29.01.2015 Views

195 effect of settling time on turbidity removal using moringa oleifera ...

195 effect of settling time on turbidity removal using moringa oleifera ...

195 effect of settling time on turbidity removal using moringa oleifera ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Ozean Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Sciences 4(3), 2011<br />

Ozean Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Sciences 4(3), 2011<br />

ISSN 1943-2429<br />

© 2009 Ozean Publicati<strong>on</strong><br />

EFFECT OF SETTLING TIME ON TURBIDITY REMOVAL<br />

USING MORINGA OLEIFERA SEED POWDER<br />

* NWAIWU N.E. and ** LINGMU B.<br />

* Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Civil and Water Resources Engineering, University Of Maiduguri, Maiduguri, Nigeria.<br />

c/o dr j. nyanganji Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Geography, University Of Maiduguri,<br />

Maiduguri, Nigeria.<br />

*E-mail address for corresp<strong>on</strong>dence: nknwaiwu@yahoo.co.uk<br />

_____________________________________________________________________________________________<br />

Abstract: This paper studies the <str<strong>on</strong>g>effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>settling</str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> <strong>on</strong> <strong>turbidity</strong> <strong>removal</strong> for low and medium <strong>turbidity</strong> p<strong>on</strong>d<br />

(surface) water. Physico-chemical tests were carried out <strong>on</strong> two samples (low and medium <strong>turbidity</strong> water) before<br />

and after the water was treated with the same dosage <str<strong>on</strong>g>of</str<strong>on</strong>g> Moringa <strong>oleifera</strong> seed powder for <str<strong>on</strong>g>settling</str<strong>on</strong>g> periods <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

30minutes, 1hour, 2hours, 6hours and 24hours. The <str<strong>on</strong>g>settling</str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> 24 hours in being advocated for Moringa<br />

<strong>oleifera</strong> seed powder for treating low and medium <strong>turbidity</strong> water because better coagulati<strong>on</strong> and hence higher<br />

<strong>turbidity</strong> <strong>removal</strong> was achieved with the extended <str<strong>on</strong>g>settling</str<strong>on</strong>g> periods.<br />

Keywords: Moringa <strong>oleifera</strong> seed powder, coagulati<strong>on</strong>, <strong>turbidity</strong>, total suspended solids, <str<strong>on</strong>g>settling</str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g>.<br />

_____________________________________________________________________________________________<br />

INTRODUCTION<br />

Turbidity in water is caused by suspended matter, such as clay, silt, finely divided organic and inorganic matter,<br />

soluble coloured organic compounds, plankt<strong>on</strong>s and other micro and macroscopic organisms (America Public<br />

Health Associati<strong>on</strong>/ America Water Works Associati<strong>on</strong>, 1989). Turbidity can provide food and shelter for<br />

pathogens and if not removed, can promote regrowth <str<strong>on</strong>g>of</str<strong>on</strong>g> pathogens in the distributi<strong>on</strong> system. This can lead to water<br />

borne disease outbreaks (EPA, 1999). Increased <strong>turbidity</strong> levels adversely affects aquatic ecosystems by reducing<br />

photosynthesis and, therefore primary productivity at all levels <str<strong>on</strong>g>of</str<strong>on</strong>g> the food chain (TAG, 2002). The c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

high turbid water may c<strong>on</strong>stitute a health risk (WHO, 1996). The <strong>removal</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>turbidity</strong> in water would be extremely<br />

beneficial as it would alleviate the majority <str<strong>on</strong>g>of</str<strong>on</strong>g> problems associated with <strong>turbidity</strong>. For many developing countries<br />

coagulati<strong>on</strong>, flocculati<strong>on</strong> and sedimentati<strong>on</strong> (which are the processes involved in removing <strong>turbidity</strong> from water) are<br />

expensive processes because <str<strong>on</strong>g>of</str<strong>on</strong>g> the high costs involved and the difficulty in assessing the chemical coagulants<br />

including alum. However, there have been studies <strong>on</strong> the use <str<strong>on</strong>g>of</str<strong>on</strong>g> indigenous natural coagulants. The use <str<strong>on</strong>g>of</str<strong>on</strong>g> locally<br />

grown and natural coagulants may result in a more sustainable and ec<strong>on</strong>omically viable alternative (Yung, 2003).<br />

Many plants have been used to clarify water. These include Moringa <strong>oleifera</strong>, Moringa stenopetala, Vicia faba<br />

(Jahn, 1986, 1988), Canavalia ensiformis, Bombax c<strong>on</strong>statum(Faby and Eleli, 1993;Nacoulima et al, 2000 ).Crushed<br />

<str<strong>on</strong>g>195</str<strong>on</strong>g>


Ozean Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Sciences 4(3), 2011<br />

Moringa <strong>oleifera</strong>, seed have been found to be viable replacement coagulant for chemicals such as aluminum<br />

sulphate (alum) in a full scale plant treatment trial at the Thyolo treatment works in southern Malawi (Sutherland et<br />

al,1994). Yao et al (2005) studied the flocculating activities <str<strong>on</strong>g>of</str<strong>on</strong>g> the fresh stems <str<strong>on</strong>g>of</str<strong>on</strong>g> mucilage <str<strong>on</strong>g>of</str<strong>on</strong>g> Gombo (Hibiscus<br />

esculentus) and achieved the lowering <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>turbidity</strong>.<br />

Generally, various <str<strong>on</strong>g>settling</str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g>s for Moringa <strong>oleifera</strong> water treatment have been used or proposed. Muyibi and<br />

Evis<strong>on</strong> (1995) <strong>on</strong> s<str<strong>on</strong>g>of</str<strong>on</strong>g>tening hard water with Moringa <strong>oleifera</strong> seed powder used a <str<strong>on</strong>g>settling</str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e hour. At a<br />

