21.01.2015 Views

Superadditivity in multisensory integration: putting the ... - CI Wiki

Superadditivity in multisensory integration: putting the ... - CI Wiki

Superadditivity in multisensory integration: putting the ... - CI Wiki

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

NEUROREPORT<br />

STANFORD AND STEIN<br />

many cases, l<strong>in</strong>ear comb<strong>in</strong>ation) of <strong>in</strong>formation on unisensory<br />

channels, it is not surpris<strong>in</strong>g that <strong>the</strong> function<br />

relat<strong>in</strong>g <strong>the</strong> behavioral products of <strong>multisensory</strong> <strong>in</strong>tegration<br />

to stimulus <strong>in</strong>tensity is qualitatively similar to that for<br />

unisensory stimuli. For unisensory stimuli, <strong>the</strong> relationship<br />

between stimulus <strong>in</strong>tensity and stimulus detection or<br />

reaction time is also one of dim<strong>in</strong>ish<strong>in</strong>g returns; psychometric<br />

functions of stimulus detection probability versus<br />

stimulus <strong>in</strong>tensity display <strong>the</strong> characteristic sigmoid shape,<br />

positively accelerat<strong>in</strong>g near threshold and negatively accelerat<strong>in</strong>g<br />

near maximal performance. Likewise, reaction time<br />

decrements with stimulus <strong>in</strong>tensity are described by an<br />

<strong>in</strong>verse power function (Pieron’s Law) that prescribes large<br />

reaction time decrements for near-threshold <strong>in</strong>tensity <strong>in</strong>crements<br />

and little to no effect for <strong>in</strong>creases <strong>in</strong> <strong>the</strong> high<strong>in</strong>tensity<br />

range [30,31].<br />

The analogy drawn between <strong>in</strong>creases <strong>in</strong> activity ow<strong>in</strong>g to<br />

<strong>in</strong>crements <strong>in</strong> with<strong>in</strong>-modal stimulus <strong>in</strong>tensity and those<br />

due to <strong>the</strong> addition of stimuli from a second modality (i.e.<br />

<strong>multisensory</strong> <strong>in</strong>tegration) is <strong>in</strong>structive; it rem<strong>in</strong>ds us that,<br />

from <strong>the</strong> po<strong>in</strong>t of view of circuits that must ‘read out’<br />

superior colliculus activity to produce behavior, <strong>the</strong> particular<br />

mechanism that gave rise to an <strong>in</strong>crease <strong>in</strong> activity is<br />

irrelevant. With this <strong>in</strong> m<strong>in</strong>d, we emphasize that superadditivity<br />

is but one of several computations through which<br />

<strong>multisensory</strong> <strong>in</strong>tegration enhances <strong>the</strong> neural representation<br />

of sensory signals and <strong>the</strong> behaviors that depend on <strong>the</strong>m.<br />

Acknowledgement<br />

Grant support: NS36916 and NS22543.<br />

References<br />

1. Ste<strong>in</strong> BE, Meredith MA. The merg<strong>in</strong>g of <strong>the</strong> senses. Cambridge, MA: The<br />

MIT Press; 1993.<br />

2. Ste<strong>in</strong> BE, Meredith MA, Huneycutt WS, McDade L. Behavioral <strong>in</strong>dices<br />

of <strong>multisensory</strong> <strong>in</strong>tegration: orientation to visual cues is affected by<br />

auditory stimuli. J Cogn Neurosci 1989; 1:12–24.<br />

3. Hughes HC, Reuter-Lorenz PA, Nozawa G, Fendrich R. Visual–auditory<br />

<strong>in</strong>teractions <strong>in</strong> sensorimotor process<strong>in</strong>g: saccades versus manual<br />

responses. J Exp Psychol Hum Percept Perform 1994; 20:131–153.<br />

4. Nozawa G, Reuter-Lorenz PA, Hughes HC. Parallel and serial processes<br />

<strong>in</strong> <strong>the</strong> human oculomotor system: bimodal <strong>in</strong>tegration and express<br />

saccades. Biol Cybern 1994; 72:19–34.<br />

5. Colonius H, Arndt P. A two-stage model for visual–auditory <strong>in</strong>teraction<br />

<strong>in</strong> saccadic latencies. Percept Psychophys 2001; 63:126–147.<br />

