21.01.2015 Views

Superadditivity in multisensory integration: putting the ... - CI Wiki

Superadditivity in multisensory integration: putting the ... - CI Wiki

Superadditivity in multisensory integration: putting the ... - CI Wiki

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

SENSORYAND MOTOR SYSTEMS<br />

NEUROREPORT<br />

<strong>Superadditivity</strong> <strong>in</strong> <strong>multisensory</strong> <strong>in</strong>tegration:<br />

putt<strong>in</strong>g <strong>the</strong> computation <strong>in</strong> context<br />

Terrence R. Stanford and Barry E. Ste<strong>in</strong><br />

Department of Neurobiology and Anatomy, Wake Forest University School of Medic<strong>in</strong>e,W<strong>in</strong>ston-Salem, North Carol<strong>in</strong>a, USA<br />

Correspondence to Terrence R. Stanford, Department of Neurobiology and Anatomy,Wake Forest University School of Medic<strong>in</strong>e, Medical Center Blvd.,<br />

W<strong>in</strong>ston-Salem, NC 27157,USA<br />

Tel: +1336 716 0359; fax: +1336 716 4534; e-mail: stanford@wfubmc.edu<br />

Received 22 December 2006; accepted17 January 2007<br />

S<strong>in</strong>gle-neuron studies have highlighted dramatic enhancements <strong>in</strong><br />

neural activity consequent to <strong>multisensory</strong> <strong>in</strong>tegration.Most notable<br />

are‘superadditive’enhancements <strong>in</strong> which <strong>the</strong> <strong>multisensory</strong> response<br />

exceeds <strong>the</strong> sum of those evoked by <strong>the</strong> modality-speci¢c<br />

stimulus components <strong>in</strong>dividually. Although all <strong>multisensory</strong><br />

enhancements may have perceptual/behavioral consequences,<br />

superadditivity, which suggests a nonl<strong>in</strong>ear comb<strong>in</strong>ation of modality-speci¢c<br />

<strong>in</strong>£uences, seems to have had a disproportionate <strong>in</strong>£uence<br />

with<strong>in</strong> <strong>the</strong> <strong>multisensory</strong> literature. This <strong>in</strong>£uence has been<br />

re<strong>in</strong>forced by <strong>the</strong> <strong>in</strong>creas<strong>in</strong>g application of non<strong>in</strong>vasive techniques<br />

such as functional imag<strong>in</strong>g and event-related potential record<strong>in</strong>g,<br />

which depend on response nonl<strong>in</strong>earities to demonstrate underly<strong>in</strong>g<br />

<strong>multisensory</strong> processes.In promot<strong>in</strong>g <strong>the</strong> idea that many <strong>multisensory</strong><br />

behaviors may not rely on superadditivity, we consider<br />

more recent s<strong>in</strong>gle-neuron studies that place its <strong>in</strong>cidence <strong>in</strong><br />

context. NeuroReport 18:787^792 c 2007 Lipp<strong>in</strong>cott Williams &<br />

Wilk<strong>in</strong>s.<br />

Keywords: <strong>multisensory</strong> <strong>in</strong>tegration, s<strong>in</strong>gle-neuron record<strong>in</strong>g, superadditivity, superior colliculus<br />

Introduction<br />

Dur<strong>in</strong>g <strong>the</strong> past decade, <strong>the</strong> field of <strong>multisensory</strong> <strong>in</strong>tegration<br />

has expanded dramatically and now encompasses most of<br />

<strong>the</strong> emerg<strong>in</strong>g neuroscience methodologies, fosters both<br />

cl<strong>in</strong>ical and technological applications, and challenges some<br />

of <strong>the</strong> core assumptions about how sensory <strong>in</strong>formation is<br />

sequestered and shared <strong>in</strong> <strong>the</strong> nervous system. As is often<br />

<strong>the</strong> case for a rapidly expand<strong>in</strong>g discipl<strong>in</strong>e, <strong>the</strong>re is a<br />

healthy tendency to reevaluate its fundamental tenets. For<br />

<strong>multisensory</strong> <strong>in</strong>tegration, <strong>the</strong>re is perhaps no more fundamental<br />

pr<strong>in</strong>ciple than that of ‘<strong>multisensory</strong> enhancement’.<br />

Multisensory enhancement, a term born out of <strong>the</strong> sem<strong>in</strong>al<br />

s<strong>in</strong>gle-neuron electrophysiology experiments of <strong>the</strong> cat<br />

superior colliculus, refers to <strong>the</strong> phenomenon that a neuron<br />

receiv<strong>in</strong>g <strong>in</strong>put from multiple sensory modalities responds<br />

more vigorously to <strong>the</strong>ir simultaneous activation than to<br />

activation of any s<strong>in</strong>gle modality-specific channel (see Ref.<br />

[1] for review). This <strong>in</strong>tuitively obvious concept (e.g. two is<br />

‘better’ than one) has <strong>in</strong>spired and cont<strong>in</strong>ues to <strong>in</strong>spire all<br />

manner of <strong>multisensory</strong> <strong>in</strong>vestigations. Fur<strong>the</strong>rmore, it has<br />

provided a simple conceptual framework for <strong>in</strong>terpret<strong>in</strong>g<br />

<strong>multisensory</strong> f<strong>in</strong>d<strong>in</strong>gs suggest<strong>in</strong>g behavioral benefits associated<br />

with signal enhancement <strong>in</strong> <strong>the</strong> central nervous<br />

system, benefits that <strong>in</strong>clude improved stimulus detection<br />

and more rapid and accurate orient<strong>in</strong>g [2–8], and even <strong>the</strong><br />

improvement of visual hemi-neglect <strong>in</strong> bra<strong>in</strong>-damaged<br />

<strong>in</strong>dividuals [9].<br />

To date, conceptual frameworks driven by <strong>the</strong> empirical<br />

f<strong>in</strong>d<strong>in</strong>gs h<strong>in</strong>ge on <strong>the</strong> idea that <strong>in</strong>tegration leads to a relative<br />

<strong>in</strong>crease <strong>in</strong> activity with<strong>in</strong> <strong>the</strong> central nervous system. This<br />

core assumption, which has great explanatory power for<br />

consider<strong>in</strong>g behavioral benefits such as <strong>in</strong>creased stimulus<br />

detection and speeded reaction time, is strongly supported<br />

by a wealth of neurophysiological data, <strong>in</strong>clud<strong>in</strong>g those<br />

from s<strong>in</strong>gle-neuron record<strong>in</strong>g, event-related potential (ERP),<br />

and functional imag<strong>in</strong>g (fMRI) studies (see Refs. [10,11] for<br />

recent reviews). It is perhaps not surpris<strong>in</strong>g, <strong>the</strong>n, that<br />

