17.01.2015 Views

Trace element stoichiometry of marine plankton & its effect ... - IMBER

Trace element stoichiometry of marine plankton & its effect ... - IMBER

Trace element stoichiometry of marine plankton & its effect ... - IMBER

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Twining et al. 2003<br />

<strong>Trace</strong> <strong>element</strong> <strong>stoichiometry</strong> <strong>of</strong> <strong>marine</strong> <strong>plankton</strong> & <strong>its</strong><br />

<strong>effect</strong> on carbon trophic dynamics<br />

Maria T. Maldonado<br />

Earth & Ocean Sciences, University <strong>of</strong> British Columbia, Vancouver, Canada


Talk Outline<br />

1. Technical challenges hll in determining dt ii <strong>plankton</strong> trace metal tl<br />

<strong>stoichiometry</strong><br />

2. Overview <strong>of</strong> “bulk <strong>plankton</strong>” metal <strong>stoichiometry</strong><br />

3. Phyto<strong>plankton</strong>‐specific metal <strong>stoichiometry</strong><br />

‐ evolutionary, taxonomic, environmental influences<br />

4. Transfer efficiencies <strong>of</strong> metals to upper trophic levels.<br />

5. Metal <strong>stoichiometry</strong> & links to the <strong>marine</strong> C cycle<br />

‐ bacteria/phyto<strong>plankton</strong>/zoo<strong>plankton</strong><br />

‐ C fixation, calcification & C remineralization<br />

6. Ecological implications phyto<strong>plankton</strong> metal <strong>stoichiometry</strong><br />

7. Conclusions<br />

Armbrust (2009)


Technical challenges determining <strong>plankton</strong> trace metal <strong>stoichiometry</strong><br />

‣Separating living from detrital/lithogenic material; contribution <strong>of</strong><br />

various organisms to a given size classes<br />

‐ Laboratory (cellular <strong>stoichiometry</strong>) vs. field estimates (bulk)<br />

‣ Intracellular vs. extracellular trace metals; i.e. uptake vs. adsorption<br />

‣Normalizing cellular trace metal concentrations: P vs. C<br />

‣Measurements are time consuming and potentially expensive<br />

ICPMS: multi-<strong>element</strong> in situ & lab; (extra- intra-cellular wash; lithogenic<br />

ICPMS: multi-<strong>element</strong> in situ & lab; (extra-, intra-cellular wash; lithogenic<br />

contamination)<br />

SXRF: metal <strong>stoichiometry</strong> and mapping <strong>of</strong> individual cells in situ & lab<br />

Radiotracers: physiological studies (uptake, recycling, storage...)


Synchroton X‐ray fluorescence microprobe<br />

Light, epifluorescence micrographs<br />

& SXRF false-color <strong>element</strong> maps<br />

using estimates<br />

<strong>of</strong> cell volume to<br />

calculate cell C<br />

Fluorescence spectra<br />

<strong>of</strong> a diatom<br />

Iron content <strong>of</strong> Thalassiosira weissflogii<br />

Twining et al. 2003, 2004, 2008


What to use to normalize the trace metal data, using P or C<br />

- <strong>Trace</strong> metals & C cycle: normalize to cellular C<br />

- Geochemists prefer normalizing to P<br />

- P content is very plastic (Sterner & Elser 2002)<br />

- P is not the best proxy for biomass<br />

Trend: different Cu:P quotas for green vs. red algae disappears if normalized to C<br />

