17.01.2015 Views

Trace element stoichiometry of marine plankton & its effect ... - IMBER

Trace element stoichiometry of marine plankton & its effect ... - IMBER

Trace element stoichiometry of marine plankton & its effect ... - IMBER

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Twining et al. 2003<br />

<strong>Trace</strong> <strong>element</strong> <strong>stoichiometry</strong> <strong>of</strong> <strong>marine</strong> <strong>plankton</strong> & <strong>its</strong><br />

<strong>effect</strong> on carbon trophic dynamics<br />

Maria T. Maldonado<br />

Earth & Ocean Sciences, University <strong>of</strong> British Columbia, Vancouver, Canada


Talk Outline<br />

1. Technical challenges hll in determining dt ii <strong>plankton</strong> trace metal tl<br />

<strong>stoichiometry</strong><br />

2. Overview <strong>of</strong> “bulk <strong>plankton</strong>” metal <strong>stoichiometry</strong><br />

3. Phyto<strong>plankton</strong>‐specific metal <strong>stoichiometry</strong><br />

‐ evolutionary, taxonomic, environmental influences<br />

4. Transfer efficiencies <strong>of</strong> metals to upper trophic levels.<br />

5. Metal <strong>stoichiometry</strong> & links to the <strong>marine</strong> C cycle<br />

‐ bacteria/phyto<strong>plankton</strong>/zoo<strong>plankton</strong><br />

‐ C fixation, calcification & C remineralization<br />

6. Ecological implications phyto<strong>plankton</strong> metal <strong>stoichiometry</strong><br />

7. Conclusions<br />

Armbrust (2009)


Technical challenges determining <strong>plankton</strong> trace metal <strong>stoichiometry</strong><br />

‣Separating living from detrital/lithogenic material; contribution <strong>of</strong><br />

various organisms to a given size classes<br />

‐ Laboratory (cellular <strong>stoichiometry</strong>) vs. field estimates (bulk)<br />

‣ Intracellular vs. extracellular trace metals; i.e. uptake vs. adsorption<br />

‣Normalizing cellular trace metal concentrations: P vs. C<br />

‣Measurements are time consuming and potentially expensive<br />

ICPMS: multi-<strong>element</strong> in situ & lab; (extra- intra-cellular wash; lithogenic<br />

ICPMS: multi-<strong>element</strong> in situ & lab; (extra-, intra-cellular wash; lithogenic<br />

contamination)<br />

SXRF: metal <strong>stoichiometry</strong> and mapping <strong>of</strong> individual cells in situ & lab<br />

Radiotracers: physiological studies (uptake, recycling, storage...)


Synchroton X‐ray fluorescence microprobe<br />

Light, epifluorescence micrographs<br />

& SXRF false-color <strong>element</strong> maps<br />

using estimates<br />

<strong>of</strong> cell volume to<br />

calculate cell C<br />

Fluorescence spectra<br />

<strong>of</strong> a diatom<br />

Iron content <strong>of</strong> Thalassiosira weissflogii<br />

Twining et al. 2003, 2004, 2008


What to use to normalize the trace metal data, using P or C<br />

- <strong>Trace</strong> metals & C cycle: normalize to cellular C<br />

- Geochemists prefer normalizing to P<br />

- P content is very plastic (Sterner & Elser 2002)<br />

- P is not the best proxy for biomass<br />

Trend: different Cu:P quotas for green vs. red algae disappears if normalized to C<br />

