19.01.2015 Views

2D-NMR spectroscopy

2D-NMR spectroscopy

2D-NMR spectroscopy

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>2D</strong>-<strong>NMR</strong> <strong>spectroscopy</strong><br />

Part 2<br />

F.D. Sönnichsen<br />

Thursday, Oct 23 2008


The <strong>2D</strong> - COSY<br />

Periods in a <strong>2D</strong>: Preparation frequency labeling acquisition<br />

Indirect frequency determination =<br />

indirect dimension<br />

mixing<br />

Directly observed =<br />

Direct dimension<br />

Repeat n times,<br />

each time with incrementally increased Δt1<br />

Keep the individual FIDs separate.


Vektor-Diagramm Analyse des <strong>2D</strong>-COSYs –die<br />

Frequenzbestimung in der indirekten Dimension<br />

90x<br />

90x<br />

t 1<br />

t 2<br />

n<br />

FID 1:<br />

x<br />

90x<br />

T1=0<br />

T1=τ<br />

90x<br />

Acq<br />

FID 2:<br />

Acq<br />

FID 3:<br />

T1=2τ<br />

Acq<br />

FID 4:<br />

T1=3τ<br />

Acq<br />

Eine Komponente der Magnetisierung wird durch den zweiten Puls in Z-Richtung weitergedreht,<br />

während die zweite Komponente in der transversalen Ebene bleibt. Die Amplitude ist jedoch<br />

verringert, sie ist Sinus-moduliert.<br />

Was passiert wenn wir das Experiment wiederholen, jedesmal mit einer systematisch verlängerten<br />

Delay-Zeit


Sollte wie eine Sinus – Modulation aussehen


Fourier transform<br />

with respect to t 1


Correlating different types of nuclei<br />

The HMQC experiment<br />

Uses the direct coupling of attached nuclei to provide <strong>2D</strong> correlation<br />

spectrum. Very sensitive.<br />

The value used for J is typically 145 Hz.<br />

Note: the peak splitting due to the coupling is suppressed via decoupling<br />

during t2, so that we see singuletts in the spectra


Korrelation von unterschiedlichen Kernen<br />

Das HETCOR Experiment<br />

(traditionelle,ursprüngliche<br />

Weg, Protonen mit<br />

HeteroAtomen zu koppeln)<br />

Jetzt selten benutzt<br />

NOTE: Detektion des<br />

Kohlenstoffes<br />

Das HMQC Experiment<br />

(Heteronuclear multiple quantum<br />

coherences)<br />

Benutzt die direkte 1 J-Kopplung<br />

der gebundenen Atome.<br />

Detektiert das Proton. Sehr<br />

empfindlich . Der benutzte Wert<br />

für J ist typischerweise145 Hz.<br />

Note: der Entkoppler –Decoupler<br />

während der Detektionszeit führt<br />

zur Aufnahme von<br />

Singuletts,ungespaltete Signale


Heteronuclear Indirect Detection<br />

Experiments that detect 1 H involved in coupling to an X nuclei ( 13 C or 15 N). Sensitivity<br />

3/2<br />

is enhanced by a factor ⎛ γ H ⎞ where γ is the gyromagnetic ratio.<br />

⎜ γ X<br />

⎟<br />

⎝<br />

⎠<br />

Signal/Noise comparisons<br />

γ H<br />

γ X<br />

⎛ γ H ⎞<br />

⎝<br />

⎜ γ X ⎠<br />

⎟<br />

3/2<br />

Polarization<br />

Transfer for<br />

Direct DET<br />

Nuclei No NOE Full NOE<br />

13 C +1 +3 4 32<br />

15 N +1 Š4 10 306<br />

Indirect<br />

Detection<br />

The much larger sensitivity have lead to the almost exclusive use of indirectly<br />

detected heteronuclear experiments. Note, that these however do not provide<br />

information on quarternary Carbon nuclei!!


The HMBC experiment<br />

MB stands for Multiple bonds<br />

• We have connected neigboring protons (COSY)<br />

• We have connected protons to attached 13 C with the direct 1 J coupling<br />

(HMQC)<br />

• Can we use long range couplings and connect further protons<br />

The HMBC SELECTIVELY observes protons and 13 C that are connected via<br />

small 2,3 J couplings ( of the order of 10 Hz).


Comparison HMQC / HMBC<br />

C-H,<br />

1<br />

J=145,<br />

delay = 3ms<br />

long range C -H,<br />

2<br />

J or 3 J ~ 10Hz,<br />

delay = 50ms


Ipsenol<br />

Note : the arrows indicate<br />

artifacts, i.e. direct couplings<br />

which are not completely<br />

removed. These are 1J<br />

couplings, and can be<br />

identified by their large<br />

splitting. Since we don‘t<br />

decouple during t2, the 1J<br />

couplings constant splits the<br />

signal into a doublett, with a<br />

separation of ~145Hz due to<br />

the 1J-coupling.