<strong>multisensory</strong> researchers have often placed particularly<br />

heavy emphasis on evidence for <strong>the</strong> largest <strong>multisensory</strong><br />

enhancements. The s<strong>in</strong>gle-neuron literature, for example, is<br />

laden with examples <strong>in</strong> which neural responses to <strong>the</strong><br />

comb<strong>in</strong>ation of stimuli from different modalities exceeds<br />

(sometimes greatly) <strong>the</strong> sum of <strong>the</strong> responses to ei<strong>the</strong>r<br />

stimulus component presented <strong>in</strong>dividually (Fig. 1; see Ref.<br />

[1] for review). So-called superadditive <strong>in</strong>teractions are<br />

<strong>in</strong>terest<strong>in</strong>g both from <strong>the</strong> perspective of <strong>the</strong> s<strong>in</strong>gle neuron,<br />

where<strong>in</strong> <strong>the</strong>y suggest nonl<strong>in</strong>ear synaptic mechanisms at<br />

work, and from <strong>the</strong> perspective of behavior, for which <strong>the</strong>y<br />

promise <strong>the</strong> greatest real-world benefits.<br />

Whereas earlier s<strong>in</strong>gle-neuron studies may have been<br />

biased toward cases of superadditivity, studies us<strong>in</strong>g<br />

non<strong>in</strong>vasive methods like fMRI and ERP, which have<br />

become <strong>in</strong>creas<strong>in</strong>gly important tools <strong>in</strong> <strong>the</strong> study of <strong>multisensory</strong><br />

phenomena, are constra<strong>in</strong>ed to focus specifically on<br />

response nonl<strong>in</strong>earities. In <strong>the</strong> case of <strong>multisensory</strong> enhancement,<br />

<strong>the</strong>se methodologies do not dist<strong>in</strong>guish between<br />

l<strong>in</strong>ear (i.e. additive) signal enhancements that are due<br />

to recruitment of separate pools of unisensory neurons and<br />

those that are <strong>the</strong> result of true <strong>multisensory</strong> convergence<br />

and <strong>in</strong>tegration as, <strong>in</strong> ei<strong>the</strong>r case, <strong>the</strong> response to a<br />

good po<strong>in</strong>t.<br />

<strong>the</strong><br />

resolution<br />

can't tell<br />

<strong>the</strong> two<br />

apart.<br />

0959-4965 c Lipp<strong>in</strong>cott Williams & Wilk<strong>in</strong>s Vol 18 No 8 28 May 2007 78 7<br />

Copyright © Lipp<strong>in</strong>cott Williams & Wilk<strong>in</strong>s. Unauthorized reproduction of this article is prohibited.


NEUROREPORT<br />

STANFORD AND STEIN<br />

(a) (b) (c) (d)<br />

V<br />

V<br />

20<br />

A<br />

A<br />

15<br />

+1207%<br />

50<br />

100 ms<br />

x Impulses/trial<br />

10<br />

V only<br />

A only<br />

VA<br />

5<br />

0<br />

V<br />

A<br />

VA<br />

Fig.1 <strong>Superadditivity</strong> <strong>in</strong> <strong>multisensory</strong> <strong>in</strong>tegration: shown here <strong>in</strong> a ¢gure reproduc<strong>in</strong>g Figure 2 of Meredith and Ste<strong>in</strong> [17] is an example of highly robust<br />

<strong>multisensory</strong> enhancement and one that is clearly superadditive. In this experiment, <strong>the</strong> activity of a cat superior colliculus neuron was recorded <strong>in</strong><br />

response to a visual stimulus, an auditory stimulus, and <strong>the</strong>ir cross-modal comb<strong>in</strong>ation. Left, top-to-bottom: <strong>the</strong> stimulus trace (<strong>in</strong> this case visual), rasters<br />

of <strong>the</strong> impulses evoked dur<strong>in</strong>g each stimulus presentation, a peristimulus time histogram of <strong>the</strong> summed impulses across trials, and a s<strong>in</strong>gle oscilloscope<br />

trace of <strong>the</strong> extracellular action potentials dur<strong>in</strong>g a s<strong>in</strong>gle trial.The second and third panels illustrate <strong>the</strong> same for <strong>the</strong> auditory (second panel) and<br />

cross-modal (third panel) stimulus condition.Note that <strong>the</strong> vigor of <strong>the</strong> cross-modal response far exceeds that of ei<strong>the</strong>r modality-speci¢c response.These<br />

di¡erences are summarized <strong>in</strong> <strong>the</strong> bar graph (fourth panel, far right), which compares <strong>the</strong> mean number of impulses per trial for each stimulus condition<br />

and quanti¢es <strong>the</strong> percent enhancement (1207) accord<strong>in</strong>g to <strong>the</strong> <strong>in</strong>dex formula,VA max (V, A)/max (V, A) 100, whereVA is <strong>the</strong> response to <strong>the</strong> visualauditory<br />

crossmodal stimulus and max (V, A) is <strong>the</strong> response to <strong>the</strong> most e¡ective modality-speci¢c component stimulus (visual <strong>in</strong> this example). Note<br />

that <strong>the</strong> <strong>multisensory</strong> response of approximately18 impulses per trial far exceeds <strong>the</strong> sum of <strong>the</strong>very weak responses to <strong>the</strong> <strong>in</strong>dividual visual and auditory<br />

stimuli (V + A¼approx. two impulses/trial).<br />

<strong>multisensory</strong> stimulus would approximate <strong>the</strong> sum of <strong>the</strong><br />

responses to its modality-specific components. For fMRI,<br />

superadditivity, which is not readily expla<strong>in</strong>ed by <strong>the</strong><br />

separate pool hypo<strong>the</strong>sis, has become <strong>the</strong> litmus test for<br />

identify<strong>in</strong>g <strong>multisensory</strong> enhancements that are due to<br />

<strong>in</strong>tegration by <strong>multisensory</strong> neurons (see Refs. [12,13] for<br />

reviews). For ERP studies, superadditivity is also diagnostic<br />

of <strong>multisensory</strong> <strong>in</strong>tegration, although its attribution to<br />

enhancement requires certa<strong>in</strong> additional assumptions<br />

(see Refs. [14–16] discussion of <strong>the</strong>se issues).<br />

As entic<strong>in</strong>g as it may be as a phenomenon, an unbalanced<br />

emphasis on superadditivity poses a risk, a risk that is<br />

certa<strong>in</strong>ly heightened by <strong>the</strong> <strong>in</strong>creas<strong>in</strong>g number of fMRI and<br />