Species<br />

C:P<br />

(mol:mol)<br />

Cu:P<br />

(mmol:mol)<br />

Cu:C<br />

(μmol:mol)<br />

Mean Cu:P<br />

(mmol:mol)<br />

Mean Cu:C<br />

(μmol:mol)<br />

Chlorophyceae 198 ±35 0.45 ± 0.31 2.17 ±1.19<br />

Prasinophyceae 200 ± 9 0.55 ± 0.06 2.77 ±0.2 0.5 2.47<br />

Dinophyceae 117 ±31 0.29 ± 0.24 2.26 ±1.62<br />

Prymnesiophyceae 70 ± 8 0.09 ± 0.03 1.32 ±0.56<br />

Bacillariophyceae 62 ±22 0.17 ±0.09 2.8 ±1.4 0.18 2.13<br />

Data from Ho et al. 2003


Talk Outline<br />

1. Technical challenges hll in determining dt ii <strong>plankton</strong> trace metal tl<br />

<strong>stoichiometry</strong><br />

2. Overview <strong>of</strong> “bulk <strong>plankton</strong>” metal <strong>stoichiometry</strong><br />

3. Phyto<strong>plankton</strong>‐specific metal <strong>stoichiometry</strong><br />

‐ evolutionary, taxonomic, environmental influences<br />

4. Transfer efficiencies <strong>of</strong> metals to upper trophic levels.<br />

5. Metal <strong>stoichiometry</strong> & links to the <strong>marine</strong> C cycle<br />

‐ bacteria/phyto<strong>plankton</strong>/zoo<strong>plankton</strong><br />

‐ C fixation, calcification & C remineralization<br />

6. Ecological implications phyto<strong>plankton</strong> metal <strong>stoichiometry</strong><br />

7. Conclusions<br />

Armbrust (2009)


Overview <strong>of</strong> “bulk <strong>plankton</strong>” metal <strong>stoichiometry</strong> (lab vs. field)<br />

Study<br />

(mol:mol)<br />

Compiled by<br />

Bruland et al. 1991<br />

P Fe Zn Cu Mn Ni Cd Co<br />

1000 5 2 0.4 0.4 0.4 0.4<br />

Kuss & Kremling 1000 5 2 0.4 2 1 0.5 0.2<br />

1999<br />

Twinning et al. 2004 1000 1.8 5.4 0.26 0.61 0.21<br />

Ho et al. 2003 1000 7.5 0.8 0.38 3.28 0.22 0.19<br />

Copepods, Ho et al.<br />

2007<br />

1000 13 3.6 1.1 0.33 0.071<br />

Mean 6.5 2.8 0.57 1.25 0.56 0.37 0.15<br />

Range (X‐fold) 7.2 6.8 2.9 12.6 4.5 2.4 2.8<br />

MEAN stoichiometric values vary 2-13 fold


Size‐fractionation <strong>of</strong> metal <strong>stoichiometry</strong> in the field<br />

• Metal content (Al, Ti, Mn, Fe, Co, Ni, Cu, Zn) decreases as size <strong>of</strong> organisms<br />

increases (Ho et al. 2007)<br />

a) Higher SA to volume ratio in the smaller fractions, potential for more<br />

extracellular trace metals<br />

Ho et al 2007<br />

Me g wt -1 )<br />

(μg M<br />

10 -60 m<br />

60 -150 m > 150 m


But there is significant variability within the mean values….<br />

Two ends <strong>of</strong> each box represents<br />

the 25 & 75 percentiles for all data<br />

<br />

Under identical growth<br />

conditions, difference<br />

among species (~20 fold,<br />

exception Cd) ) reflects:<br />

1. Unique cell biochemistry<br />

2. Ability to take up Me<br />

+<br />

3. Ability to store Me +<br />

Ho et al. 2003


Talk Outline<br />

1. Technical challenges hll in determining dt ii <strong>plankton</strong> trace metal tl<br />

<strong>stoichiometry</strong><br />

2. Overview <strong>of</strong> “bulk <strong>plankton</strong>” metal <strong>stoichiometry</strong><br />

3. Phyto<strong>plankton</strong>‐specific metal <strong>stoichiometry</strong><br />

‐ evolutionary, taxonomic, environmental influences<br />

4. Transfer efficiencies <strong>of</strong> metals to upper trophic levels.<br />

5. Metal <strong>stoichiometry</strong> & links to the <strong>marine</strong> C cycle<br />

‐ bacteria/phyto<strong>plankton</strong>/zoo<strong>plankton</strong><br />

‐ C fixation, calcification & C remineralization<br />

6. Ecological implications phyto<strong>plankton</strong> metal <strong>stoichiometry</strong><br />

7. Conclusions<br />

Armbrust (2009)


