21.01.2015 Views

Fiber - Fermilab

Fiber - Fermilab

Fiber - Fermilab

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

NOvA technology<br />

Jarek Nowak<br />

University of Minnesota


Argonne National Laboratory - University of Athens - California Institute of Technology - University of California, Los<br />

Angeles - Fermi National Accelerator Laboratory - Harvard University - Indiana University - Lebedev Physical Institute<br />

- Michigan State University - University of Minnesota, Duluth - University of Minnesota, Minneapolis - The Institute for<br />

Nuclear Research, Moscow - Technische Universität München, Munich - State University of New York, Stony Brook -<br />

Northwestern University - University of South Carolina, Columbia - Southern Methodist University - Stanford<br />

University - University of Tennessee - Texas A&M University - University of Texas, Austin - University of Texas, Dallas -<br />

Tufts University - University of Virginia, Charlottesville - The College of William and Mary - Wichita State University<br />

NOA: NuMI<br />

Off-Axis<br />

e<br />

Appearance Experiment<br />

Near detector<br />

protoblock<br />

180 Scientists and<br />

Engineers from 26<br />

Institutions


Project elements<br />

• <strong>Fiber</strong><br />

• Scintillator<br />

• PVC extrusions<br />

• Detector modules<br />

• Module assembly<br />

• Photodetector<br />

NOvA project<br />

NOvA – Totally Active Scintillator Detector<br />

Other important<br />

• Buildings<br />

• Software<br />

• Beam<br />

• Schedule to Data<br />

Taking<br />

• Electronics<br />

• Data Acquisition<br />

(DAQ)<br />

ANT2010, Santa Fe Jarek Nowak, September 17, 2010


NOvA experiment<br />

• 2nd generation long baseline<br />

• Use existing high intensity beam of muon neutrinos at<br />

<strong>Fermilab</strong>.<br />

• Construct two detectors off the main axis of the<br />

beam.<br />

• Location reduces background for the search.<br />

• If neutrinos oscillate, electron neutrinos are observed<br />

at the Far Detector in Ash River, 810 km away.<br />

NOvA goals<br />

The atmospheric mass scale: Δm 2 32.<br />

Large mixing angle for atmospheric<br />

neutrino oscillations: θ 23.<br />

The third mixing angle: θ 13 .<br />

CP violation: δ CP .<br />

Mass ordering for the atmospheric<br />

oscillations: the sign of Δm 2 32.<br />

ANT2010, Santa Fe Jarek Nowak, September 17, 2010


1 blk - 78 modules<br />

1 H plane = 3 modules<br />

1V plane = 2 modules<br />

Near Detector<br />

209 T<br />

126 T totally active<br />

23 T fiducial<br />

2.9 m<br />

Near Detector prototype built on the<br />

surface in NUMI off-axis beam.<br />

Runs for ~1 yr<br />

Near detector put in the NUMI<br />

beam tunnel off axis.<br />

14.4 m<br />

4.1 m<br />

Shower<br />

containment<br />

Muon catcher<br />

1 m iron<br />

Target<br />

Veto<br />

3 H modules<br />

2 V modules<br />

ANT2010, Santa Fe Jarek Nowak, September 17, 2010


Near Detector m Catcher<br />

• The Near Detector is<br />

backed up by 1 meter of<br />

steel, with standard<br />

modules interleaved.<br />

• The m Catcher is now<br />

completely designed<br />

• Will be installed in the<br />

NDSB<br />

• Steel deliveries have<br />

delayed construction<br />

• 10 layers steel, module<br />

• Last layer has 4 modules<br />

ANT2010, Santa Fe<br />

Jarek Nowak, September 17, 2010


Far Detector<br />

1000 planes , 380,000 channels<br />

15 kT mass (~85% fudicial)<br />

• Cells are in 16-cell PVC extrusion.<br />

• Glue 2 extrusions together to make a 32 cell module.<br />

• 12 modules make up a plane.<br />

• Planes alternate horizontal and vertical.<br />

Extrusion cells in the<br />

near detector protoblock<br />

Simulated physicist<br />

ANT2010, Santa Fe Jarek Nowak, September 17, 2010


Detector Components<br />

• Liquid scintillator (3 million gallons)<br />

• Contained in 3.9cm x 6.6 cm cells of<br />

length 15.6 meters<br />

• 3.9 cm as seen by the beam<br />

• Cell walls are rigid PVC (5 kilotons)<br />

• Loaded with 15% anatase form of<br />

titanium dioxide<br />

• Diffuse reflection at walls keeps light<br />

near (within ~ 1 m) particle path<br />

• Looped wavelength-shifting fiber collects<br />

light (11,160 km)<br />

• <strong>Fiber</strong> diameter 0.7 mm<br />

• <strong>Fiber</strong> shifts wavelength to ~ 520-550 nm along the<br />

fiber<br />

• Avalanche photodiode (APD) converts light to electrical<br />

signal (11,160 devices, ea. 32 pixels)<br />

• 85% quantum efficiency<br />

typical<br />

charged<br />

particle<br />

path<br />

To 1 APD pixel<br />

ANT2010, Santa Fe Jarek Nowak, September 17, 2010<br />

W<br />

D<br />

L


Liquid Scintillator Composition<br />

• Liquid scintillator for NOνA is composed of a primary scintillant<br />

(pseudocumene) that gives off light at 300 nm,<br />

• waveshifters (PPO & bis-MSB) that downshift the UV photons to longer<br />

wavelength to facilitate absorption by the wavelength shifting (WLS)<br />

fibers (convert the photons to 420 nm),<br />

• anti-static agent (Stadis) that prevents the build-up of static electricity.<br />