ERP studies, which, despite <strong>the</strong>ir considerable contributions,<br />

are constra<strong>in</strong>ed by methodological limitations that<br />

render <strong>multisensory</strong> <strong>in</strong>tegration synonymous with response<br />

nonl<strong>in</strong>earity. A lack of due diligence on <strong>the</strong> part of author or<br />

reader has <strong>the</strong> potential to distort our view of <strong>multisensory</strong><br />

representations with<strong>in</strong> <strong>the</strong> bra<strong>in</strong> and, as a consequence, our<br />

understand<strong>in</strong>g of <strong>the</strong> relationships between <strong>multisensory</strong><br />

<strong>in</strong>tegration and behavior. In this regard, it is especially<br />

important to highlight results from <strong>the</strong> most recent s<strong>in</strong>gleneuron<br />

studies that emphasize <strong>the</strong> wider spectrum of<br />

<strong>multisensory</strong> <strong>in</strong>teractions and, <strong>in</strong> do<strong>in</strong>g so, place <strong>the</strong><br />

<strong>in</strong>cidence (and, by <strong>in</strong>ference, <strong>the</strong> importance) of superadditivity<br />

<strong>in</strong> a broader context. Such studies provide<br />

important constra<strong>in</strong>ts on models and conceptualizations of<br />

how <strong>multisensory</strong> <strong>in</strong>teractions with<strong>in</strong> neural populations<br />

are manifest <strong>in</strong> behavioral measures.<br />

The prevalence of superadditivity <strong>in</strong> <strong>the</strong> superior<br />

colliculus<br />

Multisensory enhancement is <strong>the</strong> most fundamental manifestation<br />

of <strong>in</strong>tegration at <strong>the</strong> s<strong>in</strong>gle neuron level; however,<br />

relatively early <strong>in</strong> <strong>the</strong>ir <strong>in</strong>vestigations of <strong>the</strong> superior<br />

colliculus, Meredith and Ste<strong>in</strong> [17] noted that, <strong>in</strong> relative<br />

terms, <strong>the</strong> ‘greatest’ enhancements occurred for <strong>multisensory</strong><br />

comb<strong>in</strong>ations of <strong>the</strong> ‘weakest’ sensory stimuli (see<br />

Fig. 2). Appropriately, this association was termed ‘<strong>in</strong>verse<br />

78 8 Vol 18 No 8 28 May 2007<br />

Copyright © Lipp<strong>in</strong>cott Williams & Wilk<strong>in</strong>s. Unauthorized reproduction of this article is prohibited.


SUPERADDITIVITY IN MULTISENSORY INTEGRATION<br />

NEUROREPORT<br />

(a)<br />

Optimal<br />

V<br />

A<br />

A<br />

V<br />

40<br />

30<br />

100<br />

200 ms<br />

x Impulses/trial<br />

20<br />

+110%<br />

10<br />

(b)<br />

V only A only VA<br />

0<br />

V A VA<br />

Suboptimal<br />

30<br />

20<br />

50<br />

10<br />

+258%<br />

0<br />

(c)<br />

M<strong>in</strong>imal<br />

30<br />

20<br />

50<br />

10<br />

+483%<br />

Fig. 2 Inverse e¡ectiveness <strong>in</strong> <strong>multisensory</strong> <strong>in</strong>tegration: This ¢gure, adapted from Figure 8 of Meredith and Ste<strong>in</strong> [17], demonstrates <strong>the</strong> pr<strong>in</strong>ciple of<br />

<strong>in</strong>verse e¡ectiveness for a s<strong>in</strong>gle neuron <strong>in</strong> <strong>the</strong> cat superior colliculus. Us<strong>in</strong>g <strong>the</strong> same format as Fig.1, <strong>the</strong> ¢gure illustrates that <strong>the</strong> magnitude of <strong>multisensory</strong><br />

enhancement depends on <strong>the</strong> e⁄cacy of <strong>the</strong> modality-speci¢c component stimuli, which were modulated by manipulat<strong>in</strong>g stimulus <strong>in</strong>tensity.<br />

Accord<strong>in</strong>g to <strong>the</strong> enhancement <strong>in</strong>dex formula of Fig. 1, which relates <strong>the</strong> <strong>multisensory</strong> response (VA) to that for <strong>the</strong> most e¡ective modality-speci¢c<br />

stimulus (auditory <strong>in</strong> all cases here), <strong>multisensory</strong> enhancement grows from approximately 53% for <strong>the</strong> ‘optimal’ (a) condition to 50% for <strong>the</strong> ‘m<strong>in</strong>imal’<br />

(c) condition (values estimated from bar graphs at far right), thus demonstrat<strong>in</strong>g <strong>the</strong> pr<strong>in</strong>ciple of <strong>in</strong>verse e¡ectiveness as orig<strong>in</strong>ally de¢ned. It is<br />

also readily apparent from visual <strong>in</strong>spection of <strong>the</strong> bar graphs that <strong>the</strong> ‘optimal’ condition yields a <strong>multisensory</strong> response that is nom<strong>in</strong>ally ‘subadditive’<br />

(VAoV + A), whereas <strong>the</strong>‘m<strong>in</strong>imal’condition yields a response that is clearly ‘superadditive’ (VA44V + A).<br />

0<br />

effectiveness’ and, as noted below, it has a counterpart <strong>in</strong><br />

certa<strong>in</strong> behavioral measures. With <strong>the</strong> pr<strong>in</strong>ciple of <strong>in</strong>verse<br />

effectiveness, it was established early on that <strong>the</strong> magnitude<br />

and probability of <strong>multisensory</strong> enhancement is strongly<br />

<strong>in</strong>fluenced by <strong>the</strong> <strong>in</strong>tensities, or more precisely, <strong>the</strong> efficacies<br />

of <strong>the</strong> constituent stimuli. Despite <strong>the</strong> clear <strong>in</strong>ference that<br />

<strong>the</strong> likelihood of observ<strong>in</strong>g superadditivity must also <strong>the</strong>n be<br />

strongly stimulus dependent, evidence for <strong>in</strong>verse effectiveness<br />

has not prevented a ‘superadditive’ ideal of <strong>the</strong><br />

<strong>multisensory</strong> <strong>in</strong>teraction from seem<strong>in</strong>gly ga<strong>in</strong><strong>in</strong>g wide<br />

acceptance. Ironically, awareness of <strong>in</strong>verse effectiveness<br />

may have contributed to propagat<strong>in</strong>g this misconception by<br />

permitt<strong>in</strong>g experimenters to tailor stimulus parameters to<br />

reliably produce large and often superadditive <strong>multisensory</strong><br />

Vol 18 No 8 28 May 2007 78 9<br />

Copyright © Lipp<strong>in</strong>cott Williams & Wilk<strong>in</strong>s. Unauthorized reproduction of this article is prohibited.


