25.01.2015 Views

WUCT121 Discrete Mathematics Graphs Tutorial Exercises Solutions

WUCT121 Discrete Mathematics Graphs Tutorial Exercises Solutions

WUCT121 Discrete Mathematics Graphs Tutorial Exercises Solutions

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>WUCT121</strong><br />

<strong>Discrete</strong> <strong>Mathematics</strong><br />

<strong>Graphs</strong><br />

<strong>Tutorial</strong> <strong>Exercises</strong><br />

<strong>Solutions</strong><br />

<strong>WUCT121</strong> <strong>Graphs</strong>: <strong>Tutorial</strong> Exercise <strong>Solutions</strong> 1


<strong>Graphs</strong><br />

Question1 Let G = { V , E}<br />

be a graph. Draw a graph with the following specified<br />

properties, or explain why no such graph exists.<br />

(a) A graph having V = { v1,<br />

v2<br />

, v3,<br />

v4<br />

, v5},<br />

; E = { e1 , e2<br />

, e3,<br />

e4<br />

, e5}<br />

, where<br />

e 1 = ( v1,<br />

v3<br />

) , e 2 = ( v2<br />

, v4<br />

) , e 3 = ( v1,<br />

v4<br />

) , e 4 = ( v3,<br />

v3<br />

) and e 5 = ( v3,<br />

v5<br />

) .<br />

How many components does G have<br />

v 1<br />

v 2<br />

e 1<br />

e 3<br />

e 2<br />

e 4<br />

v 3<br />

e 5<br />

v 5<br />

v 4<br />

G has one component.<br />

(b) A connected graph having V = { v1,<br />

v2<br />

, v3,<br />

v4<br />

, v5},<br />

and ∀vi<br />

∈V<br />

, δ ( vi<br />

) = 2 .<br />

How many edges does G have<br />

v 1<br />

e 1<br />

v 2<br />

v 5<br />

e 5<br />

e 4<br />

v 4<br />

e 3<br />

e 2<br />

v 3<br />

G has 5 edges<br />

<strong>WUCT121</strong> <strong>Graphs</strong>: <strong>Tutorial</strong> Exercise <strong>Solutions</strong> 2


Question2 Either draw a graph with the following specified properties, or explain<br />

why no such graph exists:<br />

(a) A graph with four vertices having the degrees of its vertices 1, 2, 3 and 4.<br />

v 1<br />

e 1<br />

v 2<br />

e 5<br />

e 2<br />

e 3<br />

v 4<br />

v 3<br />

e 4<br />

(b) A simple graph with five vertices with degrees 2, 3, 3, 3, and 5.<br />

It is impossible to draw this graph. A simple graph has no parallel edges nor any<br />

loops. There are only 5 vertices, so each vertex can only be joined to at most four<br />

other vertices, so the maximum degree of any vertex would be 4. Hence, you<br />

can’t have a vertex of degree 5.<br />

(c) A simple graph in which each vertex has degree 3 and which has exactly 6 edges.<br />

v 1<br />

e 1<br />

v 2<br />

e 4<br />

e 5<br />

e 2<br />

e 6<br />

v 4<br />

e 3<br />

v 3<br />

<strong>WUCT121</strong> <strong>Graphs</strong>: <strong>Tutorial</strong> Exercise <strong>Solutions</strong> 3


(d) A graph with four vertices having the degrees of its vertices 1, 1, 2 and 2.<br />

v 1<br />

e 1<br />

v 2<br />

e 2<br />

e 3<br />

v 4<br />

v 3<br />

(e) A graph with four vertices having the degrees of its vertices 1, 1, 2 and 6.<br />

v 1<br />

e 1<br />

v 2<br />

e 2<br />

v 4<br />

e 3<br />

v 3<br />

e 4<br />

e 5<br />

(f) A graph with five edges having the degrees of its vertices 1, 1, 3 and 3.<br />

Not possible, number of edges is 5, thus the sum of the degrees of the vertices<br />

4<br />

must be 2 × 5 = 10 ∑δ<br />

( v i ) = 1+<br />

1+<br />

3 + 3 = 8 ≠ 2×<br />

5<br />

i=<br />

1<br />

<strong>WUCT121</strong> <strong>Graphs</strong>: <strong>Tutorial</strong> Exercise <strong>Solutions</strong> 4


Question3 Let G = { V , E}<br />

be the graph drawn below.<br />

e 1 e 2<br />

v 1<br />

e 5<br />

v 2<br />

e 3<br />

e 4<br />

v 3<br />

(a) Draw a sub-graph H = { V H , EH<br />

} of G for which ∑δ ( v)<br />

= 4 .<br />

v V<br />

2 possibilities are:<br />

∈ H<br />

e 1<br />

e 2<br />

v 1<br />

e 2<br />

v 1<br />

e 5<br />

v 2<br />

There are other possibilities.<br />

(b) Draw a sub-graph H = { V H , EH<br />

} of G having 2 components, one vertex of even<br />

degree and one pair of vertices of odd degree<br />

2 possibilities are:<br />

e 1<br />

v 1<br />

v 2<br />

e 3<br />

v 3<br />

<strong>WUCT121</strong> <strong>Graphs</strong>: <strong>Tutorial</strong> Exercise <strong>Solutions</strong> 5


