29.01.2015 Views

Electrospinning a Thermoelectric Polymer - Materials Science and ...

Electrospinning a Thermoelectric Polymer - Materials Science and ...

Electrospinning a Thermoelectric Polymer - Materials Science and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ENMA490<br />

Spring 2012<br />

By: Natan Aronhime<br />

Jason Thomen<br />

Sepi Parvinian<br />

Chris Wolfram<br />

Eric Epstein<br />

Kevin Mecadon<br />

Komal Syed<br />

Matt Widstrom<br />

<strong>Electrospinning</strong><br />

a<br />

<strong>Thermoelectric</strong><br />

<strong>Polymer</strong><br />

1


2<br />

Motivation<br />

People using too<br />

much energy<br />

Need renewable<br />

sources<br />

http://www.heatingoil.com/category/blog/opec-blog/<br />

A tremendous<br />

amount of energy<br />

is wasted as heat<br />

http://www.savewaveenergy.com/store/alternative_energy


3<br />

<strong>Thermoelectric</strong>s<br />

Bismuth Telluride most common<br />

thermoelectric<br />

Expensive<br />

<strong>Polymer</strong>s<br />

Good electrical conductivity<br />

Naturally poor thermal conductivity


4<br />

Design Goals<br />

Design a thermoelectric device using electrospun<br />

conductive polymer fibers<br />

Predict thermoelectric properties of our device<br />

Target: Power factor on order of PEDOT:PSS thin film<br />

Power Factor = 4.8 x 10 -6 W/mK 2<br />

Efficiency = .006%<br />

Predict size of electrospun fibers based on easily<br />

measurable processing parameters to within 9%<br />

error


5<br />

Intellectual Merit<br />

Extend dimensional analysis (Helgeson et.<br />

al. 2008) to electrospinning with carrier<br />

polymer <strong>and</strong> asses accuracy/applicability<br />

Compare conductivity <strong>and</strong><br />

thermoelectric parameters of fibers to<br />

bulk


6<br />

Broader Impacts <strong>and</strong> Ethics<br />

Wasted heat is almost everywhere<br />

Efficient conversion of thermal gradient to electricity<br />

ΔTà ΔV<br />

Optimization of <strong>Thermoelectric</strong> properties/minimizing<br />

cost<br />

Increase in fiber alignment by stretching during<br />

electrospinning<br />

Many thermoelectric devices are either not cost<br />

effective or use complicated processing techniques<br />

Some of our solvents can be harmful if released in<br />

large quantities<br />

<strong>Electrospinning</strong> uses very high voltages


7<br />

Basic Design<br />

High V<br />

Power<br />

Source<br />

Syringe with electrospinning<br />

solution<br />

Glass slide with two<br />

grounded Cu electrodes


8<br />

PEDOT:PSS<br />

http://clevios.com/media/webmedia_local/media/datenblaetter/81076210_Clevios_PH_1000_20101222.pdf<br />

General Properties:<br />

Conductive polymer<br />

Soluble in water<br />

<strong>Thermoelectric</strong> Properties:<br />

Electrical Conductivity (thin film) = 850 S/cm<br />

Bi 2 Te 3 =1100 S/cm (M. Takelishi et al., Japan Symposium on Thermophysical<br />

properties, 2006.)<br />

Seebeck coefficient (thin film) = ~10 μV/K<br />

Bi 2 Te 3 =287 μV/K (Proceedings of SPIE. 5836, 711)