NEUROREPORT<br />

STANFORD AND STEIN<br />

so<br />

superadditivi<br />

ty might not<br />

be a stable<br />

feature of a<br />

neuron, but<br />

dependent of<br />

<strong>the</strong><br />

properties of<br />

<strong>the</strong> stimuli.<br />

enhancements. Do<strong>in</strong>g so has been particularly valuable, if<br />

not essential, for assess<strong>in</strong>g how normal development<br />

[18,19], altered sensory experience [20], or acute perturbations<br />

of <strong>in</strong>put (e.g. cortical <strong>in</strong>activation) [21] affect <strong>the</strong><br />

<strong>in</strong>cidence of <strong>multisensory</strong> <strong>in</strong>tegration with<strong>in</strong> <strong>the</strong> superior<br />

colliculus, but with <strong>the</strong> untoward effect of creat<strong>in</strong>g a biased<br />

representation of superior colliculus <strong>multisensory</strong> <strong>in</strong>teractions<br />

with<strong>in</strong> <strong>the</strong> literature.<br />

In an effort to more fully characterize <strong>the</strong> nature of<br />

<strong>multisensory</strong> <strong>in</strong>tegration for s<strong>in</strong>gle neurons and populations<br />

of neurons with<strong>in</strong> <strong>the</strong> cat superior colliculus, recent studies<br />

have eschewed <strong>the</strong> near-exclusive use of m<strong>in</strong>imally effective<br />

stimuli <strong>in</strong> favor of parametric manipulations of stimulus<br />

<strong>in</strong>tensity to modulate effectiveness over a broad range. In<br />

one such study, Stanford et al. [22] quantitatively evaluated<br />

<strong>the</strong> operation performed by superior colliculus <strong>multisensory</strong><br />

neurons for comb<strong>in</strong>ations of modality-specific stimuli<br />

cover<strong>in</strong>g a wide range of efficacies. Consistent with <strong>the</strong><br />

many <strong>in</strong>dividual examples <strong>in</strong> <strong>the</strong> literature (e.g. see Figs 1<br />

and 2c) this study verified that superadditivity is <strong>in</strong> fact<br />

commonly observed when very <strong>in</strong>effective modality-specific<br />

stimuli are comb<strong>in</strong>ed. They also, however, found that <strong>the</strong><br />

<strong>in</strong>cidence of superadditive <strong>in</strong>teractions fell precipitously<br />

with <strong>in</strong>creas<strong>in</strong>g efficacy of <strong>the</strong> <strong>in</strong>dividual modality-specific<br />

stimulus components. Indeed, across <strong>the</strong> broader range of<br />

efficacies, <strong>the</strong> majority of <strong>the</strong> <strong>in</strong>teractions <strong>in</strong> <strong>the</strong>ir sample<br />

approximated l<strong>in</strong>ear summation of <strong>the</strong> modality-specific<br />

<strong>in</strong>puts, with superadditive and subadditive <strong>in</strong>teractions<br />

def<strong>in</strong><strong>in</strong>g <strong>the</strong> tails of a normal distribution (Fig. 3).<br />

Analogous results were described by Perrault et al. [23],<br />

who also evaluated <strong>multisensory</strong> <strong>in</strong>teractions aga<strong>in</strong>st a<br />

benchmark of additivity with emphasis on relationships<br />

between <strong>the</strong> <strong>multisensory</strong> operation and <strong>the</strong> dynamic<br />

ranges of <strong>in</strong>dividual superior colliculus neurons. The results<br />

were once aga<strong>in</strong> consistent with extant examples <strong>in</strong> <strong>the</strong><br />

literature, but also established <strong>the</strong> context <strong>in</strong> which such<br />

previous examples should be considered. Perrault et al. [23]<br />

demonstrated that weakly responsive neurons with very<br />

compressed dynamic ranges (i.e. weakly responsive over a<br />

broad range of stimulus <strong>in</strong>tensities) were those most likely<br />

to demonstrate superadditivity exclusively, whereas those<br />

with more expansive and more l<strong>in</strong>ear dynamic ranges<br />

tended to transition from superadditivity to additivity or<br />

from additivity to subadditivity as stimulus <strong>in</strong>tensity (and<br />

efficacy) <strong>in</strong>creased. These recent studies demonstrated that,<br />

<strong>in</strong> <strong>the</strong> superior colliculus at least, superadditivity is but one<br />

facet of <strong>multisensory</strong> <strong>in</strong>tegration, and one that is produced<br />

under a very circumscribed range of circumstances, specifically<br />

when <strong>the</strong> unisensory stimuli to be comb<strong>in</strong>ed are<br />

weakly effective. As one might have expected, <strong>the</strong> results of<br />

<strong>the</strong>se studies illustrate that <strong>the</strong> pr<strong>in</strong>ciple of ‘<strong>in</strong>verse<br />

effectiveness’ can be extended beyond <strong>multisensory</strong> enhancement<br />

to <strong>in</strong>clude <strong>the</strong> form of <strong>the</strong> <strong>multisensory</strong><br />

computation.<br />

These larger surveys of superior colliculus <strong>in</strong>tegration are<br />

particularly germane to consideration of an earlier study<br />

by Popul<strong>in</strong> and Y<strong>in</strong> [24], which stands out as <strong>the</strong> only<br />

proponent of a contrarian and ra<strong>the</strong>r provocative conjecture<br />

that superadditivity is an artifact of <strong>the</strong> anes<strong>the</strong>tic agent<br />

used <strong>in</strong> most previous studies. This conclusion was based<br />

on <strong>the</strong> fact that <strong>in</strong> <strong>the</strong>ir study of <strong>multisensory</strong> <strong>in</strong>tegration <strong>in</strong><br />

<strong>the</strong> superior colliculus of alert cats, Popul<strong>in</strong> and Y<strong>in</strong> found<br />

little evidence of superadditivity, <strong>in</strong>stead report<strong>in</strong>g that<br />

most <strong>multisensory</strong> <strong>in</strong>teractions were ei<strong>the</strong>r additive (l<strong>in</strong>ear)<br />

Response mode proportion<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0−2 2−4 4−6 6−8<br />

