19.01.2015 Views

Dye-sensitized Solar Cells Using Mesoporous TiO2-based Electrodes

Dye-sensitized Solar Cells Using Mesoporous TiO2-based Electrodes

Dye-sensitized Solar Cells Using Mesoporous TiO2-based Electrodes

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Dye</strong>-<strong>sensitized</strong> <strong>Solar</strong> <strong>Cells</strong> <strong>Using</strong> <strong>Mesoporous</strong><br />

<strong>TiO2</strong>-<strong>based</strong> <strong>Electrodes</strong><br />

Supachai Ngamsinlapasathian, Takuya Fujieda,<br />

Yoshikazu Suzuki, Susumu Yoshikawa<br />

Kyoto University<br />

Institute of Advanced Energy


Introduction<br />

Energy and Environmental Crisis<br />

Pollutant emission factors for<br />

electrical generation (g/kWh)<br />

1<br />

Energy Source CO 2<br />

Coal 322.8<br />

Oil 258.5<br />

Natural Gas 178<br />

Photovoltaic 5.3<br />

<strong>Solar</strong> cell is one of the most promising<br />

ways to solve these problems !!!<br />

The strong points of solar cells are:<br />

direct conversion of solar radiation into electricity,<br />

no mechanical moving parts, no noise,<br />

no high temperatures, no pollution,<br />

solar cell module have a very long lifetime,<br />

the energy source, the sun, is free and inexhaustible,<br />

solar cell is a very flexible energy source,<br />

its power ranging from microwatts to megawatts.


Introduction<br />

2<br />

Several works have been directed toward improving the efficiency of<br />

dye-<strong>sensitized</strong> solar cells.<br />

Developing new dyes Suppressing electron<br />

recombination<br />

Improving<br />

photoelectrode<br />

Energy level<br />

E/V vs NHE<br />

-0.5<br />

E c (-0.5 V)<br />

Electrons<br />

Injection<br />

<strong>Dye</strong><br />

Load<br />

LUMO<br />

(-0.7 V)<br />

Fermi level<br />

Counter electrode (Pt)<br />

0<br />

TiO 2 electrode<br />

ΔE 1 ΔE 2<br />

Excitation<br />

Max voltage<br />

0.5<br />

E g<br />

I - /I 3- redox mediator<br />

(0.4 V)<br />

1.0<br />

HOMO<br />

(1 V)<br />

Electrolyte<br />

TCO Glass<br />

TCO Glass


Introduction<br />

3<br />

Light harvesting efficiency is very important factor for solar cell performance.<br />

Synthesized by Hydrothermal process<br />

Absorbance<br />

A (small size)<br />

A<br />

N719<br />

Wavelength (nm)<br />

M (A+B)<br />

(small size + large size)<br />

M<br />

TiO 2 particles BET surface area (m 2 /g)<br />

IPCE (%)<br />

A (23 nm) 66.3<br />

B (100 nm) 15.4<br />

Type of plate<br />

Nanoparticles<br />

A (23 nm) B (100 nm)<br />

A 100 0<br />

M (A+B) 60 40<br />

23 nm<br />

100 nm<br />

A<br />

M<br />

Schematic film morphologies of TiO 2 photoelectrodes<br />

Arakawa et. al., Coordination Chemistry Reviews, 248 (2004) 1381-1389.<br />

Wavelength (nm)


Introduction<br />

4<br />

Current density (mAcm -2 )<br />

DSC made from multilayer TiO 2<br />

Some researchers added ZrO 2 or SiO 2 in TiO 2<br />

η 10.23%,<br />

Jsc 18.17 mAcm -2 ,<br />

Voc 764 mA, and<br />

FF 0.737<br />

Ref 1<br />

Current density (mAcm -2 )<br />

η 9.04%,<br />

Jsc 18.8 mAcm -2 ,<br />

Voc 740 mA, and<br />

FF 0.640<br />

Ref 2<br />

Photovoltage (V)<br />

Photovoltage (V)<br />

To balance the surface area and light<br />

scattering, multilayer was introduces<br />

as the electrode for DSC.<br />

for scattering the light.<br />

1) Arakawa et. al., Coordination Chemistry Reviews, 248 (2004) 1381-1389.<br />

2) Lee et. al., <strong>Solar</strong> Energy Materials & <strong>Solar</strong> <strong>Cells</strong>, 90 (2006) 2398-2404.