9<br />

Material Selection<br />

Electrospin PEDOT:PSS<br />

Good electrical properties<br />

Research reveals pure PEDOT:PSS very difficult to<br />

electrospin<br />

Carrier polymer required for electrospinning:<br />

Polyacrylonitrile (PAN)<br />

Dopant: Sorbitol<br />

Copper electrodes<br />

Lower workfunction than PEDOT-ohmic contact


10<br />

<strong>Materials</strong> <strong>Science</strong> Aspects<br />

Material Properties<br />

Processing<br />

<strong>Electrospinning</strong> voltage<br />

<strong>Electrospinning</strong> flow rate<br />

Shear thinning<br />

Electrical conductivity<br />

Thermal conductivity<br />

Seebeck coefficient<br />

Viscosity<br />

Surface tension<br />

Dielectric constant<br />

<strong>Polymer</strong> entanglement<br />

Solid State Physics<br />

Density of states<br />

Fermi level shift<br />

Characterization<br />

SEM<br />

Tensiometer<br />

Viscometer<br />

LCR meter<br />

Nanovoltmeter<br />

<strong>Materials</strong><br />

Chemistry<br />

Weight percent calculations<br />

Solution miscibility<br />

Solubility<br />

Carrier polymers


11<br />

Technical Approach: VRH<br />

We will test Variable Range Hopping<br />

Electrical conductivity:<br />

σ=​σ↓0 exp[−(​T↓0 /T )↑γ ]<br />

PEDOT:PSS <strong>and</strong> PAN can be arranged<br />

either in parallel or in series within the fiber<br />

​σ↓Parallel =​σ↓PAN ​φ↓PAN +​σ↓PEDOT ​<br />

φ↓PEDOT <br />

​σ↓Series =​1/​φ↓PAN /​σ↓PAN +​φ↓PEDOT /​<br />

σ↓PEDOT<br />

Lichtenecker equation is an in-between case<br />

log(​σ↓T )=​φ↓PEDOT log(​σ↓PEDOT )+​φ↓PAN<br />

log(​σ↓PAN )


12<br />

Technical Approach: VRH<br />

Seebeck coefficient<br />

S=​k↓B↑2 /2e ​(​T↓0 T)↑​1/2 ​(​dlnN(E)/<br />

σa>>σb<br />

dE )↓E=Ef<br />

ST = Sa<br />

ST = Sa * σa + Sb * σb<br />

σa + σb<br />

Annika Lenz, Hans Kariis, Anna Pohl, Petter Persson, Lars Ojamae. (2011). The<br />

Electronic Structure <strong>and</strong> Reflectivity of PEDOT:PSS from Density Functional<br />

Theory. Chemical Physics, 384, 1-3<br />

Park, Sungeun, Sung Ju Tark, <strong>and</strong> Donghwan Kim. "Effect of Sorbitol Doping in<br />

PEDOT:PSS on the Electrical Performance of Organic Photovoltaic Devices."<br />

Current Applied Physics 11.6 (2011): 1299-301


13<br />

Technical Approach: VRH<br />

Using image J DOS information was extracted around the Fermi<br />

energy. Optimal Seebeck Coefficient: 6.20E-04 V/K corresponds<br />

to a Fermi energy shift of 0.075 eV <strong>and</strong> 1.8% sorbitol.


<strong>Electrospinning</strong>: Solutions<br />

Prepared<br />

Design (Ideal)<br />

Solution<br />

-PEDOT:PSS <strong>and</strong><br />

sorbitol in<br />

EG:NMP<br />

-PAN in DMF<br />

-Individual<br />

solutions mixed<br />

Diluted<br />

Solution<br />

Clevios<br />

- Successfully<br />

electrospun<br />

- Ratio PEDOT:PSS - 7.1 wt% Clevios<br />

to PAN reduced (water + PEDOT)<br />

from 5% to 3.34% -<br />

- Attempted to<br />

0.08% wt%<br />

PEDOT<br />

electrospin: - 8 wt% PAN<br />

Failed<br />

- DMF solvent


15<br />

Background: <strong>Electrospinning</strong><br />

Underlying theory based on<br />

“electrohydrodynamics” (Taylor & Melcher, 1966)<br />

In 2001, Hohman et al. predict 3 modes that<br />

apply to electrospinning/electrospraying:<br />

Rayleigh mode<br />

Dominated by surface tension effects<br />

Applies when low/no electric field<br />

Axisymmetrical conducting mode<br />

Whipping conducting mode<br />

Dominate due to<br />

surface charge effects<br />

at high field strengths


16<br />

Whipping vs. Axisymmetrical Modes<br />

Decreasing Applied Electric Field<br />

POLYMER ENGINEERING AND SCIENCE, 2005, 705<br />

Take-home message: Balance of electromechanical<br />

stresses with intrinsic stresses within fluid (viscosity/capillary<br />

stresses) lead to formation of stable jet


Electrospin Modeling: Dimensional<br />

Analysis (Helgeson et. al. 2008)<br />

Π= ​(ε−​ε↓0 )​E↑2 ​R↓j↑3 /π​<br />

η↓e Q<br />

Oh=​η↓0 /(ργ​R↓j ​)↑0.5<br />

captures the jet<br />

dynamics during the<br />

streching regime<br />

captures free resistance to jet<br />

breaking up into droplets <strong>and</strong><br />

surface flow disturbances which<br />

lead to capillary breakup<br />

Simplified expression<br />

(Helgeson et. al. 2007)