Superadditive<br />

Additive<br />

Subadditive<br />

8−10 10−12 12−14<br />

Unisensory response sum (impulses/trial)<br />

Fig. 3 The <strong>in</strong>cidence of superadditivity decl<strong>in</strong>es rapidly with <strong>in</strong>creas<strong>in</strong>g<br />

stimulus strength. Shown here, <strong>in</strong> a ¢gure adapted from Figure 6a of Stanford<br />

et al. [22], is an illustration of how <strong>the</strong> neural <strong>in</strong>tegration of crossmodal<br />

stimulus pairs depends on <strong>the</strong> strength of <strong>the</strong> modality-speci¢c<br />

component stimuli. In this experiment, s<strong>in</strong>gle neuron activity from <strong>the</strong><br />

cat superior colliculus was recorded <strong>in</strong> response to visual, auditory, and<br />

visual-auditory stimuli across a wide range of stimulus <strong>in</strong>tensities. In each<br />

case, <strong>the</strong> magnitude of <strong>the</strong> response to <strong>the</strong> cross-modal stimulus was<br />

evaluated with respect to a benchmark of simple summation of <strong>the</strong> responses<br />

to <strong>the</strong> modality-speci¢c component stimuli (see Stanford et al.<br />

[22] for details).The plot illustrates <strong>the</strong> relative likelihood of <strong>multisensory</strong><br />

responses that exceeded summation (superadditive¼¢lled circles), failed<br />

to achieve summation (subadditive¼open squares), or were consistent<br />

with summation (additive¼open circles). Note that <strong>the</strong> likelihood of observ<strong>in</strong>g<br />

superadditivity fell dramatically as <strong>the</strong> e⁄cacy of <strong>the</strong> component<br />

stimuli <strong>in</strong>creased. Thus, superadditivity predom<strong>in</strong>ated only for very<br />

weakly e¡ective auditory and visual stimulus components, stimuli for<br />

which <strong>the</strong> predicted sum of <strong>the</strong> modality-speci¢c responses failed to<br />

exceed 2^ 4 impulses/trial.<br />

or subadditive (subl<strong>in</strong>ear). Although <strong>the</strong> Popul<strong>in</strong> and Y<strong>in</strong><br />

f<strong>in</strong>d<strong>in</strong>gs appeared to be an extreme departure from earlier<br />

literature, <strong>in</strong>clud<strong>in</strong>g those from o<strong>the</strong>r studies <strong>in</strong> awake<br />

animals (e.g. see Ref. [25]), <strong>the</strong>ir data overlap greatly with<br />

<strong>the</strong> more recent studies show<strong>in</strong>g that, <strong>in</strong> anes<strong>the</strong>tized cats,<br />

additivity predom<strong>in</strong>ates for comb<strong>in</strong>ations of all but <strong>the</strong><br />

weakest modality-specific stimuli [22,23]. Popul<strong>in</strong> and Y<strong>in</strong><br />

do not relate <strong>in</strong>tegration mode to stimulus efficacy for <strong>the</strong>ir<br />

sample; however, <strong>the</strong> specific examples provided suggest<br />

moderate efficacy and, at first glance, seem <strong>in</strong> l<strong>in</strong>e with <strong>the</strong><br />

most recent results from anes<strong>the</strong>tized cats. This, along with<br />

both earlier [25] and more recent reports of superadditive<br />

<strong>multisensory</strong> <strong>in</strong>teractions <strong>in</strong> s<strong>in</strong>gle neurons <strong>in</strong> a variety of<br />

structures <strong>in</strong> awake, behav<strong>in</strong>g animals (monkey cortex: [26];<br />

rat thalamus: [27]), coupled with <strong>the</strong> data from fMRI and<br />

ERP studies (see above) strongly suggest that a difference <strong>in</strong><br />

sampl<strong>in</strong>g and/or stimulus efficacy is <strong>the</strong> more parsimonious<br />

explanation of <strong>the</strong> extreme paucity of superadditive<br />

cases <strong>in</strong> <strong>the</strong>ir sample.<br />

Implications for behavior<br />

From a functional perspective, <strong>the</strong> issue of <strong>in</strong>tegrative<br />

mechanism (i.e. l<strong>in</strong>ear or nonl<strong>in</strong>ear) is relevant only to <strong>the</strong><br />

extent that it dictates <strong>the</strong> magnitude (and/or tim<strong>in</strong>g) of <strong>the</strong><br />

postsynaptic response. Neurons <strong>in</strong> <strong>the</strong> superior colliculus<br />

represent salient visual, auditory, and tactile stimuli and<br />

contribute to <strong>the</strong> formation of motor commands to orient<br />

even if a<br />

certa<strong>in</strong> % of<br />

trials with<br />

superadd,<br />

that would<br />

manifest as<br />

<strong>in</strong>creased<br />

activity <strong>in</strong><br />

study..<br />

79 0 Vol 18 No 8 28 May 2007<br />

Copyright © Lipp<strong>in</strong>cott Williams & Wilk<strong>in</strong>s. Unauthorized reproduction of this article is prohibited.


SUPERADDITIVITY IN MULTISENSORY INTEGRATION<br />

NEUROREPORT<br />

1.0<br />

Saccadic RT and <strong>in</strong>verse effectiveness<br />

12.0<br />

Manual RT and <strong>in</strong>verse effectiveness<br />

Normalized (re: visual) RT<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

Vis<br />

Aud<br />

V + A<br />

Percentage of reduction <strong>in</strong> RT<br />

10.0<br />

8.0<br />

6.0<br />

4.0<br />

2.0<br />

VA low<br />

T low A low<br />

VA high<br />

VT low<br />

T high A high<br />

VT high<br />

0.0<br />

−21 dB −18 dB −12 dB −6 dB<br />

Auditory signal to noise ratio<br />

Fig. 4 Saccadic reaction time and <strong>in</strong>verse e¡ectiveness. This ¢gure,<br />

which was adapted from Figure 10 of Corneil et al. [7], illustrates <strong>the</strong><br />

relationship between stimulus strength and <strong>the</strong> decrements <strong>in</strong> saccadic<br />

reaction time (RT) result<strong>in</strong>g from comb<strong>in</strong><strong>in</strong>g visual and auditory stimuli.<br />

Human <strong>in</strong>dividuals were <strong>in</strong>structed to make saccades as quickly as possible<br />

to a visual stimulus, an auditory stimulus, or a spatially congruent<br />

visual^auditory stimulus. Auditory stimuli were presented at di¡erent<br />

signal strengths ( 21, 18, 12, and 6 dB) with respect to background<br />

noise. Plotted are mean RTs for saccades to <strong>the</strong> auditory stimulus alone<br />

(white bars) and <strong>the</strong> auditory^visual stimulus pair (gray bars) as a function<br />

of <strong>in</strong>creas<strong>in</strong>g auditory signal strength. All mean RTs are normalized relative<br />

to that for saccades to <strong>the</strong> visual stimulus alone (black bars ^ value of<br />

1.0). As expected, mean RT for <strong>the</strong> auditory stimulus (white bars) decl<strong>in</strong>es<br />

monotonically as a function of <strong>in</strong>creas<strong>in</strong>g auditory stimulus strength<br />

