17.01.2015 Views

1 Wave propagation - USC Geodynamics

1 Wave propagation - USC Geodynamics

1 Wave propagation - USC Geodynamics

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

1 <strong>Wave</strong> <strong>propagation</strong><br />

1 WAVEPROPAGATION<br />

Figure1: Finitedifference discretization of the2D acousticproblem.<br />

We briefly discuss two examples for solving wave <strong>propagation</strong> type problems with<br />

finite differences, the acoustic and the seismicproblem.<br />

1.1 Acoustic problemwithstandardgrid<br />

In an isotropically elastic medium, acoustic wave <strong>propagation</strong>, where we are only taking<br />

careofasingletypeofwave,canbedescribedbyasetoftwopartialdifferentialequations,<br />

leadingtoan hyperbolic problem. Firstly, Newtons 2 nd law,<br />

and,secondly, a constitutive law,<br />

∂ 2 u<br />

∂t 2 = ü = 1 ρ ∇2 p = b∇ 2 p (1)<br />

p = K∇ ·u. (2)<br />

Here,u = {u x ,u y ,u z }arethethreecomponentsofparticledisplacement, pispressure,bis<br />

buoyancy,whichistheinverseofdensity, ρ,andKisthebulkmodulus,orcompressibility.<br />

Substituting eq.(2)for u into eq.(1), we can find<br />

Ifwe assume thatdensity isconstant, then<br />

<strong>USC</strong>GEOL557: ModelingEarth Systems 1<br />

∂ 2 p<br />

= K∇ · (b∇p). (3)<br />

∂t2 ∂ 2 p<br />

∂t 2 = v2 ∇ 2 p, (4)


1 WAVEPROPAGATION<br />

where<br />

v = √ Kb =<br />

√<br />

K<br />

ρ<br />

denotesthe bulk sound velocity. Simplifying toa2Dcase, wehave<br />

∂ 2 (<br />

p<br />

∂<br />

∂t 2 = v2 (x,z)<br />

2 )<br />

p<br />

∂x 2 + ∂2 p<br />

∂z 2 . (6)<br />

The equation for propogation of SH waves, the transverse components of S waves, in<br />

seismology hasasimilar form aseq. (6):<br />

∂ 2 (<br />

u<br />

∂<br />

∂t 2 = v2 SH (x,z) 2 )<br />

u<br />

∂x 2 + ∂2 u<br />

∂z 2 , (7)<br />

where u isthe displacementandV SH isthe velocity of the SH component.<br />

Likewise, a similar equation also applies for tsunami waves at long wavelengths, in<br />

the “shallow water approximation”,<br />

∂ 2 (<br />

ξ<br />

∂ 2 )<br />

∂t 2 = ξ<br />

v2 (x,z)<br />

∂x 2 + ∂2 ξ<br />

∂z 2 . (8)<br />

Here, ξ is the height of the tsunami wave, v is the velocity defined by the water depth H<br />

as<br />

v = √ gH. (9)<br />

To solve equations (6)-(8), with finite differences, we use the mesh shown in Fig. 1.<br />

Here, we have p n i,j<br />

= P(i∆h,j∆h,n∆t) and v i,j = v(i∆h,j∆h). Applying the 2 nd -order,<br />

second derivative formula to the acoustic waveequation eq.(6),<br />

p n−1<br />

i,j<br />

−2pi,j n + pn+1 i,j<br />

∆t 2<br />

= v 2 i,j<br />

[ p<br />

n<br />

i−1,j<br />

−2p n i,j + pn i+1,j<br />

∆h 2<br />

(5)<br />

+ pn i,j−1 −2pn i,j + ]<br />

pn i,j+1<br />

∆h 2 . (10)<br />

Afterrearranging, wehave<br />

(<br />

)<br />

p n+1<br />

i,j<br />

= −p n−1<br />

i,j<br />

+ (2 −4a i,j )2pi,j n +a i,j pi−1,j n + pn i+1,j + pn i,j−1 + pn i,j+1 , (11)<br />

where<br />

a i,j = v 2 ∆h 2<br />

i,j<br />

∆t2. (12)<br />

Then, the pressure ordisplacementattime step n +1can be derived explicitly from time<br />

step n and n −1 asin eq.(11), though two solutions have tobe stored.<br />

Note that we use 2 nd -order second derivatives in eq. (11). Two considerations are requiredforchoosingsuitabletimestep<br />