Electrospin Modeling: Experimental<br />

Observations<br />

Oh=H​Π1↑−m<br />

Rj ∝ solution parameters<br />

18<br />

PEO-water<br />

PEO-water-ethanol<br />

poly(ethylene terephthalateco-ethylene<br />

isophthalate)-chloroform-<br />

Dimethylformamide<br />

poly(methyl<br />

methacrylate)-dimethylformamide<br />

(Figure from Helgeson et. al. 2007)


Electrospin Modeling: Experimental<br />

Observations<br />

Oh=H​Π↑−m<br />

Rj ∝ solution parameters<br />

19<br />

(Figure from<br />

Helgeson et.<br />

al. 2008)


Electrospin Modeling: Determination of R j <strong>and</strong><br />

R f relation<br />

Usually, this approximation made:<br />

​R↓f =​R↓j ​<br />

w↓p↑0.5<br />

Derivation from volume conservation:<br />

20<br />

​w↓p =​π​R↓f↑2 ​l↓f /π​R↓j↑2 ​l↓j →​w↓p =​R↓f↑2 ​l↓f /​R↓j↑2 ​l↓j<br />

Wang et. al. 2007 determined experimentally:<br />

​R↓f =​R↓j ​w↓p↑0.9653 =​R↓j ​w↓p↑0.5 ​<br />

w↓p↑0.4653 ; √⁠​l↓j /​l↓f =​w↓p↑0.4653<br />

Extra term inverse extension ratio, dominated by solvent<br />

evaporation


Electrospin Modeling: Determination of R j <strong>and</strong><br />

R f relation<br />

21<br />

(Data from El-Aufy 2004)<br />

Limited data,<br />

differing<br />

solvent<br />

evaporation<br />

ratesà No<br />

smooth fit<br />

possible


Electrospin Modeling: Determination of R j <strong>and</strong><br />

R f relation<br />

22<br />

Estimate solvent<br />

evaporationà<br />

qualitatively correct<br />

fit at low w p (region<br />

of interest for<br />

design)à use fit in<br />

calculationsà<br />

assume<br />

​R↓f =​R↓j ​w↓p↑0.9653<br />

(Wang et. al. 2007)<br />

b/c PAN in DMF is<br />

dominating the fit<br />

curve


Electrospin Modeling: Dimensional Analysis<br />

Helgeson 2007 Plot<br />

23


Electrospin Modeling: Dimensional Analysis<br />

Helgeson 2008 Plot<br />

24


Effect of viscosity:<br />

Too low viscosity à jet breaks up to polymer droplets<br />

à electrospraying<br />

Low viscosity causes formation of beaded fiber<br />

Very high viscosity à unable to pump the solution<br />

There is a viscosity range which electrospining is<br />

effective<br />

As viscosity increases so does the average fiber<br />

diameter<br />

25


Viscosity of Diluted Solution:<br />

Viscosity was measured by cone<br />

<strong>and</strong> plate viscometer<br />

Data was inaccurate due to<br />

excessive noise<br />

Qualitative analysis:<br />

<strong>Electrospinning</strong> failed due to<br />

very low viscosity<br />

Diluted “solution” turned out to<br />

be suspension of polymer, not<br />

solution<br />

Fluid broke up into droplets rather<br />

than forming stable Taylor cone


Viscosity Tests on Clevios Solution:<br />

Viscosity was measured by cone <strong>and</strong> plane viscometer<br />

σ= kɵᵒn<br />

n=0.43 (power law index)<br />

Shear-Thinning Fluid :<br />

27<br />

Still within the window of electrospinning


28<br />

<strong>Electrospinning</strong> Result: Fibers<br />

from Clevios Solution<br />

Fiber diameter range: 100-250nm


29<br />

TE Modeling Results:<br />

σ ll (S/<br />

cm)<br />

σ Li (S/<br />

cm)<br />

PF ll (W/<br />

mK 2 )<br />

PF Li (W/<br />

mK 2 )<br />

η ll (%) η Li (%)<br />

Ideal<br />

Solution<br />

Diluted<br />

Solution<br />

.125 1.48 E-11 4.79 E-6 5.67 E-16 .006 7.33 E-13<br />

.103 1.21 E-11 3.98 E-6 4.67 E-16 .005 6.03 E-13<br />

Clevios .024 5.81 E-12 9.21 E -7 2.23 E-16 .001 2.88 E-13<br />

Goal:<br />

PF = 4.8 x 10 -6 W/mK 2<br />

η = .006 %


TE Measurements on Prototype<br />

Seebeck Coefficient: S=−​∆V/∆T<br />

Measure using voltmeter <strong>and</strong> thermocouple<br />

while heating<br />

Measured a value of 6.36 μV/K<br />