Phyto<strong>plankton</strong>‐specific metal <strong>stoichiometry</strong><br />

Taxonomic trends (Quigg et al. 2003 & Ho et al. 2003) (~ 20 fold difference):<br />

• Green superfamily (chl b): high Fe (higher PSI:PSII ratio) , Cu & Zn<br />

• Red superfamily (chl c): high Cd, Co & Mn<br />

• Prokaryotic autotrophs: high Fe, Mo, Co<br />

Geographic trends:<br />

• Coastal phyto<strong>plankton</strong> higher Fe quotas (~2 ‐ 4 fold) than oceanic<br />

(Sunda and Huntsman 1995, Maldonado and Price 1996)<br />

Environmental trends:<br />

• Metal concentrations:<br />

– Change in [Me’] by 100 X changes quota by 2‐2020 fold<br />

– <strong>Trace</strong> metal substitutions (ie. Zn, Co & Cd), 2‐5 fold<br />

• Light:<br />

– Increase metal tlquotas under low light high h (10 fold or greater) )(Finkel et al. 2006)<br />

• Macronutrient interactions (N &P): 2‐10 fold;


Taxonomic patterns <strong>of</strong> phyto<strong>plankton</strong> metal <strong>stoichiometry</strong><br />

Clear differences<br />

among taxonomic<br />

groups<br />

For modellers, using<br />

functional groups<br />

seems appropriate<br />

Growth conditions also<br />

important.<br />

t<br />

Ho et al. 2003


Interactions between trace metals and acquisition <strong>of</strong> N, C and P<br />

Price and Morel 2003<br />

-Fe limitation, high Si:N diatom (Hutchins & Bruland 98; Takeda 98; Marchetti & Harrison 2007)<br />

-Fe limitation, high cellular P (~1.5 fold, Price 2005)


Talk Outline<br />

1. Technical challenges hll in determining dt ii <strong>plankton</strong> trace metal tl<br />

<strong>stoichiometry</strong><br />

2. Overview <strong>of</strong> “bulk <strong>plankton</strong>” metal <strong>stoichiometry</strong><br />

3. Phyto<strong>plankton</strong>‐specific metal <strong>stoichiometry</strong><br />

‐ evolutionary, taxonomic, environmental influences<br />

4. Transfer efficiencies <strong>of</strong> metals to upper trophic levels.<br />

5. Metal <strong>stoichiometry</strong> & links to the <strong>marine</strong> C cycle<br />

‐ bacteria/phyto<strong>plankton</strong>/zoo<strong>plankton</strong><br />

‐ C fixation, calcification & C remineralization<br />

6. Ecological implications phyto<strong>plankton</strong> metal <strong>stoichiometry</strong><br />

7. Conclusions<br />

Armbrust (2009)


Metal assimilation efficiency by copepods feeding on phyto<strong>plankton</strong> (ie.<br />

diatoms)<br />

1. Phyto<strong>plankton</strong> cellular trace metal partitioning: extracellular, cytoplasmic & membrane bound<br />

2. Cytoplasmic trace metal pool increases by ~ 10% during stationary phase<br />

Cu<br />

Fe<br />

Co<br />

(Reinfelder & Fisher 1991, Hutchins & Bruland 1994, Chang & Reinfelder 2000)


Metal assimilation efficiency by juvenile fish feeding on copepods<br />

Copepods trace metal partitioning: s<strong>of</strong>t‐tissue & exoskeleton<br />

Elements in the s<strong>of</strong>t tissue control assimilation efficiency by juvenile fish<br />

(Reinfelder & Fisher 1994)


