15.01.2015 Views

chapter 10, early development and axis formation in amphibians part-2

chapter 10, early development and axis formation in amphibians part-2

chapter 10, early development and axis formation in amphibians part-2

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

CHAPTER <strong>10</strong>, EARLY<br />

DEVELOPMENT AND AXIS<br />

FORMATION IN AMPHIBIANS<br />

PART-2<br />

ZOO3603C


Progressive Determ<strong>in</strong>ation of the<br />

Amphibian Axes


The specification of axes <br />

Vegetal prote<strong>in</strong>s<br />

VegT destroyed--- entire embryo develops as an<br />

epidermis<br />

Vg1 lacked --- no endoderm nor dorsal mesoderm<br />

The axes are specified by events triggered at<br />

fertilization <strong>and</strong> realized dur<strong>in</strong>g gastrulation.


Concept of regulative <strong>development</strong><br />

Blastomere has a potency greater than its normal<br />

embryonic fate.<br />

Fate is determ<strong>in</strong>ed (<strong>in</strong>duced) by <strong>in</strong>teractions<br />

between neighbor<strong>in</strong>g cells.<br />

How is it <strong>in</strong>duced<br />

What factor cause the <strong>in</strong>duction


Spemann’s demonstration of nuclear<br />

equivalence <strong>in</strong> newt cleavage<br />

Ligature at 8-cell stage<br />

Enter<strong>in</strong>g a s<strong>in</strong>gle nucleus<br />

to the other side at 16-<br />

cell stage<br />

Nuclei at 16-cell stage are genetically identical<br />

<strong>and</strong> still totipotent <strong>in</strong> the newt. <br />

After 14 days, each side had<br />

a normal embryo.


Asymmetry <strong>in</strong> the amphibian egg<br />

Separation at<br />

left-right <strong>axis</strong><br />

Separation at<br />

ventral-dorsal <strong>axis</strong><br />

Conta<strong>in</strong><strong>in</strong>g<br />

epidermal, blood,<br />

mesenchymal <strong>and</strong><br />

gut cells. <br />

Gray crescent is<br />

essential for<br />

normal<br />

<strong>development</strong>.


Determ<strong>in</strong>ation of ectoderm dur<strong>in</strong>g newt<br />

gastrulation<br />

Normal <strong>development</strong><br />

Regulative <strong>development</strong><br />

What does cause the determ<strong>in</strong>ation <br />

Secondary neural plate<br />

Autonomous <strong>development</strong>


Hans Spemann <strong>and</strong> Hilde Mangold:<br />

Primary Embryonic Induction


Organization of a secondary <strong>axis</strong> by<br />

dorsal blastopore lip tissue<br />

Dorsal blastopore is the<br />

self-differentiat<strong>in</strong>g<br />

tissue.<br />

• Organizer<br />

• Primary embryonic <strong>in</strong>duction


Mechanisms of Axis Determ<strong>in</strong>ation <strong>in</strong><br />

Amphibians<br />

• How does the organizer form<br />

• The dorsal signal: -caten<strong>in</strong><br />

• The vegetal TGF--like signal<br />

• The mesodermal signal


Questions on the mechanisms<br />

How did the organizer get its properties<br />

What caused the dorsal blastopore lip to differ from<br />

any other region of the embryo<br />

What factors were be<strong>in</strong>g secreted from the<br />

organizer to cause the <strong>formation</strong> of the neural tube<br />

<strong>and</strong> to create the anterior-posterior, dorsal-ventral<br />

<strong>and</strong> left-right axes


Mesodermal <strong>in</strong>duction by vegetal endoderm<br />

Animal cap cells generate<br />

mesodermal tissue.<br />

Factors from vegetal cells


Mesodermal <strong>in</strong>duction by vegetal endoderm<br />

On dorsal side, a signal is<br />

released by Nieuwkoop center.


Signals for the axial determ<strong>in</strong>ation<br />

The dorsal signal: -caten<strong>in</strong><br />

The vegetal TGF--like signal<br />

The mesodermal signal, Nodal-relat<strong>in</strong>g prote<strong>in</strong>s


The vegetal cells are responsible for caus<strong>in</strong>g<br />

the <strong>in</strong>itiation of gastrulation<br />

Rescue by transplantation of dorsal vegetal blastomeres which<br />

can <strong>in</strong>duce another <strong>axis</strong> <strong>in</strong> the embryo.<br />

Vegetal cells <strong>in</strong>duce the<br />

organizer which <strong>in</strong>duces <strong>axis</strong>.