Attempted to measure electrical conductivity<br />

using four point probe: R= ​l/σA<br />

Unable to obtain measurements using 4 pt.<br />

probe


31<br />

Conclusions: <strong>Thermoelectric</strong><br />

Goals <strong>and</strong> Insight from Results<br />

Goal: to fabricate nanofiber TE device<br />

that rivaled that of PEDOT:PSS thin films in<br />

terms of Power Factor <strong>and</strong> efficiency<br />

Insight from Results: If percolation is<br />

reached, can obtain similar efficiency to<br />

a doped PEDOT:PSS thin film<br />

(Less conductive polymer required)


32<br />

Conclusion: <strong>Electrospinning</strong><br />

Goals <strong>and</strong> Results<br />

Goal: Predict diameter of electrospun fibers based on<br />

easily measurable processing parameters<br />

Results: Helgeson model does not fully agree to<br />

experimental observations of complex systems<br />

Insight from Results: Dimensional analysis still useful as<br />

engineering design tool<br />

Future work: Design electrospinning solution using PEO<br />

as carrier polymer<br />

Cleaner environmental impact: use water as solvent<br />

Obtain accurate trends of dielectric constants, viscosities,<br />

<strong>and</strong> surface tension in polymer solutions to make more<br />

robust model


Facilities<br />

Dr. Hu – electrospinning device & SEM<br />

Dr. Rabin – electrical conductivity <strong>and</strong> Seebeck<br />

coefficient<br />

Physics Machine Shop (Setup prepared) <strong>and</strong> LCR<br />

meter in Undergraduate Teaching Lab(KIM)-<br />

Dielectric Constant Measurements<br />

<br />

Dr. Calabrese <strong>and</strong> Dr. Raghvan for rheology<br />

measurements<br />

Dr. Phaneuf’s lab for solution preparation


35<br />

Acknowledgements<br />

First <strong>and</strong> foremost, we would like to thank Dr.<br />

Phaneuf for helping <strong>and</strong> guiding us throughout the<br />

semester with this project. In addition, we would<br />

like to thank all the faculty members who have<br />

met with us, helped us, <strong>and</strong> let us borrow their labs<br />

<strong>and</strong> grad students. Without these resources, we<br />

would not have been able to accomplish what<br />

we did. Lastly, we would like to extend our<br />

sincerest appreciation to the entire faculty of the<br />

<strong>Materials</strong> <strong>Science</strong> department. It is the education<br />

<strong>and</strong> guidance that you provided over the years<br />

that enabled us to come this far.


References<br />

[1] Nidhi Dubey <strong>and</strong> Mario Leclerc. (2011). Conducting <strong>Polymer</strong>s: Efficient <strong>Thermoelectric</strong> <strong>Materials</strong>. Journal of <strong>Polymer</strong><br />

<strong>Science</strong> Part B: <strong>Polymer</strong> Physics, 49 (7). http://onlinelibrary.wiley.com/doi/10.1002/polb.22206/pdf<br />

[2] Kaiser, A. B. "<strong>Thermoelectric</strong> Power <strong>and</strong> Conductivity of Heterogeneous Conducting <strong>Polymer</strong>s." Physical Review B 40.5<br />

(1989): 2806-813.<br />

[3] David K. Taggart, et al. Enhanced <strong>Thermoelectric</strong> Metrics in Ultra-long Electrodeposited PEDOT Nanowires. Nanoletters,<br />

2010.<br />

[4] Farshad Faghani. Thermal Conductivity Measurement of PEDOT:PSS by 3-Omega Technique. Thesis, Linkoping University,<br />

2010.<br />

[5] Afaf Khamis El-Aufy. (2004). Nanofibers <strong>and</strong> Nanocomposites Poly(3,4-ethylene dioxythiophene)/Poly(styrenesulfonate)<br />

by <strong>Electrospinning</strong>. (Doctoral dissertation).<br />

[6] Dale S. Pearson et al. Effect of molecular Weight <strong>and</strong> Orientation on the Conductivity of Conjugated <strong>Polymer</strong>s.<br />