Aim of this work 5<br />

To propose the new approach to prepare mesoporous<br />

titania by surfactant-assisted templating method<br />

To optimize sintering condition for preparing the<br />

electrode of dye-<strong>sensitized</strong> solar cells<br />

To prepare electrode for obtaining high solar energy<br />

conversion efficiency by using double-layered structure


Experimental 6<br />

Preparation method of nanocrystalline mesoporous titania<br />

Step A<br />

Step B<br />

Tetra-isopropylorthotitanate(TIPT) + Acetylacetone(ACA)<br />

Ti(OCH(CH 3<br />

) 2<br />

) 4<br />

+ CH 3<br />

COCH 2<br />

COCH 3<br />

(TIPT)<br />

(ACA)<br />

0.1M LAHC aq. Solution (pH 4.5)<br />

H<br />

H 3<br />

C C CH 3<br />

C C<br />

O<br />

Ti O<br />

Surfactant : Laurylamine hydrochloride(LAHC)<br />

CH 3 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 NH 3+ Cl -<br />

Pri<br />

[TIPT-ACA] / [LAHC] = 4<br />

After mixing After 1day After 3h After 5h After 5 days<br />

O<br />

O<br />

OPri<br />

Pri<br />

+<br />

HOCH(CH 3<br />

) 2<br />

Wash with IPA<br />

40℃<br />

80℃ 80℃ 80℃<br />

stirring<br />

reaction


TEM images<br />

7<br />

(101)<br />

(004)<br />

(200)<br />

(215)<br />

The size of MP-TiO 2<br />

was estimated to be 7 to<br />

15 nm.<br />

Electron diffraction of MP-TiO 2<br />

displays<br />

the Debye-Scherrer rings of anatase.


XRD & BET surface area<br />

8<br />

Intensity/ a.u.<br />

A<br />

R<br />

A A<br />

AA AA T45<br />

MPTiO 2<br />

R R R<br />

P25<br />

20 30 40 50 60 70 80<br />

2theta/ degree<br />

commercial<br />

synthesized<br />

commercial<br />

Adsorbed amount / ml(STP) g -1<br />

200<br />

150<br />

100<br />

50<br />

0<br />

MPTiO 2<br />

Type IV<br />

0 0.5 1<br />

Relative pressure P/P 0<br />

Synthesized TiO 2 had a prevalent<br />

mesoporous structure<br />

MPTiO 2<br />

and T45 film had mainly<br />

consisted of an anatase phase.<br />

P25 film was composed of<br />

anatase and rutile phase.<br />

BET surface area<br />

Code Surface area (m 2 g -1 )<br />

MP-TiO 2 110<br />

P25 47<br />

T45 13.5


Preparation of the photoelectrode<br />

9<br />

Preparation of titania electrode<br />

Repetitive coating<br />

TiO 2<br />

powder Titania gel Sintered at 300 o C for<br />

10 min<br />

Coat with the doctor blading<br />

method<br />

SCN<br />

NCS<br />

Sintered at 350 o C to<br />

550 o C<br />

Titanium plate<br />

TBAOOC<br />

HOO C<br />

N<br />

Ru<br />

N<br />

N<br />

N<br />

COOH<br />

COOTBA<br />

Pt<br />

HOO C<br />

Prepared solar cells (0.25cm 2 )<br />

COOH<br />

Titania film is coated with a<br />

monolayer of N719 dye.<br />

N719 dye<br />

cis-dithiocyanate-N,N’-bis (4-carboxylate -4-<br />

tetrabutylammoniumcarboxylate-2,2’-<br />

bipyridine)ruthenium(II)


Evaluation of DSC<br />

10<br />

<strong>Solar</strong> simulator<br />

Standard solar cell for the calibration<br />

Bunko-Keiki CEP-2000<br />

・AM 1.5<br />

・100 mW/cm 2<br />

・Calibrated by standard cell (BS-<br />

520)<br />

Tencor Alpha-step Profiler for<br />

measuring film thickness<br />

・Area 0.0534 cm 2<br />

・J SC<br />

= 11.6 mA/cm 2<br />

・V OC<br />

= 0.540 V<br />

・FF = 0.702<br />

・η = 4.40 %


Photovoltaic properties<br />

11<br />

J sc/ mAcm -2<br />

20<br />

15<br />

10<br />

MP-TiO 2<br />

P25<br />

33% increase<br />

Cracked MP-TiO 2 films<br />

A high J sc of the cell<br />

made from MP-TiO 2<br />

could be due to:<br />

high anatase phase<br />

content<br />

high surface area<br />

5<br />

MP-TiO 2 [anatase]<br />

P25 [anatase+rutile]<br />

0<br />

0 5 10 15 20<br />

Thickness/ μm<br />

Jsc of MPTiO 2 cells was higher than that of P25 cell by 33%<br />

at film thickness of 3.5 μm.


