14.01.2015 Views

Trace and extension theorems for BV-functions

Trace and extension theorems for BV-functions

Trace and extension theorems for BV-functions

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

TRACES AND EXTENSIONS OF <strong>BV</strong> -FUNCTIONS<br />

CLAUS GERHARDT<br />

Abstract. We give a simple proof of Gagliardo’s trace <strong>and</strong> <strong>extension</strong><br />

theorem <strong>for</strong> <strong>BV</strong> -<strong>functions</strong>.<br />

Contents<br />

1. Introduction 1<br />

References 4<br />

1. Introduction<br />

1.1. Definition. We say a sequence u k ∈ <strong>BV</strong> (Ω) converges in the <strong>BV</strong><br />

sense to u ∈ <strong>BV</strong> (Ω), if<br />

∫<br />

(1.1)<br />

|u − u k | → 0<br />

<strong>and</strong><br />

(1.2)<br />

∫<br />

Ω<br />

Ω<br />

∫<br />

|Du k | →<br />

Ω<br />

|Du|.<br />

1.2. Lemma. Let Ω = B 1 + (0) be the upper half ball <strong>and</strong> let u ∈ <strong>BV</strong> (Ω)<br />

have compact support with respect to the spherical boundary. Define <strong>for</strong> 0 < h<br />

(1.3) u h (ˆx, x n ) = u(ˆx, x n h),<br />

then u h is defined in {x n > −h} <strong>and</strong> the mollification u h,ɛ with an even<br />

mollifier is well defined in Ω if 0 < ɛ < ɛ 0 (h). There are sequences (h k , ɛ k )<br />

converging to zero such that u hk ,ɛ k<br />

converge in the <strong>BV</strong> sense to u.<br />

Proof. Let η i ∈ Cc<br />

∞ (Ω), ‖(η i )‖ ≤ 1, then<br />

∫<br />

∫<br />

∫<br />

(1.4)<br />

u h,ɛ D i η i = uD i η−h,ɛ i ≤<br />

if ɛ ≤ ɛ 0 (h), since<br />

Ω<br />

(1.5) η i −h,ɛ ∈ C ∞ c (Ω)<br />

Ω<br />

Ω<br />

|Du|,<br />

Date: May 20, 2011.<br />

2000 Mathematics Subject Classification. 35J60, 53C21, 53C44, 53C50, 58J05.<br />

Key words <strong>and</strong> phrases. <strong>Trace</strong>s, <strong>extension</strong>s of <strong>BV</strong> -<strong>functions</strong>, Gagliardo’s theorem.<br />

1


2 CLAUS GERHARDT<br />

<strong>for</strong> those ɛ, where we may consider only η i the support of which is uni<strong>for</strong>mly<br />

compact with respect to the spherical boundary in view of the assumption<br />

on u. This proves the lemma.<br />

□<br />

1.3. Lemma. Let u, Ω be as above, then the approximating <strong>functions</strong><br />

u hk ,ɛ k<br />

, or any other sequence u k ∈ C 1 ( ¯Ω) converging in the <strong>BV</strong> sense to u,<br />

define a unique trace of u, tr u, on the hyperplane such that the divergence<br />

theorem holds<br />

∫<br />

∫ ∫<br />

(1.6)<br />

D i uη = − uD i η + uην i<br />

Ω<br />

Ω<br />

∂Ω<br />

<strong>for</strong> all η ∈ Cc 1 (Ω ɛ ∪ ∂Ω), cf. Remark 1.6.<br />

Extending u as an even function to the lower half space<br />

{<br />

(1.7) ũ(ˆx, x n u(ˆx, x n ) x n > 0,<br />

) =<br />

u(ˆx, −x n ) x n < 0,<br />

there holds<br />

(1.8)<br />

<strong>and</strong><br />

(1.9)<br />

∫<br />

B 1(0)<br />

∫<br />

∫<br />

|Dũ| ≤ 2 |Du|<br />

Ω<br />

∂Ω<br />

|Dũ| = 0.<br />

Proof. Let η i ∈ C 1 (B 1 (0)), then<br />

∫<br />

∫<br />

∫<br />

D i ũη i = D i uη i +<br />

(1.10)<br />

hence<br />

(1.11)<br />

B 1(0)<br />

B + 1<br />

∫<br />

= −<br />

B 1(0)<br />

∫<br />

Γ<br />

B − 1<br />

∫<br />

D i ũη i +<br />

Γ<br />

Γ<br />

D i ũη i<br />

∫<br />

∫<br />

ũD i η i + (u + − u + )η i ν i +<br />

D i ũη i = 0.<br />

Γ<br />

D i ũη i<br />

Moreover, if ‖(η i )‖ ≤ 1, we conclude from [2, Theorem 10.10.3] <strong>and</strong> (1.10)<br />