• The “fluor mix” + anti-static are dissolved in a mineral oil solvent<br />

ANT2010, Santa Fe Jarek Nowak, September 17, 2010


WSL <strong>Fiber</strong><br />

Need ~ 12,000 km of 0.7 mm diameter wavelength<br />

shifting fiber from Kuraray. So far ~10% received<br />

and tested<br />

• MSU Quality Assurance Scanner (duplicate at Kuraray<br />

factory)<br />

• <strong>Fiber</strong> wound on a drum in a 27 m long groove with holes<br />

on 1 m intervals<br />

• <strong>Fiber</strong> is NOT cut from the spool,<br />

• Light source illuminates fiber from within the drum<br />

• Total light output (photodiode) and spectrographic scans,<br />

each ~ 1 minute<br />

K27 dye @ 300 ppm, S-type<br />

Michigan State


APD Description<br />

• APD is a classic linear APD manufactured by Hamamatsu<br />

operated at a gain (M) of 100<br />

• S11211(X) custom variant of commercial S8550<br />

SiAPD<br />

• Operating temperature is -15°C to keep shot noise at<br />

the same level as the amplifier noise<br />

• Signal-to-noise > 10 for muon at far end of a 15m long<br />

cell<br />

• Both ends of the fibers<br />

in each cell are read with<br />

a single APD<br />

• 32 APDs in a single<br />

4 8 array to readout<br />

one module<br />

Manufacturer<br />

Pixel Active Area<br />

Pixel Pitch<br />

Array Size<br />

Die Size<br />

1.95 mm × 1.0 mm<br />

2.65 mm<br />

32 pixels<br />

15.34mm × 13.64mm<br />

Quantum Efficiency (>525 nm) 85%<br />

Pixel Capacitance<br />

Bulk Dark Current (I B ) at 25 C<br />

Bulk Dark Current (I B ) at -15 C<br />

Peak Sensitivity<br />

Operating Voltage<br />

10 pF<br />

12.5 pA<br />

0.25 pA<br />

600 nm<br />

375 ± 50 volts<br />

Gain at Operating Voltage 100<br />

Operating Temperature (with<br />

Thermo-Electric Cooler)<br />

Expected Signal-to-Noise Ratio<br />

(Muon at Far End of Cell)<br />

-15 º C<br />

10:1<br />

APD channels per plane 384<br />

APD arrays per plane 12<br />

Total number of planes 930<br />

Total Number of APD arrays 11,160<br />

APD pixels total 357,120<br />

ANT2010, Santa Fe Jarek Nowak, September 17, 2010


Gain M<br />

Tests of APDs<br />

200<br />

180<br />

A1 A2 A3 A4 A5 A6 A7 A8<br />

B1 B2 B3 B4 B5 B6 B7 B8<br />

C1 C2 C3 C4 C5 C6 C7 C8<br />

D1 D2 D3 D4 D5 D6 D7 D8<br />

160<br />

140<br />

120<br />

100<br />

APD #14 @ -15 ºC<br />

M = 100<br />

80<br />

60<br />

40<br />

Gain vs. Bias Voltage<br />

20<br />

0<br />

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440<br />

V<br />

450<br />

440<br />

APD #16<br />

APD #17<br />

APD #18<br />

APD #19<br />

Bias V drops ~0.8 V/ºC cooling<br />

430<br />

VR @ =100<br />

010, Santa Fe<br />

420<br />

410<br />

400<br />

390<br />

3.20E-03 3.30E-03 3.40E-03 3.50E-03 3.60E-03 3.70E-03 3.80E-03 3.90E-03 4.00E-03<br />

Inv. Temperature (K -1 )<br />

Gain=100 bias voltage linear vs. temperature<br />

• Measured average QE with RMS<br />

spread across 32 channels<br />

• Average across all channels (84.8<br />

± 2.5)% - expected 85%<br />

Jarek Nowak, September 17, 2010


APD tests<br />

Bias V for Gain = 100<br />

Average Dark Current<br />

• Bias voltage ~40 V lower at –15 ºC than +25 ºC<br />

• Batch 1 APDs bias voltage lower than batch 2<br />

• Average dark current ~20x lower at –15 ºC than +25 ºC<br />

• Batch 1 APDs average dark current ~10x lower than<br />

batch 2<br />

Dark current at room temp about 0.2na (40x better than specification)<br />

Jarek Nowak, September 17, 2010<br />

ANT2010, Santa Fe


REFLECTIVITY (%)<br />

PVC Extrusions<br />

15% Anatase titanium dioxide<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