e 2<br />

v 1<br />

v 2<br />

e 4<br />

v 3<br />

There are other possibilities.<br />

Question4<br />

(c) Either write down a path with the specified properties, or explain why no such<br />

path exists.<br />

(i) A path of length 5 from v 1 to v 2 .<br />

One possible: v 1 , e1<br />

, v1,<br />

e2<br />

, v1,<br />

e1<br />

, v1,<br />

e2<br />

, v1,<br />

e5<br />

, v2<br />

(ii) A path of length 3 from v 1 to v 3.<br />

One possible: v 1 , e2<br />

, v1,<br />

e5<br />

, v2<br />

, e3,<br />

v3<br />

(a) Draw all spanning trees for K 3 .<br />

v 1<br />

K 3<br />

e 3<br />

e 1<br />

v 3 e 2 v 2<br />

v 1<br />

v 1<br />

v 1<br />

e 1<br />

e 3<br />

e 3<br />

e 1<br />

v 3 e 2 v 2<br />

v 3 e 2 v 2<br />

v 3 v 2<br />

<strong>WUCT121</strong> <strong>Graphs</strong>: <strong>Tutorial</strong> Exercise <strong>Solutions</strong> 6


(b) Draw 8 different spanning trees for K 4 . It can be shown that there are<br />

spanning trees for<br />

K n . Can you write down 16 spanning trees for K 4 <br />

n−2<br />

n<br />

K 4<br />

v 1<br />

e 4<br />

v 4<br />

e 5<br />

e 6<br />

e 1<br />

e 3<br />

v 2<br />

e 2<br />

v 3<br />

v 1<br />

e 1<br />

v 2<br />

v 1<br />

v 2<br />

v 1<br />

e 1<br />

v 2<br />

v 1<br />

e 1<br />

v 2<br />

e 2<br />

e 4<br />

e 2<br />

e 4<br />

e 4<br />

e 2<br />

v 4<br />

v 1<br />

v 4<br />

e 6<br />

e 3<br />

e 1<br />

e 3<br />

v 3<br />

v 2<br />

v 3<br />

v 4<br />

v 1<br />

v 4<br />

e 5<br />

e 3<br />

e 1<br />

e 3<br />

v 3<br />

v 2<br />

v 3<br />

v 4<br />

v 1<br />

e 4<br />

v 4<br />

e 6<br />

e 3<br />

v 3<br />

v 2<br />

e 2<br />

v 3<br />

v 4<br />

v 1<br />

e 4<br />

v 4<br />

e 5<br />

v 3<br />

v 2<br />

e 2<br />

v 3<br />

v 1<br />

v 4<br />

v 1<br />

e 4<br />

v 4<br />

e 5<br />

e 6<br />

e 5<br />

e 1<br />

e 1<br />

v 2<br />

v 3<br />

v 2<br />

v 3<br />

v 1<br />

v 4<br />

v 1<br />

v 4<br />

e 5<br />

e 6<br />

e 6<br />

e 3<br />

e 1<br />

v 2<br />

v 3<br />

v 2<br />

e 2<br />

v 3<br />

v 1<br />

e 4<br />

v 4<br />

v 1<br />

v 4<br />

e 5<br />

e 6<br />

e 5<br />

e 3<br />

v 2<br />

v 3<br />

v 2<br />

e 2<br />

v 3<br />

v 1<br />

v 4<br />

v 1<br />

e 4<br />

v 4<br />

e 5<br />

e 6<br />

e 6<br />

e 3<br />

v 2<br />

e 2<br />

v 3<br />

v 2<br />

v 3<br />

<strong>WUCT121</strong> <strong>Graphs</strong>: <strong>Tutorial</strong> Exercise <strong>Solutions</strong> 7


(c) Use Kruskal’s algorithm to find the minimum spanning tree for the following<br />

weighted graph. Write down the number of steps you need to complete the<br />

algorithm<br />

1<br />

v 1<br />

2<br />

v 2<br />

2<br />

1<br />

3<br />

v 3<br />

3<br />

v 4<br />

Edge Weight Will adding<br />

edge make<br />

circuit<br />

1 ( v1,v2<br />

)<br />

2 ( v2,v4<br />

)<br />

3 ( v1,v3<br />

)<br />

4 ( v2,v3)<br />

5 ( v3,v4<br />

)<br />

6 ( v1,v4<br />

)<br />

Action taken<br />

Cumulative<br />

Weight of<br />

Subgraph<br />

e = 1 No Added 1<br />

e = 1 No Added 2<br />

e = 2 No Added 4<br />

e = 2 Yes Not added 4<br />

e = 3 Yes Not added 4<br />

e = 3 Yes Not added 4<br />

Minimum spanning tree is<br />

v 1<br />

v 2<br />

v 3<br />

v 4<br />

The algorithm can be completed in 3 steps.<br />

<strong>WUCT121</strong> <strong>Graphs</strong>: <strong>Tutorial</strong> Exercise <strong>Solutions</strong> 8


<strong>WUCT121</strong> <strong>Graphs</strong>: <strong>Tutorial</strong> Exercise <strong>Solutions</strong> 9

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!