More on <strong>2D</strong>:<br />

• The principle of <strong>2D</strong> <strong>NMR</strong> can be extended<br />

to 3D, 4D and even higher experiments,<br />

i.e. even more frequencies can be<br />

simultaneously detected. What is the<br />

caveat <br />

• A 1D spectrum takes minutes, a <strong>2D</strong><br />

spectrum hours, a 3D days, a 4D ……


More on <strong>2D</strong>:<br />

• Many more <strong>2D</strong> experiments can be<br />

created , that correlate the same or further<br />

nuclei with desired specificity<br />

• Most of these experiments correlate nuclei<br />

using coupling constants, i.e. the correlate<br />

through bonds.<br />

• Some also offer the possibility to correlate<br />

nuclei through space


<strong>2D</strong> -<br />

INADEQUATE<br />

Allows 13 C— 13 C connectivities to be obtained<br />

Incredible Natural Abundance Double<br />

Quantum Transfer Experiment<br />

1. A. Bax, Two-Dimensional Nuclear Magnetic Resonance in Liquids, Delft University Press,<br />

Delft, Holland (1982) pp. 155-174.<br />

2. D. L. Turner, J. Magn. Reson., 53, 259 (1983)<br />

3. D. L. Turner, J. Magn. Reson., 49, 175 (1982)<br />

4. A. Bax and T. H. Mareci, J. Magn. Reson., 53, 360 (1983)<br />

p. 178 - Nakanishi’s text<br />

p. 279 - Silverstein & Bassler & Morril<br />

Sensitivity is extremely low, because<br />

13<br />

C 1.1%<br />

13<br />

C— 13 C 0.01% Correlates double-quantum frequency of 13 C— 13 C<br />

Many variations provide same information, but in different formats<br />

Usually the cross peaks are 2 peaks, representing AX 13 C— 13 C doublets<br />

Pulse sequences are complex and involve long phase cycling to select for desired double<br />

quantum coherences


13C<br />

13C


<strong>2D</strong>-TOCSY experiment<br />

• Total Correlation Spectroscopy<br />

• Correlates simultaneously all atoms in a<br />

spin system


Same data as COSY (geminal and vicinal couplings), plus RELAY information


<strong>2D</strong>-TOCSY experiment<br />

Spin system : A, B, D, F<br />

F<br />

Diagonal<br />

TOCSY<br />

COSY<br />

D<br />

B<br />

A<br />

A B D F


TOCSY of a small peptide


Compare the COSY of this peptide


t1<br />

t2<br />

Correlation through space<br />

NOE difference <strong>spectroscopy</strong><br />

semi-quantitative measurement of of local proximity<br />

t1<br />

t2


The nuclear Overhauser enhancement<br />

• In contrast to all previous experiments, in which we connected spins through bonds,<br />

the nuclear Overhauser effects enables us to connect nuclei through space.<br />

• This effect is fundamentally different as exchange between the nuclei does not<br />

involve scalar coupling.<br />

• Instead, the direct magnetic coupling (no electrons in between) termed dipolar<br />

coupling is involved, which usually does not have an observable effect in solution (in<br />

contrast to solid state!).<br />

• The nOe can be correlated with internuclear distances and molecular motion.<br />

nOe definition:<br />

η = I - Io<br />

Io<br />

The noe is defined as the normalized intensity change of a resonance line<br />

upon saturating –changing the population of another spin in proximity<br />

NOE = c x r -6<br />

Noes can be measured for protons that are in<br />

close proximity, generally if they are less than<br />


Noe-background 1<br />

Let’s consider: 2 spins , I and S. They are not coupled ( J=0).<br />

ω 34 , S<br />

βα<br />

4<br />

ω 13 I 1<br />

3<br />

2<br />

ββ<br />

αα<br />

ω 24 I<br />

αβ<br />

ω 12 , S<br />

ω 13 = ω 24 = ω I<br />

ω 12 = ω 34 = ω S<br />

The intensity of the magnetization/ the transition for I and S is given by<br />

the relative populations of these four levels. For I and S, the respective<br />

population differences are:<br />

= 1/2 (P 1<br />

-P 3<br />

+ P 2<br />

-P 4<br />

)<br />

= 1/2 (P 1<br />

-P 2<br />

+ P 3<br />

-P 4<br />

)<br />

and<br />

The irradiation with resonance frequency of S, leads to the equalization of the Populations of the levels for S:P1<br />