360 380 400 420 440 460 480 500<br />

ANT2010, Santa Fe<br />

Extrusion reflectivity as a<br />

function of wavelength reflectivity<br />

RSEX - OUTSIDE VS. INSIDE SURFACES<br />

27-5 REFERENCE IS THE AVERAGE OF 4 MEASUREMENTS<br />

POLYONE-3 OUT IS THE AVERAGE OF 6 MEASUREMENTS<br />

POLYONE-3 IN IS THE AVERAGE OF 18 MEASUREMENTS<br />

WAVELENGTH (nm)<br />

27-5 REFERENCE<br />

POLYONE-3 OUT<br />

POLYONE-3 IN<br />

• All NDOS extrusions<br />

produced.<br />

• Retooling for far<br />

detector extrusions<br />

(430 kg/hr)<br />

• Production started in<br />

August 2010<br />

Argonne & <strong>Fermilab</strong>


Technical details<br />

• N-27 PVC Resin Compounder Contract in Place<br />

• PolyOne Corporation (Different than R&D Vendor Aurora Plastics)<br />

• Material has been tested and meets NOvA specification<br />

• Extruding Vendor Contract in Place<br />

• Extrutech Plastics, Inc<br />

• Construction Dies and Tooling have been delivered<br />

• Tuning and testing since April<br />

• Expect die tuning to be completed in Sept. 2010<br />

• Dimensions: Optical Metrology Machine<br />

• Flatness, Thickness and Shape<br />

• Continuity of cell webs: Vacuum test<br />

• Alternate cells are placed under vacuum and others<br />

are at room pressure<br />

• Structural and Material Strength<br />

• Test short (6”) extruded samples<br />

• Hydraulic pressure test to failure ( ~150 psi )<br />

• Alternate cells pressurized<br />

• Drop-dart Impact test to measure of PVC ductility<br />

• Reflectivity: Spectrophotometer<br />

• Measures reflectivity across scintillation spectrum<br />

• MC computes relative light output of module<br />

ANT2010, Santa Fe


Module Architecture<br />

Side seals<br />

Center<br />

seal<br />

End plate<br />

Extrusion assembly


ND Manifold Architecture<br />

17<br />

Tom Chase, UMN<br />

Director's Review, August 4,<br />

2010


Raceway Functionality<br />

Face of optical<br />

connector<br />

• Registers fibers in optical<br />

connector<br />

• Guarantees acceptable<br />

bend radius<br />

• Shields fibers from events<br />

in manifold<br />

• Facilitates assembly<br />

18<br />

Threading fibers<br />

into opt conn


Production Factory<br />

A Huge warehouse for module production<br />

and storage for both extrusions and modules.<br />

Production is based on student labor.<br />

Far detector needs 24/day = 120/wk<br />

Production History for ND<br />

10/day<br />

Goal –<br />

6/day<br />

Moved to<br />

warehouse<br />

Final<br />

exams<br />

ANT2010, Santa Fe<br />

Jarek Nowak, September 17, 2010


Module Construction Process<br />

2 to 1 gluing<br />

preparation<br />

stringing<br />

threading flycutting Inner seal plasma prep<br />

ANT2010, Santa Fe<br />

Jarek Nowak, September 17, 2010


Module Construction Process<br />

Inner glue<br />

Inner seal<br />

Leak testing<br />

inner seal<br />

Outer seal<br />

Leak testing<br />

ANT2010, outer Santa seal Fe<br />

Painting<br />

Stacking & packing<br />

Jarek Nowak, September 17, 2010


Monitoring <strong>Fiber</strong> While Stringing<br />

• Monitors fiber tension and light<br />

transmission as cells are strung<br />

• Components<br />

• Light source<br />

• PVC tube with blue LEDs<br />

• Blinks at 10 Hz<br />

• Photodiode light sensor<br />

• Force meter<br />

<strong>Fiber</strong><br />

Roll<br />

<strong>Fiber</strong><br />

Light Source<br />

Clamp with<br />

Light sensor<br />

