23.01.2015 Views

Transport Phenomena.pdf

Transport Phenomena.pdf

Transport Phenomena.pdf

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

§1.6 Viscosity of Suspensions and Emulsions 33<br />

Another approach for concentrated suspensions of spheres is the "cell theory/' in<br />

which one examines the dissipation energy in the "squeezing flow" between the spheres.<br />

As an example of this kind of theory we cite the Graham equation 8<br />

Mef<br />

1 , 5 . , 9 ( 1 \ n , ~,<br />

-ГГ- = 1 + - ф + - (1.6-3)<br />

in which ф = 2[1 - ^Ф/ф тах<br />

)/^Ф/Ф тах<br />

\, where ф тах<br />

is the volume fraction corresponding<br />

to the experimentally determined closest packing of the spheres. This expression<br />

simplifies to Einstein's equation for ф —> 0 and the Frankel-Acrivos equation 9 when<br />

Ф ""* Фтах-<br />

For concentrated suspensions of nonspherical particles, the Krieger-Dougherty equation 10<br />

can be used:<br />

The parameters A and ф тах<br />

to be used in this equation are tabulated 11<br />

in Table 1.6-1 for<br />

suspensions of several materials.<br />

Non-Newtonian behavior is observed for concentrated suspensions, even when the<br />

suspended particles are spherical. 11<br />

This means that the viscosity depends on the velocity<br />

gradient and may be different in a shear than it is in an elongational flow. Therefore,<br />

equations such as Eq. 1.6-2 must be used with some caution.<br />

Table 1.6-1 Dimensionless Constants for Use in Eq. 1.6-4<br />

System<br />

A<br />

Фтах<br />

Reference<br />

Spheres (submicron)<br />

Spheres (40 /xm)<br />

Ground gypsum<br />

Titanium dioxide<br />

Laterite<br />

Glass rods (30 X 700 /im)<br />

Glass plates (100 X 400 /xm)<br />

Quartz grains (53-76 /xm)<br />

Glass fibers (axial ratio 7)<br />

Glass fibers (axial ratio 14)<br />

Glass fibers (axial ratio 21)<br />

2.7<br />

3.28<br />

3.25<br />

5.0<br />

9.0<br />

9.25<br />

9.87<br />

5.8<br />

3.8<br />

5.03<br />

6.0<br />

0.71<br />

0.61<br />

0.69<br />

0.55<br />

0.35<br />

0.268<br />

0.382<br />

0.371<br />

0.374<br />

0.26<br />

0.233<br />

a<br />

b<br />

с<br />

с<br />

с<br />

d<br />

d<br />

d<br />

b<br />

b<br />

b<br />

0<br />

С G. de Kruif, E. M. F. van Ievsel, A. Vrij, and W. B. Russel, in<br />

Viscoelasticity and Rheology (A. S. Lodge, M. Renardy, J. A. Nohel,<br />

eds.), Academic Press, New York (1985).<br />

'' H. Giesekus, in Physical Properties of Foods (J. Jowitt et al., eds.),<br />

Applied Science Publishers (1983), Chapter 13.<br />

r<br />

R. M. Turian and T.-F. Yuan, AIChE Journal, 23, 232-243 (1977).<br />

' y B. Clarke, Trans. Inst. Chem. Eng., 45, 251-256 (1966).<br />

s<br />

A. L. Graham, Appl. Sci. Res., 37, 275-286 (1981).<br />

4<br />

N. A. Frankel and A. Acrivos, Chem. Engr. Sci., 22, 847-853 (1967).<br />

10<br />

1. M. Krieger and T. J. Dougherty, Trans. Soc. Rheoi, 3,137-152 (1959).<br />

11<br />

H. A. Barnes, J. F. Hutton, and K. Walters, An Introduction to Rheology, Elsevier, Amsterdam<br />

(1989), p. 125.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!