Species<br />

C:P<br />

(mol:mol)<br />

Cu:P<br />

(mmol:mol)<br />

Cu:C<br />

(μmol:mol)<br />

Mean Cu:P<br />

(mmol:mol)<br />

Mean Cu:C<br />

(μmol:mol)<br />

Chlorophyceae 198 ±35 0.45 ± 0.31 2.17 ±1.19<br />

Prasinophyceae 200 ± 9 0.55 ± 0.06 2.77 ±0.2 0.5 2.47<br />

Dinophyceae 117 ±31 0.29 ± 0.24 2.26 ±1.62<br />

Prymnesiophyceae 70 ± 8 0.09 ± 0.03 1.32 ±0.56<br />

Bacillariophyceae 62 ±22 0.17 ±0.09 2.8 ±1.4 0.18 2.13<br />

Data from Ho et al. 2003


Talk Outline<br />

1. Technical challenges hll in determining dt ii <strong>plankton</strong> trace metal tl<br />

<strong>stoichiometry</strong><br />

2. Overview <strong>of</strong> “bulk <strong>plankton</strong>” metal <strong>stoichiometry</strong><br />

3. Phyto<strong>plankton</strong>‐specific metal <strong>stoichiometry</strong><br />

‐ evolutionary, taxonomic, environmental influences<br />

4. Transfer efficiencies <strong>of</strong> metals to upper trophic levels.<br />

5. Metal <strong>stoichiometry</strong> & links to the <strong>marine</strong> C cycle<br />

‐ bacteria/phyto<strong>plankton</strong>/zoo<strong>plankton</strong><br />

‐ C fixation, calcification & C remineralization<br />

6. Ecological implications phyto<strong>plankton</strong> metal <strong>stoichiometry</strong><br />

7. Conclusions<br />

Armbrust (2009)


Overview <strong>of</strong> “bulk <strong>plankton</strong>” metal <strong>stoichiometry</strong> (lab vs. field)<br />

Study<br />

(mol:mol)<br />

Compiled by<br />

Bruland et al. 1991<br />

P Fe Zn Cu Mn Ni Cd Co<br />

1000 5 2 0.4 0.4 0.4 0.4<br />

Kuss & Kremling 1000 5 2 0.4 2 1 0.5 0.2<br />

1999<br />

Twinning et al. 2004 1000 1.8 5.4 0.26 0.61 0.21<br />

Ho et al. 2003 1000 7.5 0.8 0.38 3.28 0.22 0.19<br />

Copepods, Ho et al.<br />

2007<br />

1000 13 3.6 1.1 0.33 0.071<br />

Mean 6.5 2.8 0.57 1.25 0.56 0.37 0.15<br />

Range (X‐fold) 7.2 6.8 2.9 12.6 4.5 2.4 2.8<br />

MEAN stoichiometric values vary 2-13 fold


Size‐fractionation <strong>of</strong> metal <strong>stoichiometry</strong> in the field<br />

• Metal content (Al, Ti, Mn, Fe, Co, Ni, Cu, Zn) decreases as size <strong>of</strong> organisms<br />

increases (Ho et al. 2007)<br />

a) Higher SA to volume ratio in the smaller fractions, potential for more<br />

extracellular trace metals<br />

Ho et al 2007<br />

Me g wt -1 )<br />

(μg M<br />

10 -60 m<br />

60 -150 m > 150 m


But there is significant variability within the mean values….<br />

Two ends <strong>of</strong> each box represents<br />

the 25 & 75 percentiles for all data<br />

<br />

Under identical growth<br />

conditions, difference<br />

among species (~20 fold,<br />

exception Cd) ) reflects:<br />

1. Unique cell biochemistry<br />

2. Ability to take up Me<br />

+<br />

3. Ability to store Me +<br />

Ho et al. 2003


Talk Outline<br />

1. Technical challenges hll in determining dt ii <strong>plankton</strong> trace metal tl<br />

<strong>stoichiometry</strong><br />

2. Overview <strong>of</strong> “bulk <strong>plankton</strong>” metal <strong>stoichiometry</strong><br />

3. Phyto<strong>plankton</strong>‐specific metal <strong>stoichiometry</strong><br />

‐ evolutionary, taxonomic, environmental influences<br />

4. Transfer efficiencies <strong>of</strong> metals to upper trophic levels.<br />

5. Metal <strong>stoichiometry</strong> & links to the <strong>marine</strong> C cycle<br />

‐ bacteria/phyto<strong>plankton</strong>/zoo<strong>plankton</strong><br />

‐ C fixation, calcification & C remineralization<br />

6. Ecological implications phyto<strong>plankton</strong> metal <strong>stoichiometry</strong><br />

7. Conclusions<br />

Armbrust (2009)