(<strong>in</strong>creas<strong>in</strong>g S/N ratio from left to right). Note, however, that S/N noise<br />

ratio also modulates <strong>the</strong> <strong>in</strong>£uence of <strong>multisensory</strong> <strong>in</strong>tegration such<br />

that mean RT for <strong>the</strong> cross-modal pair (gray bars) is shorter than that<br />

for <strong>the</strong> auditory stimulus alone (white bars) for <strong>the</strong> weakest auditory<br />

stimulus ( 21dB), but not for <strong>the</strong> most <strong>in</strong>tense auditory stimulus<br />

( 6 dB), a ¢nd<strong>in</strong>g consistent with <strong>in</strong>verse e¡ectiveness. It is also important<br />

to note that <strong>the</strong> apparent RT bene¢ts associated with cross-modal<br />

stimuli were not exclusive to <strong>the</strong> lowest S/N ratio, but appear to be<br />

present and of <strong>in</strong>termediate magnitude for <strong>the</strong> <strong>in</strong>termediate S/N ratios<br />

( 12 and 18 dB).<br />

(eyes, head, ears, body) to <strong>the</strong>se stimuli (see [28,29] for<br />

reviews). It is reasonable to presume that any stimulusrelated<br />

factor that leads to an augmented neural response <strong>in</strong><br />

<strong>the</strong> superior colliculus also <strong>in</strong>creases <strong>the</strong> salience of that<br />

stimulus, and with it <strong>the</strong> probability that it will elicit an<br />

orient<strong>in</strong>g response. It is well established that highly salient<br />

stimuli (e.g. bright, loud) provoke behavioral responses<br />

more reliably and more rapidly. Fur<strong>the</strong>rmore, <strong>the</strong>se same<br />

stimuli evoke neural responses that are of shorter latency,<br />

more vigorous, and less variable whe<strong>the</strong>r considered from<br />

<strong>the</strong> perspective of a s<strong>in</strong>gle neuron or populations of<br />

neurons. In many <strong>in</strong>stances, it seems justified to <strong>in</strong>fer a<br />

causal relationship from such behavior/neural correlates<br />

(e.g. greater activity level, shorter reaction time).<br />

Consider<strong>in</strong>g superadditivity as a context-limited phenomenon<br />

with<strong>in</strong> <strong>the</strong> broader spectrum of <strong>multisensory</strong><br />

<strong>in</strong>teractions, it seems self-evident that <strong>multisensory</strong> behavioral<br />

phenomena, at least those mediated by <strong>the</strong> superior<br />

colliculus, are not wholly dependent on supral<strong>in</strong>ear <strong>in</strong>teractions<br />

between <strong>the</strong> senses. Whereas one might reasonably<br />

expect that such <strong>in</strong>teractions contribute to <strong>the</strong> most potent<br />

behavioral effects observed when very weak unisensory<br />

stimuli are comb<strong>in</strong>ed, it should be recognized that simple<br />

0.0<br />

V+A V+T T+A<br />

Fig. 5 Manual reaction times and <strong>in</strong>verse e¡ectiveness. Shown here are<br />

<strong>the</strong> decrements <strong>in</strong> manual reaction time (RT) result<strong>in</strong>g from <strong>the</strong> addition<br />

of a stimulus from a second modality (i.e. cross-modal versus modalityspeci¢c).<br />

They are <strong>in</strong>versely related to stimulus <strong>in</strong>tensity. The data are<br />

taken fromTable 4 of Diederich and Colonius [6]. In <strong>the</strong>ir experiment, human<br />

<strong>in</strong>dividuals were <strong>in</strong>structed to depress a response button with each<br />

hand upon detect<strong>in</strong>g any stimulus, and manual reaction times were measured.<br />

Stimuli consisted of a visual £ash, auditory pure tone, vibratory<br />

tactile stimulus, or some comb<strong>in</strong>ation of <strong>the</strong>se three stimuli. Plotted are<br />

<strong>the</strong> % reductions <strong>in</strong> RT for <strong>the</strong> visual^auditory, tactile^visual, and tactile^<br />

auditory stimulus comb<strong>in</strong>ations. For each pair<strong>in</strong>g, <strong>the</strong> percent reduction<br />

<strong>in</strong> mean RT is plotted with reference to that for <strong>the</strong> modality-speci¢c<br />

component stimulus that yielded <strong>the</strong> shortest mean RTaccord<strong>in</strong>g to <strong>the</strong><br />

general formula: % reduction <strong>in</strong> RT¼m<strong>in</strong>(RT 1 , RT 2 ) (RT 1 + 2 )/m<strong>in</strong>(RT 1 ,<br />

RT 2 ) 100, where RT 1 and RT 2 are mean RTs for responses to each of <strong>the</strong><br />

stimulus components and RT 1 + 2 is <strong>the</strong> mean RT for responses to <strong>the</strong><br />

stimulus comb<strong>in</strong>ation. Note that for each cross-modal stimulus, <strong>the</strong> higher<br />

<strong>in</strong>tensity comb<strong>in</strong>ation (gray bars) yielded a proportionally lower reduction<br />

<strong>in</strong> RT than did <strong>the</strong> lower <strong>in</strong>tensity comb<strong>in</strong>ation (black bars), thus<br />

illustrat<strong>in</strong>g that <strong>the</strong> concept of <strong>in</strong>verse e¡ectiveness applies to manual<br />

RT. Note also that all stimuli were suprathreshold, illustrat<strong>in</strong>g that <strong>the</strong><br />

behavioral bene¢ts for <strong>multisensory</strong> <strong>in</strong>tegration are not exclusive to near<br />

threshold stimulation and that behavioral bene¢ts, albeit attenuated, are<br />

also observed for higher <strong>in</strong>tensity comb<strong>in</strong>ations. Stimulus pair<strong>in</strong>gs VA low ,<br />

VA high , VT low , VT high , T low A low , T high A high correspond to VA 70 , VA 90 , T 1 V,<br />

T 3 V,T 1 A 70 ,T 3 A 90 , respectively.<br />

summation, and even subl<strong>in</strong>ear comb<strong>in</strong>ations, of <strong>in</strong>dependent<br />