∆tandspatialstep ∆h: griddispersionandstability.<br />

<strong>USC</strong>GEOL557: ModelingEarth Systems 2


1 WAVEPROPAGATION<br />

When waves propagate on a discrete grid, they produces an artificial variation of velocity<br />

withfrequency, whichiscalledgriddispersion. Thehigherfrequencysignals,with<br />

slower velocity, are delayed relative to the lower frequency arrivals. This dispersion increases<br />

as ∆h becomes larger. In other words, a small ∆h is required to avoid grid dispersion.<br />

To achieve an accurate solution, we need at least 12 points per wavelength for space<br />

foraschemewith2 nd orderaccuracy. Fora4 th orderscheme,aminimumof6.5pointsper<br />

wavelength arerequired. For afixedfrequency, thisminimumwavelength isdetermined<br />

by the minimum velocity (v min ), so the accuracy of the system is governed by (v min ).<br />

Following astability analysis, we can derivethe stability requirementhere as:<br />

∆t ≤<br />

1 √<br />

2<br />

∆h<br />

v max<br />

(13)<br />

where v max isthe maximum velocity on the grid.<br />

1.1.1 Exercise1<br />

• Program the 2D acoustic wave <strong>propagation</strong> in standard grid scheme as in Fig. 1<br />

(wave_acoustic_2D.m). Study the wavefield and seismograms with different choicesof<br />

∆t and ∆h anddemonstrate how ∆t and ∆h affectthe stability andgrid dispersion<br />

in the program.<br />

• Introduceheterogeneitiesinthevelocities,suchasathinlayerwithhalfvelocity,and<br />

describethedifferencefromtheisotropicmodel,especiallyhowthislayeraffectsthe<br />

observed seismograms. Run the code with the velocity inside the thin layer being<br />

zeroand explain the result.<br />

1.2 Elasticwave problemwithstaggeredgrid<br />

For 2Delasticwave case (P-SV system), we have the equationsas:<br />

ρ ∂2 u x<br />

∂t 2 = ∂τ xx<br />

∂x + ∂τ xz<br />

∂z , (14)<br />

ρ ∂2 u z<br />

∂t 2 = ∂τ xz<br />

∂x + ∂τ zz<br />

∂z , (15)<br />

τ xx = (λ +2µ) ∂u x<br />

∂x + λ∂u z<br />

∂z , (16)<br />

and<br />

τ zz = (λ +2µ) ∂u z<br />

∂z + λ∂u x<br />

∂x , (17)<br />

( ∂ux<br />

τ xz = µ<br />

∂z + ∂u )<br />

z<br />

. (18)<br />

∂x<br />

<strong>USC</strong>GEOL557: ModelingEarth Systems 3


1 WAVEPROPAGATION<br />

Here, (u x ,u z ) are the particle displacements. For seismic waves, they are typically called<br />

radial and vertical components, respectively, if they are recorded at surface. Further, τ is<br />

thestresstensor,and λ(x,z)and µ(x,z)theelastic,Lamécoefficients(µisshearmodulus).<br />