Photovoltaic properties of TiO 2 cells<br />

12<br />

Code Thickness (μm) Jsc (mAcm -2 ) Voc (mV) FF η(%)<br />

MP-TiO 2 6.1 11.9 750 0.690 6.0<br />

P25 12.0 10.4 700 0.678 4.9<br />

T45 10.9 5.3 730 0.680 2.6<br />

BET surface area<br />

The cell made from T45 TiO 2 is<br />

very low efficiency due to the<br />

small amount of adsorbed dye.<br />

The efficiency of MPTiO 2<br />

obtained 6% with using film<br />

thickness only 6 μm.<br />

Code Surface area (m 2 g -1 )<br />

MP-TiO 2 110<br />

P25 47<br />

T45 13.5<br />

Appearance of electrode<br />

MPTiO 2 Transparent<br />

P25 White<br />

T45 White


How to increase the light absorption in DSCs<br />

13<br />

<strong>Using</strong> the dye with absorb the light in the wide wavelength region<br />

Improving the structure of the electrode<br />

IPCE = Incident photon to current conversion efficiency<br />

100<br />

TiO 2 films were <strong>sensitized</strong> by N719 dye<br />

90<br />

80<br />

70<br />

Transparent<br />

MPTiO 2 (2.5 μm)<br />

Blended MPTiO 2 +P25 (17.5 μm)<br />

White<br />

Thick P25 cell absorbed<br />

more spectra in the red<br />

region than MPTiO 2 cell.<br />

% IPCE<br />

60<br />

50<br />

40<br />

30<br />

P25 (17 μm)<br />

White<br />

IPCE spectra of MPTiO 2<br />

can be improved by adding<br />

P25 (MPTiO 2 +P25).<br />

20<br />

10<br />

0<br />

400 450 500 550 600 650 700 750 800<br />

Wavelength/ nm


SEM image<br />

14<br />

Morphologies of blended MPTiO 2 +P25<br />

Low magnification<br />

High magnification<br />

MPTiO 2<br />

450 o C<br />

450 o C<br />

450 o C<br />

100 nm<br />

P25 (Scattering center)<br />

500 o C<br />

50 nm<br />

500 o C<br />

500 o C<br />

100 nm<br />

50 nm


Surface area & Film porosity of MPTiO 2<br />

+P25<br />

15<br />

Temp Surface area (m 2 g -1 ) Porosity (%)<br />

350 o C 110 53<br />

400 o C 84 51<br />

450 o C 62 50<br />

500 o C 51 47<br />

Loss in surface area<br />

Pore damage<br />

Particle growth<br />

Amount of adsorbed dye<br />

Increasing in sintering temperature<br />

rapidly decreased the amount of<br />

adsorbed dye on the electrode.<br />

Amount of chemisorbed dye/ 10 -8 molcm -2<br />

20<br />

15<br />

10<br />

5<br />

0<br />

300 350 400 450 500 550<br />

Sintering temperature/ o C


Photocurrent-voltage characteristics of blended MPTiO 2 +P25<br />

15<br />

Sintering temperature<br />

Photocurrent<br />

The reasons for improved J sc<br />

are considered to be due to<br />

Crystallinity<br />

Light Sintering scattering for 1h<br />

Amount of chemisorbed dye/ x10 -8 molcm -2<br />

20<br />

15<br />

10<br />

5<br />

Jsc<br />

<strong>Dye</strong><br />

20<br />

15<br />

10<br />

5<br />

Short-circuit current density/ mAcm -2<br />

0<br />

Sintering time: 1 h<br />

300 350 400 450 500 550<br />

Sintering temperature/ o C<br />

The electrode sintered at 500 o C possessed not only the enough surface area<br />

to absorb dye but also decrease the interconnection between particles<br />

0


Double layered electrode for DSC<br />

16<br />

Single layered electrode<br />

Back scattering<br />

Light<br />

Blended MP-TiO 2 with<br />

P25 or T45 TiO 2 layer<br />

FTO<br />

T45<br />

T45<br />

T45<br />

T45<br />

T45<br />

T45<br />

T45<br />

T45<br />

T45<br />

The back-scattering of light due to the large particles is unavoidably in light loss<br />