Talk Outline<br />

1. Technical challenges hll in determining dt ii <strong>plankton</strong> trace metal tl<br />

<strong>stoichiometry</strong><br />

2. Overview <strong>of</strong> “bulk <strong>plankton</strong>” metal <strong>stoichiometry</strong><br />

3. Phyto<strong>plankton</strong>‐specific metal <strong>stoichiometry</strong><br />

‐ evolutionary, taxonomic, environmental influences<br />

4. Transfer efficiencies <strong>of</strong> metals to upper trophic levels.<br />

5. Metal <strong>stoichiometry</strong> & links to the <strong>marine</strong> C cycle<br />

‐ bacteria/phyto<strong>plankton</strong>/zoo<strong>plankton</strong><br />

‐ C fixation, calcification & C remineralization<br />

6. Ecological implications phyto<strong>plankton</strong> metal <strong>stoichiometry</strong><br />

7. Conclusions<br />

Armbrust (2009)


Metal <strong>effect</strong>s on C fixation and calcification rates (POC / PIC)<br />

‐ Low Fe decreases growth rate & calcification rates BUT low Zn only<br />

decreases growth rates<br />

Fe<br />

Zn<br />

(Schulz et al. 2004)


<strong>Trace</strong> metal <strong>effect</strong>s on the <strong>marine</strong> C cycle:<br />

Remineralization and C trophic transfer<br />

HETEROTROPHIC BACTERIA:<br />

- higher Fe:C ratios than phyto<strong>plankton</strong><br />

- Fe limitation lowers their growth efficiency<br />

Fe case study<br />

Tortell et al. 1996


<strong>Trace</strong> metal <strong>effect</strong>s on the <strong>marine</strong> C cycle:<br />

Remineralization and C trophic transfer<br />

PROTOZOANS<br />

Fe case study<br />

- require 2-3 fold more Fe<br />

than phyto<strong>plankton</strong><br />

-their growth efficiency<br />

decreases under low Fe<br />

(34 vs. 16 %), despite<br />

faster filtration rates and<br />

ingestion rates <strong>of</strong> C<br />

Phyto<strong>plankton</strong><br />

iron-deficient ~ 3<br />

(Maldonado & Price 1996)<br />

- Fe recycling was higher<br />

when Fe limited (60 vs.<br />

85%)<br />

(Chase & Price 1997)


Changes in relative trophic position –prey selectivity<br />

Fe case study<br />

Ochromonas<br />

MIXOTROPHS<br />

- Ingesting bacteria:<br />

an <strong>effect</strong>ive way to obtain Fe when Fe<br />

is low (additional bacterial C benef<strong>its</strong>)<br />

control<br />

- Higher growth efficiency<br />

when assimilating bacterial Fe<br />

vs. assimilating dissolved Fe<br />

- Ingestion rates & clearance rates<br />

faster for Fe limited Ochromonas<br />

o Fe supplied as dissolved or bacterial Fe<br />

control T. pseudonana with bacterial Fe<br />

(Maranger et al. 1998)


Talk Outline<br />

1. Technical challenges hll in determining dt ii <strong>plankton</strong> trace metal tl<br />

<strong>stoichiometry</strong><br />

2. Overview <strong>of</strong> “bulk <strong>plankton</strong>” metal <strong>stoichiometry</strong><br />

3. Phyto<strong>plankton</strong>‐specific metal <strong>stoichiometry</strong><br />

‐ evolutionary, taxonomic, environmental influences<br />

4. Transfer efficiencies <strong>of</strong> metals to upper trophic levels.<br />

5. Metal <strong>stoichiometry</strong> & links to the <strong>marine</strong> C cycle<br />

‐ bacteria/phyto<strong>plankton</strong>/zoo<strong>plankton</strong><br />

‐ C fixation, calcification & C remineralization<br />

6. Ecological implications phyto<strong>plankton</strong> metal <strong>stoichiometry</strong><br />

7. Conclusions<br />

Armbrust (2009)