Typically, those equations are solved for particle velocities as u = ∂u x<br />

∂t<br />

and v = ∂u z<br />

∂t . Then,<br />

the system istransformed into the frst-order hyperbolic system:<br />

(<br />

∂u<br />

∂t = b ∂τxx<br />

∂x + ∂τ xz<br />

∂z<br />

(<br />

∂v<br />

∂t = b ∂τxz<br />

∂x + ∂τ zz<br />

∂z<br />

)<br />

, (19)<br />

)<br />

, (20)<br />

∂τ xx<br />

= (λ +2µ) ∂u<br />

∂t<br />

∂x + λ∂v ∂z , (21)<br />

∂τ zz<br />

= (λ +2µ) ∂v<br />

∂t<br />

∂x + λ∂u ∂z , (22)<br />

(<br />

∂τ xz ∂u<br />

= µ<br />

∂t ∂z + ∂v )<br />

. (23)<br />

∂x<br />

Atypicalseismicwave<strong>propagation</strong>problemneedstodealwithmediumwithvariable<br />

Poisson’s ratio, ν, which can be definedas<br />

ν =<br />

λ<br />

2(λ + µ) . (24)<br />

For the special case of λ = µ, ν = 0.25, and many rocks have Poisson’s ratios not far<br />

from 1/4. For liquids, ν → 0.5. For seismic wave <strong>propagation</strong>, this is particularly important<br />

when ocean water or the outer core of the Earth are needed to be considered in the<br />

problem, which ishard to beresolved with the traditional setup ofgrid asin Fig. 1.<br />

To satisfy both requirements for stability and grid dispersion at those problems, a<br />

P-SV staggered-grid scheme is applied. Note the structure of the elastic wave problem,<br />

eq.(19)-eq.(23),theyallowthestressandparticlevelocitytobespatiallyinterlacedonthe<br />

gridsasinFig. 2. Thestaggered-gridschemeallowsthespatialderivativetobecomputed<br />

to a much higher accuracy (e.g. Levander, 1988). (This computational aspect is similar to<br />

the staggered grid finite difference approach to the Stokes problem, discussed in sec. .)<br />

To add the complexity, the stress and velocity field can also staggered in time. Follow<br />

the explicit scheme,the second order difference equationsfor Equation (19)-(23)are:<br />

u k+1/2<br />

i+1/2,j = uk−1/2<br />

v k+1/2<br />

i,j+1/2 = vk−1/2<br />

i+1/2,j +b i+1/2,j<br />

+b i+1/2,j<br />

∆t<br />

∆h<br />

i,j+1/2 +b i,j+1/2<br />

∆t<br />

( )<br />

Σi+1,j k ∆h<br />

− Σk i,j<br />

(<br />

Γi+1/2,j+1/2 k − Γk i+1/2,j−1/2<br />

∆t<br />

(<br />

∆h<br />

+b i,j+1/2<br />

∆t<br />

∆h<br />

<strong>USC</strong>GEOL557: ModelingEarth Systems 4<br />

Γi+1/2,j+1/2 k − Γk i−1/2,j+1/2<br />

(<br />

Ξ k i,j+1 − Ξk i,j<br />

)<br />

, (25)<br />

)<br />

)<br />

, (26)


1 WAVEPROPAGATION<br />

Figure2: 2Dstaggeredfinitedifference gridfor wave<strong>propagation</strong>.<br />