6. Diederich A, Colonius H. Bimodal and trimodal <strong>multisensory</strong> enhancement:<br />

effects of stimulus onset and <strong>in</strong>tensity on reaction time. Percept<br />

Psychophys 2004; 66:1388–1404.<br />

7. Corneil BD, Van Wanrooij M, Munoz DP, Van Opstal AJ. Auditory–visual<br />

<strong>in</strong>teractions subserv<strong>in</strong>g goal-directed saccades <strong>in</strong> a complex scene.<br />

J Neurophysiol 2002; 88:438-454.<br />

8. Frens MA, Van Opstal AJ, Van der Willigen RF. Spatial and temporal<br />

factors determ<strong>in</strong>e auditory–visual <strong>in</strong>teractions <strong>in</strong> human saccadic eye<br />

movements. Percept Psychophys 1995; 57:802–816.<br />

9. Bologn<strong>in</strong>i N, Rasi F, Coccia M, Ladavas E. Visual search improvement<br />

<strong>in</strong> hemianopic patients after audio–visual stimulation. Bra<strong>in</strong> 2005; 128:<br />

2830–2842.<br />

10. Calvert GA, Spence C, Ste<strong>in</strong> BE. The handbook of <strong>multisensory</strong> processes.<br />

Cambridge, MA: The MIT Press; 2004.<br />

11. Foxe JJ, Schroeder CE. The case for feedforward <strong>multisensory</strong><br />

convergence dur<strong>in</strong>g early cortical process<strong>in</strong>g. NeuroReport 2005;<br />

16:419–423.<br />

12. Calvert GA. Crossmodal process<strong>in</strong>g <strong>in</strong> <strong>the</strong> human bra<strong>in</strong>: <strong>in</strong>sights from<br />

functional neuroimag<strong>in</strong>g studies. Cereb Cortex 2001; 11:1110–1123.<br />

13. Laurienti PJ, Perrault TJ, Stanford TR, Wallace MT, Ste<strong>in</strong> BE. On <strong>the</strong> use of<br />

superadditivity as a metric for characteriz<strong>in</strong>g <strong>multisensory</strong> <strong>in</strong>tegration <strong>in</strong><br />

functional neuroimag<strong>in</strong>g studies. Exp Bra<strong>in</strong> Res 2005; 166:289–297.<br />

14. Foxe JJ, Morocz IA, Murray MM, Higg<strong>in</strong>s BA, Javitt DC, Schroeder CE.<br />

Multisensory auditory–somatosensory <strong>in</strong>teractions <strong>in</strong> early cortical<br />

process<strong>in</strong>g revealed by high-density electrical mapp<strong>in</strong>g. Bra<strong>in</strong> Res Cogn<br />

Bra<strong>in</strong> Res 2000; 10:77–83.<br />

15. Molholm S, Ritter W, Murray MM, Javitt DC, Schroeder CE, Foxe JJ.<br />

Multisensory auditory–visual <strong>in</strong>teractions dur<strong>in</strong>g early sensory<br />

process<strong>in</strong>g <strong>in</strong> humans: a high-density electrical mapp<strong>in</strong>g study. Bra<strong>in</strong><br />

Res Cogn Bra<strong>in</strong> Res 2002; 14:115–128.<br />

16. Fort A, Giard M. In: Calvert GA, Spence C, Ste<strong>in</strong> BE, editors. The handbook<br />

of <strong>multisensory</strong> <strong>in</strong>tegration. Cambridge, MA: The MIT Press; 2004.<br />

17. Meredith MA, Ste<strong>in</strong> BE. Visual, auditory, and somatosensory<br />

convergence on cells <strong>in</strong> superior colliculus results <strong>in</strong> <strong>multisensory</strong><br />