Good <strong>Fiber</strong><br />

Force meter<br />

Bad <strong>Fiber</strong><br />

John Kwong<br />

UMN<br />

Force meter<br />

Clamp with<br />

Light Sensor<br />

Defect<br />

ANT2010, Santa Fe Jarek Nowak, September 17, 2010


End-Lit <strong>Fiber</strong> Tester<br />

• Measures light transmission of threaded fibers<br />

• Bad fibers can be replaced (fibers not yet glued into optical<br />

connector)<br />

• Light is injected with blue laser and light is measured at the<br />

optical connector<br />

• Injection is highly localized and uniform across cells<br />

• Scan time = 40 seconds for 32 fibers<br />

• <strong>Fiber</strong> exposed to laser for ~0.5 seconds<br />

• Long exposure tests indicate no damage<br />

• Components<br />

• 10 mW blue laser<br />

• Robot that moves the laser<br />

• Photodiode light sensor<br />

• Hot wire fiber cutter<br />

Laser<br />

Bad <strong>Fiber</strong><br />

Light Sensor Cap<br />

ANT2010, Santa Fe Jarek Nowak, September 17, 2010<br />

Guide<br />

Rail


Types of Photos<br />

1 -Top Lit 2 - Bottom Lit 3 - Center Lit (normal angle)<br />

Top <strong>Fiber</strong><br />

Bottom <strong>Fiber</strong><br />

Shadow Cap<br />

Light In<br />

Transmitted<br />

Light<br />

Reflected<br />

Light<br />

Top <strong>Fiber</strong><br />

Bottom <strong>Fiber</strong><br />

Transmitted Light<br />

• Defects found by catching abnormal intensity of<br />

• Reflected light of angled light photos (1 & 2)<br />

• Transmitted light of angled light photos (1 & 2)<br />

• Light of normal angle light photo (3)<br />

Reflected<br />

Light<br />

Light In<br />

Top <strong>Fiber</strong><br />

Bottom <strong>Fiber</strong><br />

Transmitted and<br />

Reflected Light<br />

ANT2010, Santa Fe Jarek Nowak, September 17, 2010


Closed Module Tester<br />

• To be used for final QA at factory and<br />

after arrival at far detector site<br />

• Shine light on fiber ends and measure<br />

output intensity with a camera<br />

• Components<br />

• Digital camera<br />

• Three LED lights<br />

• Shadow cap<br />

Camera<br />

Lights<br />

Shadow Cap<br />

ANT2010, Santa Fe Jarek Nowak, September 17, 2010


Near Detector Assembly<br />

• Prototype Near Detector blocks have<br />

been assembled at ANL since April<br />

• Five blocks are at FNAL, in position.<br />

• Construction of the 6 th will begin soon.<br />

• Constructed at Argonne<br />

• Raised in the MINOS service building<br />

•The first mechanical prototype block<br />

(protoblock)<br />

• Partially assembled block (4 th of 6)<br />

Lowering the protoblock into<br />

the MINOS shaft at FNAL<br />

ANT2010, Santa Fe Jarek Nowak, September 17, 2010


Prototype Alignment<br />

Scanner maps surface,<br />

multiple measurements<br />

• One face of the protoblock, laser scanner test<br />

• This will be typical of the blocks - ~2.5 mm range<br />

• The contour of both faces track each other.<br />

ANT2010, Santa Fe<br />

Jarek Nowak, September 17, 2010


Summary<br />

• 5 out of 6 blocks of the Near Detector are installed.<br />

• The Integration Prototype Near Detector is extremely<br />

useful.<br />

• Filling with liquid scintillator will start within a few weeks.<br />

• The near detector will start taking data in November.<br />

• The far detector production is on the schedule.<br />

ANT2010, Santa Fe<br />

Jarek Nowak, September 17, 2010

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!