Macromolecules Vol. 26, 2003.<br />

[7] Environmental Fate <strong>and</strong> Effects of Ethylene Glycol used at Airports. American Chemistry Council. February 2000.<br />

http://www.huntsman.com/performance_products/media/fate_<strong>and</strong>_effects.pdf<br />

[8] G. Long, M. E. Meek, <strong>and</strong> M. Lewis. N,N-dimethylformamide. World Health Organization, United Nations Environment<br />

Programme, <strong>and</strong> the International Labor Organization. 2001. http://www.who.int/ipcs/publications/cicad/en/cicad31.pdf<br />

[9] Environmental Profile N-Methylpyrrolidone. EPA, 1998. http://nepis.epa.gov<br />

[10] D. A. Saville. ELECTROHYDRODYNAMICS: The Taylor-Melcher Leaky Dielectric Model. Annu. Rev. Fluid Mech. 1997. 29:27–<br />

64.<br />

[11] Moses M. Hohman, Michael Shin, Gregory Rutledge, <strong>and</strong> Michael P. Brenner. <strong>Electrospinning</strong> <strong>and</strong> electrically forced jets.<br />

II. Applications. Phys. Fluids, Vol. 13, No. 8, August 2001.<br />

[12] Sergey V. Fridrikh, Jian H. Yu, Michael P. Brenner, <strong>and</strong> Gregory C. Rutledge. Controlling the Fiber Diameter during<br />

<strong>Electrospinning</strong>. Phys. Rev. Lett., 2003, 90, 14, 144502-1-144502-4.<br />

[13] Matthew E. Helgeson & Norman J. Wagner. (2007). A Correlation for the Diameter of Electrospun <strong>Polymer</strong><br />

Nanofibers. AIChE Journal, 53(1), 51-55. DOI 10.1002/aic.<br />

[14] Matthew E. Helgeson, Kristie N. Grammatikos, Joseph M. Deitzel, Norman J. Wagner. (2008). Theory <strong>and</strong> kinematic<br />

measurements of the mechanics of stable electrospun polymer jets. <strong>Polymer</strong>, 49, 2924–2936.<br />

[15] Weiwei Zuo, Meifang Zhu, Wen Yang, Hao Yu, Yanmo Chen, Yu Zhang. Experimental Study on Relationship Between Jet<br />

Instability <strong>and</strong> Formation of Beaded Fibers During <strong>Electrospinning</strong>. POLYMER ENGINEERING AND SCIENCE, 2005, 704-709.<br />

[16] Nishuang Liu, Guojia Fang, Jiawei Wan, Hai Zhou, Hao Long <strong>and</strong> Xingzhong Zhao. (2011). Electrospun PEDOT:PSS–PVA<br />

nanofiber based ultrahigh-strain sensors with controllable electrical conductivity. J. Mater. Chem., 21, 18962.<br />

[17] Jaewon Choi, Jeongwoo Lee, Jinsub Choi, Dongsoo Jung, Sang Eun Shim. (2010). Electrospun PEDOT:PSS/PVP nanofibers<br />

as the chemiresistor in chemical vapour sensing. Synthetic Metals, 160, 1415–1421.<br />

[18] Ali Shakouri <strong>and</strong> Suquan Li. (1999). <strong>Thermoelectric</strong> Power Factor for Electrically Conducive <strong>Polymer</strong>s. Proceeding of<br />

International Conference on <strong>Thermoelectric</strong>s. http://www.dtic.mil/cgi-bin/GetTRDocAD=ADA459010<br />

36


37<br />

References<br />

<br />

<br />

[19] Alex<strong>and</strong>re Mantovani Nardes, Rene A. J. Janssen, <strong>and</strong> Martijn Kemerink. (2008.) A Morphological Model for the Solvent-Enhanced<br />

Coonductivity of PEDOT:PSS Thin Films. Advanced Finctional <strong>Materials</strong>, 18, 6.<br />

http://onlinelibrary.wiley.com/doi/10.1002/adfm.200700796/pdf<br />

[20] N. F. Uvarov. Estimation of Composites Conductivity Using a General Mixing Rule. Solid State Ionics. 2000.<br />

http://144.206.159.178/ft/959/29907/13356419.pdf<br />

<br />

[21] Park, Sungeun, Sung Ju Tark, <strong>and</strong> Donghwan Kim. "Effect of Sorbitol Doping in PEDOT:PSS on the Electrical Performance of Organic<br />