i,j<br />

= Σi,j k + (λ +2µ) ∆t<br />

i,j<br />

∆h<br />

∆t<br />

+ λ i,j<br />

∆h<br />

Σ k+1<br />

i,j<br />

= Ξi,j k + (λ +2µ) ∆t<br />

i,j<br />

∆h<br />

∆t<br />

+ λ i,j<br />

∆h<br />

Ξ k+1<br />

(<br />

u k+1/2<br />

i+1/2,j −uk+1/2 i−1/2,j<br />

(<br />

v k+1/2<br />

i,j+1/2 −vk+1/2 i,j−1/2<br />

(<br />

v k+1/2<br />

i,j+1/2 −vk+1/2 i,j−1/2<br />

(<br />

u k+1/2<br />

i+1/2,j −vk+1/2 i−1/2,j<br />

Γ k+1<br />

i+1/2,j+1/2 = Γk i+1/2,j+1/2 + µ i+1/2,j+1/2<br />

∆t<br />

(<br />

∆h<br />

+ µ i+1/2,j+1/2<br />

∆t<br />

∆h<br />

To time-evolve the solution for one full ∆t, wefollow:<br />

1. update velocities from the stress;<br />

2. update the stress from the velocities.<br />

For a homogeneous medium, the stability condition is<br />

)<br />

)<br />

, (27)<br />

)<br />

)<br />

, (28)<br />

v k+1/2<br />

i+1,j+1/2 −vk+1/2 i,j+1/2<br />

(<br />

u k+1/2<br />

i+1/2,j+1 −uk+1/2 i+1/2,j<br />

)<br />

)<br />

. (29)<br />

v P<br />

∆t<br />

∆h < 1 √<br />

2<br />

, (30)<br />

<strong>USC</strong>GEOL557: ModelingEarth Systems 5


1 WAVEPROPAGATION<br />

where<br />

v P =<br />

√<br />

λ +2µ<br />

ρ<br />

(31)<br />

isthe P-wave velocity. Thestability condition isindependentof the S-wave velocity<br />

√ µ<br />

v S =<br />

ρ<br />

(32)<br />

because information will propagate atthe P wavespeed.<br />

To minimize the grid dispersion, the spatial sampling required at least 10 gridpoints<br />

per wavelength, which is defined by the v P . For a 4 th -order approach, the sampling rate<br />

can be reduced to5gridpoints/wavelength (Levander, 1988).<br />

Several other issues are alsovery important in wave <strong>propagation</strong> in practice:<br />

1. If a boundary condition is not well implemented, the related reflected waves from<br />

the boundaries of the domain will affect the results strongly. Depending on the<br />

problem, different boundary conditions can be applied to the edges: free-surface<br />

conditions,absorbingboundaries(ClaytonandEngquist,1977),andtherecentlywidelyadopted<br />

Perfectly Matched Layer (PML)absorbing boundary (Collinoand Tsogka,<br />

2001).<br />

2. Thesource excitation, which initializesthewave<strong>propagation</strong>, alsohastobetreated<br />

with care. In general, a source can be implemented by simply adding a prescribed<br />

source time function to the source mesh. For example, an explosion point source<br />

time function S(t) can be addedto the 2Delastic case as:<br />

τ xx or zz (source grid) = τ xx or zz (FD solution at source grid) +S(t)<br />

1.2.1 Exercise2<br />

• Program the 2D elastic wave <strong>propagation</strong> in staggered grid scheme as in Fig. 2<br />

(wave_elastic_staggered_2D.m). Choose ∆t and ∆h and describe the wavefield<br />

(both vertical and horizontal components) for the model with uniform velocities.<br />

Identifythe first P and SV arrivalson the recorded seismograms.<br />

• Include a thin liquid layer (v S = 0) in the model and explain the result. Note for a<br />

typical wave <strong>propagation</strong> problem, the input models are v P , v S , and density ρ, so<br />

the conversions to λ and µ are required in the program.<br />

<strong>USC</strong>GEOL557: ModelingEarth Systems 6


BIBLIOGRAPHY<br />

Bibliography<br />

Clayton, R., and H. Engquist (1977), Absorbing boundary conditions for acoustic and<br />

elasticwave equations, Bull. Seismol.Soc. Am.,67, 1529–1540.<br />

Collino, F., and C. Tsogka (2001), Application of the perfectly matched absorbing layer<br />

model to the linear elastodynamic problem in anisotropic heterogeneous media, Geophysics,66,294–307.<br />

Levander, A. R. (1988), Fourth-order finite-difference P-SV seismograms, Geophysics, 53,<br />

1425–1436.<br />

<strong>USC</strong>GEOL557: ModelingEarth Systems 7

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!