21.01.2015 Views

Band Theory, Kittel chapter 7

Band Theory, Kittel chapter 7

Band Theory, Kittel chapter 7

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

silicon<br />

Institute of Solid State Physics<br />

Technische Universität Graz<br />

<strong>Band</strong> <strong>Theory</strong>, <strong>Kittel</strong> <strong>chapter</strong> 7<br />

Calculate the dispersion relation for electrons in a crystal


Kronig-Penney model<br />

I<br />

II<br />

2 2<br />

d ψ<br />

− + Vx () ψ =<br />

2<br />

2mdx<br />

Eψ<br />

Solutions can be found in region I and region II<br />

Match boundary conditions


Kronig-Penney model<br />

Solutions can be found that are simultaneous eigenfunctions of the<br />

Hamiltonian and the translation operator.<br />

Eigenfunctions of the translation operator can be found in terms of any<br />

two linearly independent solutions. A convenient choice is:<br />

dψ<br />

1<br />

dψ<br />

2<br />

ψ1(0) = 1, (0) = 0, ψ2(0) = 0, (0) = 1.<br />

dx<br />

dx


Kronig-Penney model<br />

for 0 < x < b<br />

ψ ( x) = cos( kx), ψ ( x)<br />

=<br />

1 1 2<br />

for b < x < a<br />

sin( kx<br />

1<br />

)<br />

k<br />

1<br />

k<br />

=<br />

2 mE ( −V1<br />

)<br />

<br />

1 2<br />

ψ<br />

ψ<br />

x k x b kb<br />

k sin( k ( x−b))sin( kb)<br />

1 2 1<br />

1() = cos(<br />

2( − ))cos(<br />

1<br />

) −<br />

,<br />

k2<br />

cos( k ( x−b))sin( kb) sin( k ( x−b))cos( kb)<br />

2 1 2 1<br />

2() x = +<br />

.<br />

k1 k2<br />

k<br />

=<br />

2 mE ( −V2<br />

)<br />

<br />

2 2<br />

Except for the coefficients, these are the same solutions as we found for light<br />

in a layered material.


Kronig-Penney model<br />

at x = a<br />

ψ<br />

ψ<br />

a k a b kb<br />

k sin( k ( a−b))sin( kb)<br />

1 2 1<br />

1() = cos(<br />

2( − ))cos(<br />

1<br />

) −<br />

,<br />

k2<br />

cos( k ( a−b))sin( kb) sin( k ( a−b))cos( kb)<br />

2 1 2 1<br />

2() a = +<br />

.<br />

k1 k2<br />

The translation operator translates the function a distance a.<br />

⎡ψ<br />

( )<br />

( )<br />

1<br />

x + a ⎤ ⎡T11 T12<br />

⎤⎡ψ1<br />

x ⎤<br />

⎢ ⎥=<br />

⎢ ⎥.<br />

ψ ( x + a)<br />

⎢<br />

T T<br />

⎥<br />

⎣ ⎦ ψ ( x)<br />

⎣ 2 ⎦ 21 22 ⎣ 2 ⎦<br />

The elements of the translation operator can be evaluated at x = a.


If |α| > 2, the potential acts like a mirror for electrons<br />

Kronig-Penney model<br />

⎡ dψ<br />

1 ⎤<br />

ψ1<br />

( )<br />

( a) ( a<br />

⎡ψ<br />

)<br />

1<br />

x+<br />

a ⎤ ⎢ dx ⎥⎡ψ1( x)<br />

⎤<br />

⎢ ⎥= ⎢ ⎥⎢ ⎥<br />

⎣ψ2( x+ a)<br />

⎦ ⎢ dψ<br />

2<br />

ψ2<br />

( ) ( )<br />

( x)<br />

ψ2<br />

a a ⎥⎣ ⎦<br />

⎢⎣<br />

dx ⎥⎦<br />

The eigen functions and eigen values are<br />

2 ψ<br />

2( a) 1<br />

ψ<br />

± ( x) = ψ1() x + ψ2(), x λ±= ( α±<br />

δ)<br />

,<br />

dψ<br />

2() a<br />

− ψ<br />

2<br />

1()<br />

a ± δ<br />

dx<br />

δ<br />

2<br />

= α −<br />

dψ<br />

2()<br />

a ⎛k2 k ⎞<br />

1<br />

α = ψ1() a + = 2cos( k2( a−b)<br />

) cos( kb<br />

1 ) − ⎜ + ⎟sin( k2( a−b)<br />

) sin ( kb<br />

1 ).<br />

dx ⎝k1 k2⎠<br />

4


Kronig-Penney model<br />

The eigen values:<br />

1<br />

λ± = ( α±<br />

δ)<br />

2<br />

δ<br />

2<br />

= α −<br />

4<br />

dψ<br />

2()<br />

a ⎛k2 k ⎞<br />

1<br />

α = ψ1() a + = 2cos( k2( a−b)<br />

) cos( kb<br />

1 ) − ⎜ + ⎟sin( k2( a−b)<br />

) sin ( kb<br />

1 ).<br />

dx ⎝k1 k2⎠<br />

If |α| > 2, the eigenvalues are real. The solutions grow or decay exponentially.<br />

If |α| < 2, the eigenvalues are complex and on the unit circle.<br />

ika<br />

λ = e<br />

k<br />

2<br />

1 1 4<br />

tan<br />

⎛ − −α<br />

=± ⎞<br />

a ⎜ α ⎟<br />

⎝ ⎠


Kronig-Penney model<br />

|α| < 2<br />

⎛<br />

tanka =±⎜<br />

⎜<br />

⎝<br />

2<br />

4−α<br />

α<br />

⎞<br />

⎟<br />


Kronig-Penney model<br />

free electrons<br />

(a) The energy-wave number dispersion relation. The dashed line is the Fermi energy. (b) The<br />

density of states. (c) The internal energy density (solid line) and Helmholtz free energy density<br />

(dashed line). (d) The chemical potential (solid line) and the specific heat (dashed line). All of<br />

the plots were drawn for a square wave potential with the parameters: V = 12.5 eV, a =2×10 -<br />

10<br />

m, b =5×10 -11 m, and an electron density of n = 3 electrons/primitive cell.


<strong>Band</strong> structure in 1-D


from Ashcroft and Mermin<br />

Extended, reduced, and<br />

repeated zone schemes<br />

Extended<br />

<br />

k′ = k + k + G<br />

el el photon<br />

Repeated<br />

E ' = E + ω<br />

el el photon<br />

Reduced

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!