Why do pennate diatoms dominate iron‐induced blooms<br />

High<br />

[Nitrate] µM<br />

Low<br />

Alaska<br />

SERIES<br />

July 29 th , 2002<br />

Day 20<br />

Patch size = 700 km<br />

2<br />

Eifex 2004 www.awi.de/.../Pics/<strong>plankton</strong>Inside-g.gif<br />

Pseudo‐nitzschia spp.<br />

Courtesy <strong>of</strong> Jim Gower, Boyd Institute et <strong>of</strong> Ocean al. 2004 Sciences, Nature Canada


Ecological implications <strong>of</strong> phyto<strong>plankton</strong> metal <strong>stoichiometry</strong><br />

Iron requirements in oceanic pennate vs. centric diatoms<br />

a<br />

300<br />

250<br />

200<br />

150<br />

100<br />

Oceanic Pennates, Pseudo-nitzchia spp.<br />

Oceanic Centrics, Thalassiosira spp.<br />

High Fe<br />

Quota<br />

High Fe-Q<br />

(mol Fe mol C -1 )<br />

b<br />

50<br />

0<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

• Pennates have higher h maximum<br />

Fe quotas than Centrics<br />

• Pennates & Centrics have<br />

similarly low minimum Fe requirements<br />

Fe-Qhigh : Fe-Qlow F<br />

Low Fe Quota<br />

Low Fe-Q<br />

(mol Fe mol C -1 )<br />

c<br />

2<br />

0<br />

60<br />

Oceanic Pennate diatoms (Pseudo-<br />

nitzschia spp.) have a higher h Fe storage<br />

Low Fe‐Q<br />

40<br />

20<br />

0<br />

capacity than oceanics (Thalassiosira spp.)<br />

High Fe‐Q :<br />

P. heimii type 1 (UBC403)<br />

P. cf. heimii type 2 (UBC303)<br />

P. dolorosa (UBC203)<br />

P. cf. turgidula (UBC103)<br />

T. oceanica (1003)<br />

T. parthenela (Thal 9)<br />

T. subtilis (50 Ait)<br />

P. multiseries (Orø13)<br />

P. cf. calliantha (NWFSC186)<br />

T. pseudonana (3H)<br />

T. weissflogii (Actin)<br />

Marchetti et al. L&O 2006


Iron storage molecule ferritin discovered in Pseudo‐nitzschia<br />

monomer<br />

multimer (24mer)<br />

• Exhib<strong>its</strong> ferroxidase<br />

activity<br />

• Stores > 600 atoms in vitro<br />

multimer<br />

(24mer) Marchetti et al. 2009


light<br />

Exudation<br />

Primary Production<br />

POM<br />

(particulate organic matter)<br />

Dissolved Organic Matter<br />

DOM<br />

Viral<br />

lysis<br />

Consumption<br />

Excretion<br />

Grazers<br />

Consumption<br />

C-Link<br />

Bacteria<br />

Euphotic zone<br />

mixing<br />

Excretion<br />

nutrient release<br />

Remineralization<br />

nutrient / CO 2 release<br />

C-Sink<br />

Phyto<strong>plankton</strong><br />

Sinking<br />

POM Export<br />

nutrients<br />

POM export<br />

Fecal pellets (egestion),<br />

sloppy feeding<br />

Deep Ocean<br />

sediments


Conclusions<br />

• Metal <strong>stoichiometry</strong> measurements are difficult, methods are evolving<br />

• Choice <strong>of</strong> biomass proxy for normalization is important<br />

t<br />

• Using functional phyto<strong>plankton</strong> p groups in models is good approach<br />

• Environmental influences must be considered<br />

• The transfer <strong>of</strong> metals across trophic levels appears well constrained<br />

• <strong>Trace</strong> metal <strong>stoichiometry</strong> may affect production, consumption &<br />

remineralization pathways<br />

• Understanding <strong>of</strong> metal <strong>stoichiometry</strong> can provide insights into ecological<br />

dynamics

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!