= P2, and P3 = P4. At the same time, relaxation will oppose the non-equilibrium situation, leading to<br />

relaxation of the<br />

spins proportional to the following transition probabilities (W I<br />

, W S<br />

, W 2<br />

, W 0<br />

)<br />

W 1 S<br />

βα<br />

W 1 I<br />

ββ<br />

αα<br />

W 1 , I or W I<br />

αβ<br />

W 1 , S or W S<br />

In addition, if the spins are close enough,<br />

the additional two relaxation mechansims (blue arrows)<br />

also exist. These are doublequantum or zero quantum<br />

transistion, involving the spin flip of both spins<br />

simultaneously. Relaxation via these transistion leads<br />

to populationchanges , and thus the sensitivty<br />

enhancement


• It can be easily shown that<br />

NOE=<br />

η =<br />

σ<br />

IS<br />

ϕ<br />

I<br />

=<br />

W2<br />

−W0<br />

2W<br />

+ W + W<br />

I<br />

2<br />

0<br />

For small molecules , W2 is the dominant relaxation pathway leading to positive<br />

NOEs<br />

For larger molecules , W0 is dominant, and one obtains negative NOEs. (intensity<br />

reduction)<br />

Most importantly, the NOE can be quantified and correlated with a distance , since


NOE-experiments<br />

• 1D- steady-state nOe experiment:<br />

– constant irradiation – 1D difference spectrum<br />

• <strong>2D</strong>-NOESY experiment:<br />

The <strong>2D</strong>-NOESY experiment is the most useful experiments, as all nOe<br />

effect between spins can be measured simultaneously. The nOe is<br />

generated by simultaneous, temporary population changes, which is<br />

called “transient” nOe, not a selective inversion or steady-state<br />

irradiation. The nOe gives rise to magnetization transfer and offdiagonal<br />

peaks, connecting the resonance frequencies of the spins<br />

which couple/ cross relax through space.<br />

90 90 90<br />

d1 t1 tmix t2<br />

Tmix is usually chosen to be between 500ms and 2 sec


z<br />

<strong>2D</strong>-NOESY: vector model<br />

z<br />

z<br />

90x<br />

t 1<br />

y<br />

y<br />

y<br />

x<br />

x<br />

x<br />

Different y-component<br />

z<br />

z<br />

z<br />

90x<br />

y<br />

y<br />

y<br />

x<br />

Difference in z-component = population change,<br />

causes relaxation, is transfers magnetization,<br />

mixes S with I and vice versa<br />

dIz<br />

dt<br />

= − ϕ 1(<br />

Iz − Io ) − σ IS ( Sz − So<br />

)<br />

x<br />

During tmix transferred to I<br />

During t1: frequency labeled at ωs<br />

IS<br />

During t2 detected with I (ωI) NOE ( ϖ 1,<br />

ϖ 2 ) = ( ϖ S , ϖ I )<br />

I<br />

σ<br />

ϕ


Aphanamol-1<br />

This NOE showed that<br />

the 5-membered ring is<br />

cis to the 7-membered<br />

ring.<br />

15CH 2<br />

5H


Homonuclear<br />

• Through-bond<br />

• COSY (absolute value and<br />

phase sensitive displays, DQF-<br />

COSY)<br />

• TOCSY<br />

• Through-space<br />

• NOESY<br />

• ROESY<br />

Heteronuclear<br />

• Through-bond<br />

• HETCOR<br />

• Long-range HETCOR or<br />

COLOC<br />

• INADEQUATE<br />

• INDIRECT-DETECTION<br />

(HSCQ, HMQC, HMBC)<br />

Pulse Field Gradients (PFG)<br />

<strong>NMR</strong>- the acronym soup!<br />

(<strong>NMR</strong> – die Suppenterrine voll Abkürzungen)


Example: Lactose


• 2 sugar units<br />

• 2 separate groups of<br />

coupled spins (termed<br />

spin systems)<br />

• Multiple overlap of the<br />

sugar resonances, and<br />

of the resepective cross<br />

peaks<br />

• Canweusethegood<br />

separation of the<br />

anomeric protons


Lactose - <strong>2D</strong> TOCSY


Lactose -ROESY<br />

• Equivalent<br />

Experiment to the<br />

NOESY<br />

• Coupling through<br />

space<br />

• Detects close<br />

proximity of protons<br />

Expansions:


References<br />

J. B. Lambert & E. P. Mazzola, Nuclear<br />

Magnetic Resonance Spectroscopy,<br />

Pearson Prentice Hall, 2004<br />

RM Silverstein, FX Webster & DJ Kiemle,<br />

Spectrometric Identification of Organic<br />

compounds Wiley 2005.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!