Phyto<strong>plankton</strong>‐specific metal <strong>stoichiometry</strong><br />

Taxonomic trends (Quigg et al. 2003 & Ho et al. 2003) (~ 20 fold difference):<br />

• Green superfamily (chl b): high Fe (higher PSI:PSII ratio) , Cu & Zn<br />

• Red superfamily (chl c): high Cd, Co & Mn<br />

• Prokaryotic autotrophs: high Fe, Mo, Co<br />

Geographic trends:<br />

• Coastal phyto<strong>plankton</strong> higher Fe quotas (~2 ‐ 4 fold) than oceanic<br />

(Sunda and Huntsman 1995, Maldonado and Price 1996)<br />

Environmental trends:<br />

• Metal concentrations:<br />

– Change in [Me’] by 100 X changes quota by 2‐2020 fold<br />

– <strong>Trace</strong> metal substitutions (ie. Zn, Co & Cd), 2‐5 fold<br />

• Light:<br />

– Increase metal tlquotas under low light high h (10 fold or greater) )(Finkel et al. 2006)<br />

• Macronutrient interactions (N &P): 2‐10 fold;


Taxonomic patterns <strong>of</strong> phyto<strong>plankton</strong> metal <strong>stoichiometry</strong><br />

Clear differences<br />

among taxonomic<br />

groups<br />

For modellers, using<br />

functional groups<br />

seems appropriate<br />

Growth conditions also<br />

important.<br />

t<br />

Ho et al. 2003


Interactions between trace metals and acquisition <strong>of</strong> N, C and P<br />

Price and Morel 2003<br />

-Fe limitation, high Si:N diatom (Hutchins & Bruland 98; Takeda 98; Marchetti & Harrison 2007)<br />

-Fe limitation, high cellular P (~1.5 fold, Price 2005)


Talk Outline<br />

1. Technical challenges hll in determining dt ii <strong>plankton</strong> trace metal tl<br />

<strong>stoichiometry</strong><br />

2. Overview <strong>of</strong> “bulk <strong>plankton</strong>” metal <strong>stoichiometry</strong><br />

3. Phyto<strong>plankton</strong>‐specific metal <strong>stoichiometry</strong><br />

‐ evolutionary, taxonomic, environmental influences<br />

4. Transfer efficiencies <strong>of</strong> metals to upper trophic levels.<br />

5. Metal <strong>stoichiometry</strong> & links to the <strong>marine</strong> C cycle<br />

‐ bacteria/phyto<strong>plankton</strong>/zoo<strong>plankton</strong><br />

‐ C fixation, calcification & C remineralization<br />

6. Ecological implications phyto<strong>plankton</strong> metal <strong>stoichiometry</strong><br />

7. Conclusions<br />

Armbrust (2009)


Metal assimilation efficiency by copepods feeding on phyto<strong>plankton</strong> (ie.<br />

diatoms)<br />

1. Phyto<strong>plankton</strong> cellular trace metal partitioning: extracellular, cytoplasmic & membrane bound<br />

2. Cytoplasmic trace metal pool increases by ~ 10% during stationary phase<br />

Cu<br />

Fe<br />

Co<br />

(Reinfelder & Fisher 1991, Hutchins & Bruland 1994, Chang & Reinfelder 2000)


Metal assimilation efficiency by juvenile fish feeding on copepods<br />

Copepods trace metal partitioning: s<strong>of</strong>t‐tissue & exoskeleton<br />

Elements in the s<strong>of</strong>t tissue control assimilation efficiency by juvenile fish<br />

(Reinfelder & Fisher 1994)