The regional specificity of mesoderm <strong>in</strong>duction<br />

D1 most<br />

<strong>in</strong>duced dorsal<br />

mesoderm.<br />

Nieuwkoop Center<br />

is <strong>in</strong> D1 cell<br />

What makes<br />

dorsal/ventral<br />

mesoderm


The role of Wnt pathway <strong>in</strong> ventral-dorsal<br />

<strong>axis</strong> specification<br />

2-Cell<br />

-caten<strong>in</strong><br />

Blastula<br />

-caten<strong>in</strong> localize <strong>in</strong> nuclei on<br />

dorsal, but not on ventral.<br />

Dorsal<br />

Ventral<br />

-caten<strong>in</strong> dorsal localization<br />

persists through gastrula stage.<br />

How this localization happen


Model of the mechanism of localization of<br />

-caten<strong>in</strong> <strong>in</strong> the dorsal portion<br />

Dsh, Dishevelled prote<strong>in</strong><br />

GBP, GSK3-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong><br />

GSK3, glycogen synthase k<strong>in</strong>ase 3<br />

on microtubules<br />

cortical rotation<br />

Cortical rotation causes the sift<br />

of the Dsh complex.


Model of the mechanism of localization of<br />

-caten<strong>in</strong> <strong>in</strong> the dorsal portion<br />

1. Dsh <strong>in</strong>hibits GSK3<br />

2. GSK3 degrade -caten<strong>in</strong><br />

3. -caten<strong>in</strong> <strong>in</strong>itiate the organizer<br />

Dsh localization cause the ventraldorsal<br />

<strong>axis</strong>


Model of the mechanism of localization of<br />

-caten<strong>in</strong> <strong>in</strong> the dorsal portion<br />

Inactivation of GSK3 on both<br />

blastomeres of 2 cell.<br />

Formation of 2 nd <strong>axis</strong>.<br />

GSK3 is one of the key to<br />

determ<strong>in</strong>e the ventral-dorsal <strong>axis</strong><br />

through -caten<strong>in</strong>.


Induction of the organizer <strong>in</strong> the dorsal<br />

mesoderm<br />

• Tcf3, ubiquitous transcription factor<br />

• -caten<strong>in</strong>/Tcf3 complex can<br />

activate the transcription.<br />

• Goosecoid prote<strong>in</strong>, transcription<br />

factor which can activate genes <strong>in</strong><br />

organizer.<br />

Difference of -caten<strong>in</strong><br />

expression cause the ventraldorsal<br />

<strong>axis</strong>.


Mesoderm <strong>in</strong>duction <strong>and</strong> organizer <strong>formation</strong><br />

by -caten<strong>in</strong> <strong>and</strong> TGF- prote<strong>in</strong>s<br />

Xnr, nodal-related gene<br />

<strong>in</strong>duced by -caten<strong>in</strong>,<br />

Veg1 <strong>and</strong> Vg1. <br />

Goosecoid <strong>in</strong>duction


Functions of the Organizer<br />

• Induction of neural ectoderm <strong>and</strong> dorsal<br />

mesoderm: BMP <strong>in</strong>hibitors<br />

• Nogg<strong>in</strong><br />

• Chord<strong>in</strong><br />

• Follistat<strong>in</strong>


Four major ability of the organizer<br />

Self-differentiate dorsal mesoderm.<br />

Dorsalize the surround<strong>in</strong>g mesoderm <strong>in</strong>to paraxial<br />

mesoderm.<br />

Dorsalize the ectoderm, <strong>in</strong>clud<strong>in</strong>g the <strong>formation</strong> of<br />

neural tube.<br />

Initiate the movements of gastrulation.


Ability of goosecoid mRNA to <strong>in</strong>duce a<br />

new <strong>axis</strong><br />

Gastrula<br />

Control Injected<br />

goosecoid mRNA<br />

+goosecoid<br />

S<strong>in</strong>gle<br />

blastopore<br />

Double<br />

blastopore<br />

Control<br />

Two dorsal axes Two heads<br />

Goosecoid can <strong>in</strong>duce the <strong>axis</strong>.