<strong>in</strong>tegration. J Neurophysiol 1986; 56:640–662.<br />

18. Wallace MT, McHaffie JG, Ste<strong>in</strong> BE. Visual response properties and<br />

visuotopic representation <strong>in</strong> <strong>the</strong> newborn monkey superior colliculus.<br />

J Neurophysiol 1997; 78:2732–2741.<br />

19. Jiang W, Jiang H, Rowland BA, Ste<strong>in</strong> BE. Multisensory orientation<br />

behavior is disrupted by neonatal cortical ablation. J Neurophysiol 2006.<br />

20. Wallace MT, Ste<strong>in</strong> BE. Early experience determ<strong>in</strong>es how <strong>the</strong> senses will<br />

<strong>in</strong>teract. J Neurophysiol 2006.<br />

21. Jiang W, Wallace MT, Jiang H, Vaughan JW, Ste<strong>in</strong> BE. Two cortical areas<br />

mediate <strong>multisensory</strong> <strong>in</strong>tegration <strong>in</strong> superior colliculus neurons.<br />

J Neurophysiol 2001; 85:506–522.<br />

22. Stanford TR, Quessy S, Ste<strong>in</strong> BE. Evaluat<strong>in</strong>g <strong>the</strong> operations underly<strong>in</strong>g<br />

<strong>multisensory</strong> <strong>in</strong>tegration <strong>in</strong> <strong>the</strong> cat superior colliculus. J Neurosci 2005;<br />

25:6499–6508.<br />

23. Perrault TJ Jr, Vaughan JW, Ste<strong>in</strong> BE, Wallace MT. Superior colliculus<br />

neurons use dist<strong>in</strong>ct operational modes <strong>in</strong> <strong>the</strong> <strong>in</strong>tegration of multisenory<br />

stimuli. J Neurophysiol 2005; 93:2575–2586.<br />

24. Popul<strong>in</strong> LC, Y<strong>in</strong> TC. Bimodal <strong>in</strong>teractions <strong>in</strong> <strong>the</strong> superior colliculus of <strong>the</strong><br />

behav<strong>in</strong>g cat. J Neurosci 2002; 22:2826–2834.<br />

25. Wallace MT, Meredith MA, Ste<strong>in</strong> BE. Multisensory <strong>in</strong>tegration <strong>in</strong> <strong>the</strong><br />

superior colliculus of <strong>the</strong> alert cat. J Neurophysiol 1998; 80:1006–1010.<br />

26. Barraclough NE, Xiao D, Baker <strong>CI</strong>, Oram MW, Perrett DI. Integration of<br />

visual and auditory <strong>in</strong>formation by superior temporal sulcus neurons<br />

responsive to <strong>the</strong> sight of actions. J Cogn Neurosci 2005; 17:377–391.<br />

27. Komura Y, Tamura R, Uwano T, Nishijo H, Ono T. Auditory thalamus<br />

<strong>in</strong>tegrates visual <strong>in</strong>puts <strong>in</strong>to behavioral ga<strong>in</strong>s. Nat Neurosci 2005; 8:<br />

1203–1209.<br />

28. Sparks DL. Translation of sensory signals <strong>in</strong>to commands for control of<br />

saccadic eye movements: role of primate superior colliculus. Physiol Rev<br />

1986; 66:118–171.<br />

29. Hall WC, Moschovakis A. The superior colliculus: new approaches for<br />

study<strong>in</strong>g sensorimotor <strong>in</strong>tegration. Boca Raton, FL: CRC Press; 2004.<br />

30. Pieron H. The sensations: <strong>the</strong>ir functions, processes and mechanisms. London:<br />

Frederick Muller Ltd.; 1952.<br />

31. Luce RD. Response times: <strong>the</strong>ir role <strong>in</strong> <strong>in</strong>ferr<strong>in</strong>g elementary mental<br />

organisation. New York: Clarendon Press; 1986.<br />

79 2 Vol 18 No 8 28 May 2007<br />

Copyright © Lipp<strong>in</strong>cott Williams & Wilk<strong>in</strong>s. Unauthorized reproduction of this article is prohibited.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!