Talk Outline<br />

1. Technical challenges hll in determining dt ii <strong>plankton</strong> trace metal tl<br />

<strong>stoichiometry</strong><br />

2. Overview <strong>of</strong> “bulk <strong>plankton</strong>” metal <strong>stoichiometry</strong><br />

3. Phyto<strong>plankton</strong>‐specific metal <strong>stoichiometry</strong><br />

‐ evolutionary, taxonomic, environmental influences<br />

4. Transfer efficiencies <strong>of</strong> metals to upper trophic levels.<br />

5. Metal <strong>stoichiometry</strong> & links to the <strong>marine</strong> C cycle<br />

‐ bacteria/phyto<strong>plankton</strong>/zoo<strong>plankton</strong><br />

‐ C fixation, calcification & C remineralization<br />

6. Ecological implications phyto<strong>plankton</strong> metal <strong>stoichiometry</strong><br />

7. Conclusions<br />

Armbrust (2009)


Metal <strong>effect</strong>s on C fixation and calcification rates (POC / PIC)<br />

‐ Low Fe decreases growth rate & calcification rates BUT low Zn only<br />

decreases growth rates<br />

Fe<br />

Zn<br />

(Schulz et al. 2004)


<strong>Trace</strong> metal <strong>effect</strong>s on the <strong>marine</strong> C cycle:<br />

Remineralization and C trophic transfer<br />

HETEROTROPHIC BACTERIA:<br />

- higher Fe:C ratios than phyto<strong>plankton</strong><br />

- Fe limitation lowers their growth efficiency<br />

Fe case study<br />

Tortell et al. 1996


<strong>Trace</strong> metal <strong>effect</strong>s on the <strong>marine</strong> C cycle:<br />

Remineralization and C trophic transfer<br />

PROTOZOANS<br />

Fe case study<br />

- require 2-3 fold more Fe<br />

than phyto<strong>plankton</strong><br />

-their growth efficiency<br />

decreases under low Fe<br />

(34 vs. 16 %), despite<br />

faster filtration rates and<br />

ingestion rates <strong>of</strong> C<br />

Phyto<strong>plankton</strong><br />

iron-deficient ~ 3<br />

(Maldonado & Price 1996)<br />

- Fe recycling was higher<br />

when Fe limited (60 vs.<br />

85%)<br />

(Chase & Price 1997)


Changes in relative trophic position –prey selectivity<br />

Fe case study<br />

Ochromonas<br />

MIXOTROPHS<br />

- Ingesting bacteria:<br />

an <strong>effect</strong>ive way to obtain Fe when Fe<br />

is low (additional bacterial C benef<strong>its</strong>)<br />

control<br />

- Higher growth efficiency<br />

when assimilating bacterial Fe<br />

vs. assimilating dissolved Fe<br />

- Ingestion rates & clearance rates<br />

faster for Fe limited Ochromonas<br />

o Fe supplied as dissolved or bacterial Fe<br />

control T. pseudonana with bacterial Fe<br />

(Maranger et al. 1998)


Talk Outline<br />

1. Technical challenges hll in determining dt ii <strong>plankton</strong> trace metal tl<br />

<strong>stoichiometry</strong><br />

2. Overview <strong>of</strong> “bulk <strong>plankton</strong>” metal <strong>stoichiometry</strong><br />

3. Phyto<strong>plankton</strong>‐specific metal <strong>stoichiometry</strong><br />

‐ evolutionary, taxonomic, environmental influences<br />

4. Transfer efficiencies <strong>of</strong> metals to upper trophic levels.<br />

5. Metal <strong>stoichiometry</strong> & links to the <strong>marine</strong> C cycle<br />

‐ bacteria/phyto<strong>plankton</strong>/zoo<strong>plankton</strong><br />

‐ C fixation, calcification & C remineralization<br />

6. Ecological implications phyto<strong>plankton</strong> metal <strong>stoichiometry</strong><br />

7. Conclusions<br />

Armbrust (2009)