Double layered electrode<br />

Light<br />

Double layered electrode was fabricated<br />

to improve the cell performance by<br />

FTO<br />

1) MP-TiO 2 layer<br />

2) Blended MP-TiO 2 with<br />

T45 TiO 2 layer<br />

T45<br />

T45<br />

T45<br />

T45<br />

T45<br />

Increasing the amount of<br />

adsorbed dye<br />

Improving the light scattering<br />

Decreasing the back scattering<br />

of light


Double layered electrode for DSC<br />

17<br />

Photovoltaic properties<br />

Single layer<br />

Single layer<br />

Code Thickness Amount of Jsc<br />

Voc FF η<br />

adsorbed dye<br />

(μm) (molcm -2 ) (mAcm -2 ) (mV) (%)<br />

MP-TiO 2 +P25 12.3 11.2x10 -8 14.2 759 0.743 8.00<br />

MP-TiO 2 +T45 11.9 8.8x10 -8 16.2 753 0.703 8.60<br />

Double layered cell 11.9 12.3x10 -8 17.1 751 0.711 9.15<br />

The efficiency of the cell made from MP-TiO 2<br />

+T45 is higher than that<br />

of the cell made from MP-TiO 2<br />

-P25.<br />

The cell performance of double layer is improved by increasing the<br />

current density (Jsc).


Double layered electrode for DSC<br />

18<br />

IPCE spectra<br />

IV curve of double layer cell<br />

%IPCE<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

Double layer cell<br />

Single layer cell<br />

A<br />

MP-TiO 2 +T45 cell<br />

Double layer cell<br />

A<br />

Photocurrent density/ mAcm -2<br />

20<br />

15<br />

10<br />

5<br />

Sintering condition: 500 o C for 1 h<br />

Double layer C-01 cell<br />

Efficiency 9.15%,<br />

Jsc 17.12 mAcm -2 ,<br />

Voc 751 mV and<br />

FF 0.711<br />

Efficiency 9.15%, Jsc 17.12 mAcm -2 ,<br />

Voc 0.751 V, and FF 0.711<br />

(Film thickness 11.9 mm)<br />

(film thickness 11.9 μm)<br />

10<br />

FTO 15 Ohm/sq<br />

0<br />

400 500 600 700 800<br />

Wavelength/ nm<br />

The higher IPCE of double layered cell<br />

is attributed to the increasing in amount<br />

of adsorbed dye and decreasing in back<br />

scattering.<br />

0<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8<br />

Photovoltage/ V<br />

The efficiency of 9.15% was obtained<br />

by using double layered structure.


Conclusions<br />

19<br />

TiO 2 prepared by surfactant-assisted templating method<br />

possessed a prevalent mesoporous structure and had a potential<br />

for using as an electrode in DSC.<br />

The addition of TiO 2 powder in MPTiO 2 improved the cell<br />

performance.<br />

The electrode sintered at 500 o C possessed not only the<br />

enough surface area to absorb dye but also decrease the<br />

interconnection between particles<br />

The efficiency of double layered cell was better than that<br />

of only single layer of MP-TiO 2 +P25 and MP-TiO 2 +T45.


Thank you for your attention


TiO 2 Electrode : Structure Type<br />

UnitCell Rutile Anatase Brookite<br />

a(Å) 4.5845 3.7842 9.184<br />

b(Å) 4.5845 3.7842 5.447<br />

c(Å) 2.9533 9.5146 5.145<br />

Rutile<br />

Brookite<br />

Ruthenium<br />

complex<br />

N3 <strong>Dye</strong><br />

Anatase<br />

~ 1.05 nm<br />

TiO 2<br />

Anatase sturcture<br />

http://ruby.colorado.edu/~smyth/min/tio2.html<br />

M. Grätzel, Pure Appl. Chem., 73 (2001) 459


Effect of chenodeoxycholic acid on IV properties<br />

CH 3<br />

CH 3<br />

HO<br />

OH<br />

O<br />

Chenodeoxycholic acid<br />

OH<br />

= Additive<br />

e -<br />

Self-quenching<br />

e - e - e -<br />

is not occurred<br />

TiO 2<br />

e -<br />

<strong>Dye</strong><br />

No aggregation<br />

Chenodeoxycholic acid Thickness (μm) Jsc (mAcm -2 ) Voc (mV) FF η(%)<br />

0 mM 11.9 14.3 719 0. 699 7.18<br />

0.3 mM 11.7 14.9 720 0.720 7.71<br />

3 mM 12.3 14.2 759 0.743 8.00<br />

10 mM 12.1 14.0 756 0.728 7.73<br />

30 mM 11.8 14.4 751 0.711 7.70<br />

The Jsc and Voc can be appreciably improved by addition of chenodeoxycholic<br />

acid to the dye solution used for dye-uptake.


The Air Mass 1.5 Global (AM1.5) spectrum. Click on the graph for a scalable version.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!