the estimate (1.8).<br />

□<br />

1.4. Theorem. Let Ω be as in the theorem below, then u ∈ <strong>BV</strong> (Ω) can<br />

be extended to R n with compact support such that, if the extended function is<br />

called ũ,<br />

∫ ∫<br />

(1.12)<br />

|Dũ| ≤ c (|Du| + |u|)<br />

R n Ω<br />

<strong>and</strong><br />

∫<br />

(1.13)<br />

|Dũ| = 0.<br />

∂Ω


TRACES AND EXTENSIONS OF <strong>BV</strong> -FUNCTIONS 3<br />

Proof. Let U k be a finite open covering of ¯Ω with the usual conditions <strong>for</strong><br />

the boundary neighbourhoods <strong>and</strong> let η k be a subordinate finite partition of<br />

unity, then each function uη k can be extended to R n with compact support<br />

such that, if ũ k is the extended function,<br />

∫<br />

∫<br />

(1.14)<br />

|Dũ k | ≤ c (|Du| + |u|).<br />

R n Ω<br />

The function<br />

(1.15) ũ = ∑ k<br />

ũ k<br />

is then an <strong>extension</strong> of u with the required properties.<br />

The above theorem is due to [1].<br />

□<br />

1.5. Theorem. Let u ∈ <strong>BV</strong> (Ω), where ∂Ω ∈ C 0,1 <strong>and</strong> compact, <strong>and</strong><br />

let u k ∈ C 1 ( ¯Ω) converging in the <strong>BV</strong> sense to u, at least in a boundary<br />

neighbourhood, then tr u k converges in L 1 (∂Ω) to a uniquely defined function<br />

depending only u <strong>and</strong> not on the approximating <strong>functions</strong>; we call this limit<br />

tr u. If u ∈ <strong>BV</strong> (Ω) ∩ C 0 ( ¯Ω), then<br />

(1.16) tr u = u |∂Ω<br />

Proof. It suffices to prove the uniqueness of the trace, since u can be extended<br />

to R n , <strong>and</strong> hence also be approximated by mollifications.<br />

Let u k <strong>and</strong> ũ k be C 1 ( ¯Ω) approximations of u <strong>and</strong> let v k = u k − ũ k , then<br />

∫<br />

(1.17) lim |v k | = 0,<br />

Ω ɛ<br />

where Ω ɛ is a boundary strip of width ɛ such that<br />

∫<br />

(1.18)<br />

|Du| = 0<br />

{d=ɛ}<br />

<strong>and</strong><br />

(1.19) lim sup<br />

∫<br />

|Dv k | ≤ 2<br />

Ω ɛ<br />

∫<br />

|Du|.<br />

Ω ɛ<br />

Now, there holds <strong>for</strong> any ɛ > 0<br />

∫<br />

∫<br />

(1.20)<br />

|v k | ≤ c |Dv k | + c ɛ |v k |,<br />

∂Ω<br />

∫Ω ɛ Ω ɛ<br />

hence<br />

∫<br />

∫<br />

(1.21) lim sup |v k | ≤ 2c lim sup<br />

∂Ω<br />

|Du| = 0,<br />

Ω ɛ<br />

where the last equality is due to the fact that |Du| is a bounded measure in<br />

Ω ɛ0 <strong>and</strong> the Ω ɛ are monotone ordered such that<br />

⋂<br />

(1.22)<br />

Ω ɛ = ∅.<br />

0


4 CLAUS GERHARDT<br />

□<br />

1.6. Remark. By approximation we also obtain<br />

∫<br />

∫ ∫<br />

(1.23)<br />

D i uη = − uD i η + uην i<br />

Ω<br />

<strong>for</strong> all η ∈ C 1 c (Ω ɛ ∪ ∂Ω).<br />

Ω<br />

1.7. Remark. The definition of <strong>BV</strong> (Ω), when Ω ⊂ N, where N is a<br />

Riemannian manifold is analogous to the case N = R n , namely,<br />

∫<br />

∫<br />

(1.24)<br />

|Du| = sup{ uD i η i : g ij η i η j ≤ 1, η i ∈ Cc ∞ (Ω) }.<br />

Ω<br />

Ω<br />

Even in the Euclidean case it is sometimes desirable to use the invariant<br />

definition of the total variation.<br />

References<br />

[1] Emilio Gagliardo, Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi<br />

di funzioni in n variabili, Rend. Sem. Mat. Univ. Padova 27 (1957), 284–305.<br />

[2] Claus Gerhardt, Analysis II, International Series in Analysis, International Press,<br />

Somerville, MA, 2006.<br />

Ruprecht-Karls-Universität, Institut für Angew<strong>and</strong>te Mathematik, Im Neuenheimer<br />

Feld 294, 69120 Heidelberg, Germany<br />

E-mail address: gerhardt@math.uni-heidelberg.de<br />

URL: http://web.me.com/gerhardt/<br />

∂Ω

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!