Why do pennate diatoms dominate iron‐induced blooms<br />

High<br />

[Nitrate] µM<br />

Low<br />

Alaska<br />

SERIES<br />

July 29 th , 2002<br />

Day 20<br />

Patch size = 700 km<br />

2<br />

Eifex 2004 www.awi.de/.../Pics/<strong>plankton</strong>Inside-g.gif<br />

Pseudo‐nitzschia spp.<br />

Courtesy <strong>of</strong> Jim Gower, Boyd Institute et <strong>of</strong> Ocean al. 2004 Sciences, Nature Canada


Ecological implications <strong>of</strong> phyto<strong>plankton</strong> metal <strong>stoichiometry</strong><br />

Iron requirements in oceanic pennate vs. centric diatoms<br />

a<br />

300<br />

250<br />

200<br />

150<br />

100<br />

Oceanic Pennates, Pseudo-nitzchia spp.<br />

Oceanic Centrics, Thalassiosira spp.<br />

High Fe<br />

Quota<br />

High Fe-Q<br />

(mol Fe mol C -1 )<br />

b<br />

50<br />

0<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

• Pennates have higher h maximum<br />

Fe quotas than Centrics<br />

• Pennates & Centrics have<br />

similarly low minimum Fe requirements<br />

Fe-Qhigh : Fe-Qlow F<br />

Low Fe Quota<br />

Low Fe-Q<br />

(mol Fe mol C -1 )<br />

c<br />

2<br />

0<br />

60<br />

Oceanic Pennate diatoms (Pseudo-<br />

nitzschia spp.) have a higher h Fe storage<br />

Low Fe‐Q<br />

40<br />

20<br />

0<br />

capacity than oceanics (Thalassiosira spp.)<br />

High Fe‐Q :<br />

P. heimii type 1 (UBC403)<br />

P. cf. heimii type 2 (UBC303)<br />

P. dolorosa (UBC203)<br />

P. cf. turgidula (UBC103)<br />

T. oceanica (1003)<br />

T. parthenela (Thal 9)<br />

T. subtilis (50 Ait)<br />

P. multiseries (Orø13)<br />

P. cf. calliantha (NWFSC186)<br />

T. pseudonana (3H)<br />

T. weissflogii (Actin)<br />

Marchetti et al. L&O 2006


Iron storage molecule ferritin discovered in Pseudo‐nitzschia<br />

monomer<br />

multimer (24mer)<br />

• Exhib<strong>its</strong> ferroxidase<br />

activity<br />

• Stores > 600 atoms in vitro<br />

multimer<br />

(24mer) Marchetti et al. 2009


light<br />

Exudation<br />

Primary Production<br />

POM<br />

(particulate organic matter)<br />

Dissolved Organic Matter<br />

DOM<br />

Viral<br />

lysis<br />

Consumption<br />

Excretion<br />

Grazers<br />

Consumption<br />

C-Link<br />

Bacteria<br />

Euphotic zone<br />

mixing<br />

Excretion<br />

nutrient release<br />

Remineralization<br />

nutrient / CO 2 release<br />

C-Sink<br />

Phyto<strong>plankton</strong><br />

Sinking<br />

POM Export<br />

nutrients<br />

POM export<br />

Fecal pellets (egestion),<br />

sloppy feeding<br />

Deep Ocean<br />

sediments


Conclusions<br />

• Metal <strong>stoichiometry</strong> measurements are difficult, methods are evolving<br />

• Choice <strong>of</strong> biomass proxy for normalization is important<br />

t<br />

• Using functional phyto<strong>plankton</strong> p groups in models is good approach<br />

• Environmental influences must be considered<br />

• The transfer <strong>of</strong> metals across trophic levels appears well constrained<br />

• <strong>Trace</strong> metal <strong>stoichiometry</strong> may affect production, consumption &<br />

remineralization pathways<br />

• Understanding <strong>of</strong> metal <strong>stoichiometry</strong> can provide insights into ecological<br />

dynamics

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!