br />

1 cos ✓<br />

1 cos ✓ 0<br />

⌘ ↵<br />

✓ ✓ 0<br />

0.98<br />

0.96<br />

0.94<br />

H 2 (θ)<br />

0.92<br />

0.90<br />

0.88<br />

0.86<br />

<strong>The</strong>ory prediction<br />

Mock catalogues, estimator 2<br />

Mock catalogues, esitmator 3<br />

2D random walk with α= 0.5<br />

2D random walk with α= 0.75<br />

2D random walk with α= 1.0<br />

0 1 2 3 4 5 6 7 8 9 10<br />

θ (deg)<br />

Alicia Bueno Belloso <strong>The</strong> <strong>angular</strong> <strong>homogeneity</strong> <strong>scale</strong> <strong>of</strong> <strong>the</strong> <strong>Universe</strong> 2 nd September 2013


Conclusions<br />

• Usual assumption <strong>of</strong> <strong>homogeneity</strong> on large <strong>scale</strong>s can be tested with large<br />

volume galaxy surveys<br />

• Introduced <strong>angular</strong> <strong>homogeneity</strong> index H 2 (θ) to use with photo-z surveys<br />

Advantage: Angular measurements are model-independent!!<br />

• Modelled H 2 (θ) <strong>the</strong>oretically and studied dependence on several effects<br />

• Built several estimators to measure H 2 (θ) and tested <strong>the</strong>m on 100<br />

mock catalogues<br />

results fit <strong>the</strong>oretical model and are compatible<br />

with <strong>homogeneity</strong> <strong>scale</strong> found in <strong>the</strong> 3D case<br />

• Found that we can distinguish fractal models from homogeneous universes<br />

Alicia Bueno Belloso <strong>The</strong> <strong>angular</strong> <strong>homogeneity</strong> <strong>scale</strong> <strong>of</strong> <strong>the</strong> <strong>Universe</strong> 2 nd September 2013


Thank you!<br />

Alicia Bueno Belloso <strong>The</strong> <strong>angular</strong> <strong>homogeneity</strong> <strong>scale</strong> <strong>of</strong> <strong>the</strong> <strong>Universe</strong> 2 nd September 2013


• Projection effects revisited:<br />

Results II:<br />

Statistical uncertainties<br />

Alicia Bueno Belloso <strong>The</strong> <strong>angular</strong> <strong>homogeneity</strong> <strong>scale</strong> <strong>of</strong> <strong>the</strong> <strong>Universe</strong> 2 nd September 2013


Results II:<br />

Statistical uncertainties<br />

• Full covariance matrix <strong>for</strong> both estimators<br />

Estimator 2 Estimator 3<br />

Alicia Bueno Belloso <strong>The</strong> <strong>angular</strong> <strong>homogeneity</strong> <strong>scale</strong> <strong>of</strong> <strong>the</strong> <strong>Universe</strong> 2 nd September 2013


• Photometric redshift uncertainty:<br />

Results I:<br />

<strong>the</strong> <strong>the</strong>oretical model<br />

Alicia Bueno Belloso <strong>The</strong> <strong>angular</strong> <strong>homogeneity</strong> <strong>scale</strong> <strong>of</strong> <strong>the</strong> <strong>Universe</strong> 2 nd September 2013


• Non-linearities:<br />

Results I:<br />

<strong>the</strong> <strong>the</strong>oretical model<br />

H(θ) <strong>for</strong> 0.5 < z < 0.6 <strong>for</strong> different treatment <strong>of</strong> non-linearities<br />

1.00<br />

0.99<br />

0.98<br />

0.97<br />

H 2 (θ)<br />

0.96<br />

0.95<br />

0.94<br />

0.93<br />

0.92<br />

0.91<br />

0.90<br />

HALOFIT<br />

RPT<br />

0.1 1 10<br />

θ (deg)<br />

Alicia Bueno Belloso <strong>The</strong> <strong>angular</strong> <strong>homogeneity</strong> <strong>scale</strong> <strong>of</strong> <strong>the</strong> <strong>Universe</strong> 2 nd September 2013


• Cosmological parameters:<br />

Results I:<br />

<strong>the</strong> <strong>the</strong>oretical model<br />

H 2 (θ)<br />

0.985<br />

0.980<br />

H 2 (θ) <strong>for</strong> 0.5 < z < 0.6 <strong>for</strong> different values <strong>of</strong> Ω m<br />

w = - 0.4<br />

1.005<br />

1.005<br />

H 2 (θ) <strong>for</strong> 0.5 < z < 0.6 <strong>for</strong> different values <strong>of</strong> w<br />

1.000<br />

1.000<br />

0.995<br />

0.995<br />

0.990<br />

0.990<br />

H 2 (θ)<br />

0.985<br />

0.980<br />

0.975<br />

0.975<br />

0.970<br />

0.970<br />

0.965<br />

Ω m = 0.3<br />

Ω m = 0.5<br />

Ω m = 0.7<br />

Ω m = 0.9<br />

0.965<br />

w = - 0.8<br />

w = - 1.0<br />

w = - 1.2<br />

0.960<br />

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0<br />

θ (deg)<br />

0.960<br />

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0<br />

θ (deg)<br />

Alicia Bueno Belloso <strong>The</strong> <strong>angular</strong> <strong>homogeneity</strong> <strong>scale</strong> <strong>of</strong> <strong>the</strong> <strong>Universe</strong> 2 nd September 2013


Measuring H 2 (θ)<br />

• Complications when measuring D 2 (θ) or H 2 (θ):<br />

- Non-homogeneous radial selection function<br />

- Imperfections (fiber collisions, star contamination, CCD saturation…)<br />

• Solve this complications<br />

N (r) ⌘ 1 XN c<br />

N c<br />

use random catalogues<br />

• 3 estimators:<br />

1. Use only spheres within <strong>the</strong> survey volume<br />

2. Use only spheres within <strong>the</strong> survey volume + random catalogues<br />

with observational effects from data<br />

3. Consider also spheres outside survey volume corrected with random<br />

catalogues<br />

i=1<br />

n d i (


Conclusions<br />

• Usual assumption <strong>of</strong> <strong>homogeneity</strong> on large <strong>scale</strong>s must be corroborated<br />

observationally<br />

• Best way to study transition to <strong>homogeneity</strong><br />

large volume galaxy<br />

surveys<br />

• Introduced <strong>angular</strong> <strong>homogeneity</strong> index to use with photo-z surveys<br />

Advantage: Angular measurements are model-independent!!<br />

• Modelled H 2 (θ) and studied dependence on several effects<br />

• Built several estimators to measure H 2 (θ) and tested <strong>the</strong>m on 100<br />

mock catalogues<br />

• Results obtained fit <strong>the</strong>oretical model and are compatible with <strong>the</strong><br />

<strong>homogeneity</strong> <strong>scale</strong> found in 3D <strong>of</strong> ~100Mpc/h<br />

• Found that we can distinguish fractal models from homogeneous universes<br />

Alicia Bueno Belloso <strong>The</strong> <strong>angular</strong> <strong>homogeneity</strong> <strong>scale</strong> <strong>of</strong> <strong>the</strong> <strong>Universe</strong> 2 nd September 2013

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!