<strong>in</strong>puts would be expected to have behavioral manifestations<br />

by virtue of yield<strong>in</strong>g substantial <strong>in</strong>creases <strong>in</strong> superior<br />

colliculus activity. The predicted <strong>in</strong>verse trend has been<br />

demonstrated empirically for behavior; <strong>the</strong> <strong>in</strong>fluence of<br />

comb<strong>in</strong><strong>in</strong>g stimuli on behavioral measures such as localization<br />

or reaction time does, <strong>in</strong> fact, decrease with <strong>in</strong>creas<strong>in</strong>g<br />

salience of <strong>the</strong> unisensory components, and this pr<strong>in</strong>ciple<br />

seems to apply equally well to orientation of gaze (e.g. [7];<br />

see Fig. 4) or limb movement (e.g. [6]; see Fig. 5). Note,<br />

however, that <strong>the</strong> examples depicted <strong>in</strong> <strong>the</strong>se illustrations<br />

suggest that <strong>the</strong> behavioral effects of <strong>multisensory</strong> <strong>in</strong>tegration,<br />

whereas certa<strong>in</strong>ly greatest for <strong>the</strong> weakest stimuli, are<br />

not exclusive to such comb<strong>in</strong>ations.<br />

The concept of <strong>in</strong>verse effectiveness as it applies to<br />

behavior is <strong>in</strong>tuitive and, as discussed above, an analog<br />

(and perhaps its neural correlate) is evident <strong>in</strong> <strong>the</strong> responses<br />

of superior colliculus <strong>multisensory</strong> neurons: comb<strong>in</strong>ations<br />

of very weakly effective modality-specific stimuli result <strong>in</strong><br />

proportionately larger enhancements than do comb<strong>in</strong>ations<br />

of highly effective stimuli (see Figs 1–3). Given that<br />

<strong>multisensory</strong> phenomena arise via convergence (and, <strong>in</strong><br />

Vol 18 No 8 28 May 2007 791<br />

Copyright © Lipp<strong>in</strong>cott Williams & Wilk<strong>in</strong>s. Unauthorized reproduction of this article is prohibited.


NEUROREPORT<br />

STANFORD AND STEIN<br />

many cases, l<strong>in</strong>ear comb<strong>in</strong>ation) of <strong>in</strong>formation on unisensory<br />

channels, it is not surpris<strong>in</strong>g that <strong>the</strong> function<br />

relat<strong>in</strong>g <strong>the</strong> behavioral products of <strong>multisensory</strong> <strong>in</strong>tegration<br />

to stimulus <strong>in</strong>tensity is qualitatively similar to that for<br />

unisensory stimuli. For unisensory stimuli, <strong>the</strong> relationship<br />

between stimulus <strong>in</strong>tensity and stimulus detection or<br />

reaction time is also one of dim<strong>in</strong>ish<strong>in</strong>g returns; psychometric<br />

functions of stimulus detection probability versus<br />

stimulus <strong>in</strong>tensity display <strong>the</strong> characteristic sigmoid shape,<br />

positively accelerat<strong>in</strong>g near threshold and negatively accelerat<strong>in</strong>g<br />

near maximal performance. Likewise, reaction time<br />

decrements with stimulus <strong>in</strong>tensity are described by an<br />

<strong>in</strong>verse power function (Pieron’s Law) that prescribes large<br />

reaction time decrements for near-threshold <strong>in</strong>tensity <strong>in</strong>crements<br />

and little to no effect for <strong>in</strong>creases <strong>in</strong> <strong>the</strong> high<strong>in</strong>tensity<br />

range [30,31].<br />

The analogy drawn between <strong>in</strong>creases <strong>in</strong> activity ow<strong>in</strong>g to<br />

<strong>in</strong>crements <strong>in</strong> with<strong>in</strong>-modal stimulus <strong>in</strong>tensity and those<br />

due to <strong>the</strong> addition of stimuli from a second modality (i.e.<br />

<strong>multisensory</strong> <strong>in</strong>tegration) is <strong>in</strong>structive; it rem<strong>in</strong>ds us that,<br />

from <strong>the</strong> po<strong>in</strong>t of view of circuits that must ‘read out’<br />

superior colliculus activity to produce behavior, <strong>the</strong> particular<br />

mechanism that gave rise to an <strong>in</strong>crease <strong>in</strong> activity is<br />

irrelevant. With this <strong>in</strong> m<strong>in</strong>d, we emphasize that superadditivity<br />

is but one of several computations through which<br />

<strong>multisensory</strong> <strong>in</strong>tegration enhances <strong>the</strong> neural representation<br />

of sensory signals and <strong>the</strong> behaviors that depend on <strong>the</strong>m.<br />

Acknowledgement<br />

Grant support: NS36916 and NS22543.<br />

References<br />

1. Ste<strong>in</strong> BE, Meredith MA. The merg<strong>in</strong>g of <strong>the</strong> senses. Cambridge, MA: The<br />

MIT Press; 1993.<br />

2. Ste<strong>in</strong> BE, Meredith MA, Huneycutt WS, McDade L. Behavioral <strong>in</strong>dices<br />

of <strong>multisensory</strong> <strong>in</strong>tegration: orientation to visual cues is affected by<br />

auditory stimuli. J Cogn Neurosci 1989; 1:12–24.<br />

3. Hughes HC, Reuter-Lorenz PA, Nozawa G, Fendrich R. Visual–auditory<br />

<strong>in</strong>teractions <strong>in</strong> sensorimotor process<strong>in</strong>g: saccades versus manual<br />

responses. J Exp Psychol Hum Percept Perform 1994; 20:131–153.<br />

4. Nozawa G, Reuter-Lorenz PA, Hughes HC. Parallel and serial processes<br />

<strong>in</strong> <strong>the</strong> human oculomotor system: bimodal <strong>in</strong>tegration and express<br />

saccades. Biol Cybern 1994; 72:19–34.<br />

5. Colonius H, Arndt P. A two-stage model for visual–auditory <strong>in</strong>teraction<br />

<strong>in</strong> saccadic latencies. Percept Psychophys 2001; 63:126–147.<br />

6. Diederich A, Colonius H. Bimodal and trimodal <strong>multisensory</strong> enhancement:<br />

effects of stimulus onset and <strong>in</strong>tensity on reaction time. Percept<br />

Psychophys 2004; 66:1388–1404.<br />

7. Corneil BD, Van Wanrooij M, Munoz DP, Van Opstal AJ. Auditory–visual<br />

<strong>in</strong>teractions subserv<strong>in</strong>g goal-directed saccades <strong>in</strong> a complex scene.<br />

J Neurophysiol 2002; 88:438-454.<br />

8. Frens MA, Van Opstal AJ, Van der Willigen RF. Spatial and temporal<br />

factors determ<strong>in</strong>e auditory–visual <strong>in</strong>teractions <strong>in</strong> human saccadic eye<br />

movements. Percept Psychophys 1995; 57:802–816.<br />

9. Bologn<strong>in</strong>i N, Rasi F, Coccia M, Ladavas E. Visual search improvement<br />

<strong>in</strong> hemianopic patients after audio–visual stimulation. Bra<strong>in</strong> 2005; 128:<br />