Neural structures <strong>in</strong>duced <strong>in</strong> presumptive<br />

ectoderm<br />

Dorsal<br />

lip<br />

Ectoderm<br />

Filter membrane<br />

Incubation of ectoderm with dorsal lip<br />

without the direct contacts <strong>in</strong>duced<br />

neural structures. <br />

Secreted factors from dorsal<br />

lip <strong>in</strong>duced the neural<br />

differentiation. <br />

What is the secreted factors<br />

from dorsal lip


Rescue of dorsal structures by Nogg<strong>in</strong><br />

prote<strong>in</strong><br />

Control<br />

Exposure to UV causes no the<br />

cortical rotation.<br />

<br />

No organizer<br />

+ nogg<strong>in</strong> mRNA<br />

Nogg<strong>in</strong> mRNA <strong>in</strong>jection rescue the<br />

dorsal structure <strong>in</strong> dosagerelated<br />

fashion


Localization of nogg<strong>in</strong> mRNA <strong>in</strong> the<br />

organizer tissue<br />

In situ Hybridization<br />

Gastrulation<br />

Involution<br />

Blastopore lip<br />

Convergent<br />

extension<br />

Prechordal plate<br />

& pharyngeal<br />

endoderm<br />

Extend<br />

beneath the<br />

ectoderm


Localization of chord<strong>in</strong> mRNA<br />

In situ Hybridization<br />

Just prior to<br />

gastrulation<br />

Chord<strong>in</strong>, one of the organizer prote<strong>in</strong><br />

Beg<strong>in</strong>n<strong>in</strong>g gastrulation,<br />

Dorsal blastopore lip<br />

Later gastrulation,<br />

organizer tissues<br />

Chord<strong>in</strong> expression is activated by -caten<strong>in</strong>


Model for the action of the organizer<br />

Organizer molecules block<br />

the action of BMP4.<br />

Immuno-histo chemistry of Smad1 which is<br />

downstream of the cascade BMP4. <br />

Organizer molecules <strong>in</strong>duce ventral-dorsal<br />

<strong>axis</strong> through BMP4 signal<strong>in</strong>g pass way.


Control of neural specification by the<br />

levels of BMPs<br />

Whole mount <strong>in</strong> situ hybridization of Sox2, which is a specific mRNA <strong>in</strong><br />

neural tube <br />

Control<br />

Hyper BMPs by morphol<strong>in</strong>o.<br />

Lack of Sox2 expression <strong>in</strong><br />

neural tube<br />

Control<br />

Hypo BMPs<br />

Epidermis is <strong>in</strong>structed by BMP<br />

signal<strong>in</strong>g, <strong>and</strong> the organizer works by<br />

block<strong>in</strong>g the BMP signal from reach<strong>in</strong>g<br />

the ectoderm above it.<br />

Lack of ventral-dorsal <strong>axis</strong> <strong>in</strong><br />

neural tube


The regional Specificity of Induction<br />

• The determ<strong>in</strong>ation of regional differences<br />

• The head <strong>in</strong>ducer: Wnt <strong>in</strong>hibitors<br />

• Cerberus<br />

• Frzb <strong>and</strong> Dickkopf<br />

• Insul<strong>in</strong>-like growth factors<br />

• Trunk <strong>in</strong>duction: Wnt signals <strong>and</strong> ret<strong>in</strong>oic acid


Regional specificity of <strong>in</strong>duction<br />

Transplantation of archenteron roof <strong>in</strong>to blastocoel <strong>in</strong> <strong>early</strong> gastrulae.<br />

<br />

Head with balancers<br />

Head with balancers,<br />

eyes <strong>and</strong> forebra<strong>in</strong><br />

Posterior <strong>part</strong> of head,<br />

diencephalon <strong>and</strong> otic<br />

vesicles<br />

Trunk-tail segment


Regionally specific <strong>in</strong>duc<strong>in</strong>g action of the dorsal<br />

blastopore lip<br />

Early blastula dorsal lips<br />

<strong>in</strong>duce anterior dorsal<br />

structures <br />

Older blastula dorsal lips<br />

<strong>in</strong>duce more posterior<br />

dorsal structures <br />

Earlier organizer: <strong>in</strong>duce bra<strong>in</strong>s <strong>and</strong> heads<br />

Later organizer: <strong>in</strong>duce sp<strong>in</strong>al cords <strong>and</strong> tails<br />

Region <strong>and</strong> tim<strong>in</strong>g makes difference.