Photovoltaic Devices." Current Applied Physics 11.6 (2011): 1299-301.<br />

[22] Annika Lenz, Hans Kariis, Anna Pohl, Petter Persson, Lars Ojamae. (2011). The Electronic Structure <strong>and</strong> Reflectivity of PEDOT:PSS from<br />

Density Functional Theory. Chemical Physics, 384, 1-3. http://www.sciencedirect.com/science/article/pii/S0301010411001571<br />

[23] Snyder, G. Jeffrey <strong>and</strong> Tristan S. Ursell. "<strong>Thermoelectric</strong> Efficiency <strong>and</strong> Compatibility". Physical Review Letters: Volume 91, Number 14<br />

2003<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

[24] Abolghasem Jouyban , Shahla Soltanpour, Hak-Kim Chan. (2004). A simple relationship between dielectric constant of mixed<br />

solvents with solvent composition <strong>and</strong> temperature. International Journal of Pharmaceutics, 269, 353–360.<br />

[25] Abolghasem JOUYBAN, Anahita FATHI-AZARBAYJANI, <strong>and</strong> William Eugene ACREE, Jr. (2004). Surface Tension Calculation of Mixed<br />

Solvents with Respect to Solvent Composition <strong>and</strong> Temperature by Using Jouyban–Acree Model. Chem. Pharm. Bull., 52(10) 1219—1222.<br />

[26] Chi Wang, Huan-Sheng Chien, Chia-Hung Hsu, Yin-Chi Wang, Cheng-Ting Wang, <strong>and</strong> Hsin-An Lu. (2007). <strong>Electrospinning</strong> of<br />

Polyacrylonitrile Solutions at Elevated Temperatures. Macromolecules , 40, 7973-7983.<br />

[27] Seeram Ramakrishna, Kazutoshi Fujihara, Wee-Eong Teo, Teik-Cheng Lim, & Zuwei Ma. (2005). An Introduction to <strong>Electrospinning</strong> And<br />

Nanofibers. World Scientific.<br />

[28] Ethylene Glycol: Product Guide. (2008). The MEGlobal Group of Companies. Retrieved from: http://www.meglobal.biz/media/<br />

product_guides/MEGlobal_MEG.pdf<br />

[29] J.T. Baker. (2006). MATERIAL SAFETY DATA SHEET. Mallinckrodt Baker, Inc. Retrieved from: http://talasonline.com/photos/msds/<br />

MSDS_NMP.pdf<br />

[30] DIMETHYLFORMAMIDE. (1999). Retrieved from: http://cameochemicals.noaa.gov/chris/DMF.pdf<br />

[31] Di Zhang, Amar B. Karki, Dan Rutman, David P. Young, Andrew Wang, David Cocke, Thomas H. Ho, Zhanhu Guo. (2009). Electrospun<br />

polyacrylonitrile nanocomposite fibers reinforced with Fe 3 O 4 nanoparticles: Fabrication <strong>and</strong> property analysis. <strong>Polymer</strong>, 50, 4189–4198.<br />

[32] Ji-Huan He, Yu-Qin Wan, <strong>and</strong> Jian-Yong Yu. (2008). Effect of Concentration on Electrospun Polyacrylonitrile (PAN) Nanofibers. Fibers<br />

<strong>and</strong> <strong>Polymer</strong>s, 9(2), 140-142.<br />

[33] R. Jalili et al. “Fundamental Parameters Affecting <strong>Electrospinning</strong> of PAN Nanofibers as Uniaxially Aligned Fibers.” Journal of Applied<br />

<strong>Polymer</strong> <strong>Science</strong>. 101:6, 2006.<br />

[34] A. M. Summan. Electrical Conductivity of Heat Treated Polyacrylonitrile <strong>and</strong> its Copper Halide Complexes. Journal of <strong>Polymer</strong><br />

<strong>Science</strong> Part A: <strong>Polymer</strong> Chemistry. Vol. 37, Issue 16. Dec. 1998.<br />

http://onlinelibrary.wiley.com/doi/10.1002/%28SICI%2910990518%2819990815%2937:16%3C3057::AID-POLA2%3E3.0.CO;2-J/pdf

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!