2830–2842.<br />

10. Calvert GA, Spence C, Ste<strong>in</strong> BE. The handbook of <strong>multisensory</strong> processes.<br />

Cambridge, MA: The MIT Press; 2004.<br />

11. Foxe JJ, Schroeder CE. The case for feedforward <strong>multisensory</strong><br />

convergence dur<strong>in</strong>g early cortical process<strong>in</strong>g. NeuroReport 2005;<br />

16:419–423.<br />

12. Calvert GA. Crossmodal process<strong>in</strong>g <strong>in</strong> <strong>the</strong> human bra<strong>in</strong>: <strong>in</strong>sights from<br />

functional neuroimag<strong>in</strong>g studies. Cereb Cortex 2001; 11:1110–1123.<br />

13. Laurienti PJ, Perrault TJ, Stanford TR, Wallace MT, Ste<strong>in</strong> BE. On <strong>the</strong> use of<br />

superadditivity as a metric for characteriz<strong>in</strong>g <strong>multisensory</strong> <strong>in</strong>tegration <strong>in</strong><br />

functional neuroimag<strong>in</strong>g studies. Exp Bra<strong>in</strong> Res 2005; 166:289–297.<br />

14. Foxe JJ, Morocz IA, Murray MM, Higg<strong>in</strong>s BA, Javitt DC, Schroeder CE.<br />

Multisensory auditory–somatosensory <strong>in</strong>teractions <strong>in</strong> early cortical<br />

process<strong>in</strong>g revealed by high-density electrical mapp<strong>in</strong>g. Bra<strong>in</strong> Res Cogn<br />

Bra<strong>in</strong> Res 2000; 10:77–83.<br />

15. Molholm S, Ritter W, Murray MM, Javitt DC, Schroeder CE, Foxe JJ.<br />

Multisensory auditory–visual <strong>in</strong>teractions dur<strong>in</strong>g early sensory<br />

process<strong>in</strong>g <strong>in</strong> humans: a high-density electrical mapp<strong>in</strong>g study. Bra<strong>in</strong><br />

Res Cogn Bra<strong>in</strong> Res 2002; 14:115–128.<br />

16. Fort A, Giard M. In: Calvert GA, Spence C, Ste<strong>in</strong> BE, editors. The handbook<br />

of <strong>multisensory</strong> <strong>in</strong>tegration. Cambridge, MA: The MIT Press; 2004.<br />

17. Meredith MA, Ste<strong>in</strong> BE. Visual, auditory, and somatosensory<br />

convergence on cells <strong>in</strong> superior colliculus results <strong>in</strong> <strong>multisensory</strong><br />

<strong>in</strong>tegration. J Neurophysiol 1986; 56:640–662.<br />

18. Wallace MT, McHaffie JG, Ste<strong>in</strong> BE. Visual response properties and<br />

visuotopic representation <strong>in</strong> <strong>the</strong> newborn monkey superior colliculus.<br />

J Neurophysiol 1997; 78:2732–2741.<br />

19. Jiang W, Jiang H, Rowland BA, Ste<strong>in</strong> BE. Multisensory orientation<br />

behavior is disrupted by neonatal cortical ablation. J Neurophysiol 2006.<br />

20. Wallace MT, Ste<strong>in</strong> BE. Early experience determ<strong>in</strong>es how <strong>the</strong> senses will<br />

<strong>in</strong>teract. J Neurophysiol 2006.<br />

21. Jiang W, Wallace MT, Jiang H, Vaughan JW, Ste<strong>in</strong> BE. Two cortical areas<br />

mediate <strong>multisensory</strong> <strong>in</strong>tegration <strong>in</strong> superior colliculus neurons.<br />

J Neurophysiol 2001; 85:506–522.<br />

22. Stanford TR, Quessy S, Ste<strong>in</strong> BE. Evaluat<strong>in</strong>g <strong>the</strong> operations underly<strong>in</strong>g<br />

<strong>multisensory</strong> <strong>in</strong>tegration <strong>in</strong> <strong>the</strong> cat superior colliculus. J Neurosci 2005;<br />

25:6499–6508.<br />

23. Perrault TJ Jr, Vaughan JW, Ste<strong>in</strong> BE, Wallace MT. Superior colliculus<br />

neurons use dist<strong>in</strong>ct operational modes <strong>in</strong> <strong>the</strong> <strong>in</strong>tegration of multisenory<br />

stimuli. J Neurophysiol 2005; 93:2575–2586.<br />

24. Popul<strong>in</strong> LC, Y<strong>in</strong> TC. Bimodal <strong>in</strong>teractions <strong>in</strong> <strong>the</strong> superior colliculus of <strong>the</strong><br />

behav<strong>in</strong>g cat. J Neurosci 2002; 22:2826–2834.<br />

25. Wallace MT, Meredith MA, Ste<strong>in</strong> BE. Multisensory <strong>in</strong>tegration <strong>in</strong> <strong>the</strong><br />

superior colliculus of <strong>the</strong> alert cat. J Neurophysiol 1998; 80:1006–1010.<br />

26. Barraclough NE, Xiao D, Baker <strong>CI</strong>, Oram MW, Perrett DI. Integration of<br />

visual and auditory <strong>in</strong>formation by superior temporal sulcus neurons<br />

responsive to <strong>the</strong> sight of actions. J Cogn Neurosci 2005; 17:377–391.<br />

27. Komura Y, Tamura R, Uwano T, Nishijo H, Ono T. Auditory thalamus<br />

<strong>in</strong>tegrates visual <strong>in</strong>puts <strong>in</strong>to behavioral ga<strong>in</strong>s. Nat Neurosci 2005; 8:<br />

1203–1209.<br />

28. Sparks DL. Translation of sensory signals <strong>in</strong>to commands for control of<br />

saccadic eye movements: role of primate superior colliculus. Physiol Rev<br />

1986; 66:118–171.<br />

29. Hall WC, Moschovakis A. The superior colliculus: new approaches for<br />

study<strong>in</strong>g sensorimotor <strong>in</strong>tegration. Boca Raton, FL: CRC Press; 2004.<br />

30. Pieron H. The sensations: <strong>the</strong>ir functions, processes and mechanisms. London:<br />

Frederick Muller Ltd.; 1952.<br />

31. Luce RD. Response times: <strong>the</strong>ir role <strong>in</strong> <strong>in</strong>ferr<strong>in</strong>g elementary mental<br />

organisation. New York: Clarendon Press; 1986.<br />

79 2 Vol 18 No 8 28 May 2007<br />

Copyright © Lipp<strong>in</strong>cott Williams & Wilk<strong>in</strong>s. Unauthorized reproduction of this article is prohibited.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!