Paracr<strong>in</strong>e factor antagonists from the<br />

organizer<br />

What does <strong>in</strong>duce the head Wnt <strong>in</strong>hibitors<br />

Secrete from<br />

Both active<br />

Both <strong>in</strong>active<br />

Epidermis is formed by<br />

hav<strong>in</strong>g both the Wnt <strong>and</strong><br />

BMP signal<strong>in</strong>g pathways.


Cerberus <strong>in</strong>duces head structures as well as a<br />

duplicated heart <strong>and</strong> liver<br />

Injection of Cerberus mRNA <strong>in</strong>to D4 cell (ventral;<br />

vegetal) at 32-cell stage.<br />

Head structures, heart <strong>and</strong> liver were <strong>in</strong>duced.<br />

By block<strong>in</strong>g BMPs, Nodalrelated<br />

prote<strong>in</strong> <strong>and</strong> Wxnt8,<br />

cerberus can <strong>in</strong>duce a head.


Xwnt8 is ventraliz<strong>in</strong>g the mesoderm <strong>and</strong><br />

prevent<strong>in</strong>g anterior head <strong>formation</strong><br />

• Frzb <strong>and</strong> Dickkopf prote<strong>in</strong> is<br />

secreted by the anterior region of<br />

the organizer.<br />

• Frzb <strong>and</strong> Dickkopf b<strong>in</strong>d to Xwnt8.<br />

• Block the ventraliz<strong>in</strong>g function of<br />

Xwnt8.


Insul<strong>in</strong>-like growth factors enhance anterior<br />

neural <strong>development</strong><br />

Expression of<br />

Igf3 <strong>in</strong> anterior<br />

neural tube<br />

An ectopic headlike<br />

structure<br />

<strong>in</strong>duced by Igf2<br />

mRNA <strong>in</strong>jection.<br />

IGF <strong>in</strong>hibition<br />

The cement gl<strong>and</strong> <strong>and</strong><br />

eyes are absent.<br />

Control<br />

+IGF receptor <strong>in</strong>hibitor<br />

at 4-cell stage


Trunk <strong>in</strong>duction: The Wnt signal<strong>in</strong>g pathway<br />

<strong>and</strong> posteriorization of the neural tube<br />

-caten<strong>in</strong> density <strong>in</strong> future neural plate<br />

Chang<strong>in</strong>g the level of Wnt signal<strong>in</strong>g alters the expression of<br />

regionally specific markers <strong>in</strong> neurula. <br />

Control +Xwnt8 +Xfrzb1<br />

Less anterior<br />

More anterior<br />

Bf1, forebra<strong>in</strong>; Otx2, forebra<strong>in</strong> & midbra<strong>in</strong>; Krox20, two region of h<strong>in</strong>dbra<strong>in</strong>


Trunk <strong>in</strong>duction: The Wnt signal<strong>in</strong>g pathway<br />

<strong>and</strong> posteriorization of the neural tube<br />

Double-gradient model<br />

o BMP gradient: ventral-dorsal <strong>axis</strong><br />

Ventral > Dorsal<br />

o Wnt gradient: anterior-posterior <strong>axis</strong><br />

Anterior < Posterior on neural plate


Model of organizer function <strong>and</strong> <strong>axis</strong><br />

specification <strong>in</strong> the Xenopus gastrula<br />

Anteriorposterior<br />

<strong>axis</strong><br />

Ventraldorsal<br />

<strong>axis</strong><br />

IGFs


Specify<strong>in</strong>g the left-right <strong>axis</strong>


Left-Right Axis: Pitx2 determ<strong>in</strong>es the<br />

direction of heart loop<strong>in</strong>g <strong>and</strong> gut coil<strong>in</strong>g<br />

Wild-type<br />

Injected Pitx2 <br />

Pitx2 <strong>in</strong> just left<br />

side of mesoderm.<br />

Counter-clockwise<br />

gut coil<strong>in</strong>g<br />

Pitx2 <strong>in</strong> both side<br />

of mesoderm<br />

R<strong>and</strong>om gut<br />

coil<strong>in</strong>g<br />

Nodal prote<strong>in</strong> establishes left-light polarity by activat<strong>in</strong>g Pitx2 on<br />

the left side of embryo.


Next class<br />

Chapter-11: The <strong>early</strong> <strong>development</strong> vertebrates:<br />

fish, birds <strong>and</strong> mammals

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!