Moringa <strong>oleifera</strong> dosage <str<strong>on</strong>g>of</str<strong>on</strong>g> 1800mg/l the calcium hardness had reduced to almost zero. Doerr (2005), <strong>on</strong> showing<br />

steps for household water treatment, recommended a <str<strong>on</strong>g>settling</str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e to two hours for all the particles and<br />

c<strong>on</strong>taminants to settle to the bottom <str<strong>on</strong>g>of</str<strong>on</strong>g> the storage c<strong>on</strong>tainer. Lilliehook (2005) while studying the use <str<strong>on</strong>g>of</str<strong>on</strong>g> sand<br />

filterati<strong>on</strong> <strong>on</strong> river water flocculated with Moringa <strong>oleifera</strong>, employed a <str<strong>on</strong>g>settling</str<strong>on</strong>g> period <str<strong>on</strong>g>of</str<strong>on</strong>g> 30 minutes to 120 minutes<br />

for low, medium and high <strong>turbidity</strong> water. In the experiment, it was observed that purificati<strong>on</strong> increased with<br />

increased <str<strong>on</strong>g>settling</str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g>s as there was a drastic reducti<strong>on</strong> in the residual <strong>turbidity</strong> between 30-45 minutes for the 50<br />

NTU water. The World Agr<str<strong>on</strong>g>of</str<strong>on</strong>g>orestry Centre (2004) suggests a durati<strong>on</strong> or <str<strong>on</strong>g>settling</str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e hour for a clean<br />

supernatant to result <strong>using</strong> Moringa <strong>oleifera</strong>. On the other hand, the CDC pretreatment fact sheet<br />

(safewater@cdc.gov) prescribed a <str<strong>on</strong>g>settling</str<strong>on</strong>g> period <str<strong>on</strong>g>of</str<strong>on</strong>g> 24 hours before decanting <str<strong>on</strong>g>of</str<strong>on</strong>g>f the clear water to another<br />

c<strong>on</strong>tainer. Hsu et al (2006) prescribed that Moringa Oleifera seed powder mixed with water should be kept for hours<br />

(number not specified) in order to obtained clean water.<br />

This paper studies the <str<strong>on</strong>g>effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>settling</str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> <strong>on</strong> <strong>turbidity</strong> <strong>removal</strong> for low and medium <strong>turbidity</strong> p<strong>on</strong>d (surface)<br />

water.<br />

The Study Area<br />

The study area is in the rural outskirts <str<strong>on</strong>g>of</str<strong>on</strong>g> Maiduguri, the capital <str<strong>on</strong>g>of</str<strong>on</strong>g> Borno State, North East Nigeria. Borno State is<br />

situated in a semi and regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Sahel savannah. Three seas<strong>on</strong>s have been identified with the area: the cold dry<br />

(harmattan) seas<strong>on</strong> (October to March), hot dry seas<strong>on</strong> (April – June) and the rainy seas<strong>on</strong> (July to September).<br />

Temperatures are usually extreme all the year round with hot seas<strong>on</strong> temperatures ranging between 39 o C and 40 o C<br />

under the shade. The annual rainfall is 692mm (Nwaka, 1991).Water is a scarce resource within the semi and<br />

regi<strong>on</strong>. The rainfall period is very brief making water storage imperative. At the household level, rain water in<br />

stored in various vessels which include drums, plastic c<strong>on</strong>tainers, clay pots, bucket and calabashes (Nwaiwu and<br />

Oku<str<strong>on</strong>g>of</str<strong>on</strong>g>u, 2005). At the community level, rain water is stored in p<strong>on</strong>ds which are some<str<strong>on</strong>g>time</str<strong>on</strong>g>s called river by some<br />

locale <str<strong>on</strong>g>of</str<strong>on</strong>g> the regi<strong>on</strong>. The p<strong>on</strong>ds are large holes deliberately dug into the ground by the people for the purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> rain<br />

water storage or borrow pits left after a road c<strong>on</strong>structi<strong>on</strong>. Rain water is depended up<strong>on</strong> by 22.5% <str<strong>on</strong>g>of</str<strong>on</strong>g> the people but<br />

there is no modern storage facility available to the local people. During the rainy seas<strong>on</strong> these rivers/p<strong>on</strong>ds supply<br />

11.65% <str<strong>on</strong>g>of</str<strong>on</strong>g> the populace while in the dry seas<strong>on</strong>, these river/p<strong>on</strong>ds supply the water needs <str<strong>on</strong>g>of</str<strong>on</strong>g> 8.31% <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

inhabitants (Nwaiwu and Oku<str<strong>on</strong>g>of</str<strong>on</strong>g>u, 2006). It is then necessary that an inexpensive but efficient method <str<strong>on</strong>g>of</str<strong>on</strong>g> treating the<br />

water sourced from these p<strong>on</strong>ds be made available to the natives since this facility is an important source <str<strong>on</strong>g>of</str<strong>on</strong>g> water.<br />

METHODOLOGY<br />

Sample collecti<strong>on</strong><br />

The p<strong>on</strong>d water sample was collected from an existing burrow pit located at Jimtillo, a rural outskirt <str<strong>on</strong>g>of</str<strong>on</strong>g> Maiduguri,<br />

the Borno State capital in North East, Nigeria. The water was collected in the middle <str<strong>on</strong>g>of</str<strong>on</strong>g> the p<strong>on</strong>d by immersing a<br />

plastic c<strong>on</strong>tainer completely until it was full. The cap was inserted while the c<strong>on</strong>tainer was under water. The water<br />

was subjected to treatment <strong>using</strong> Moringa <strong>oleifera</strong> seed powder.<br />

196


Ozean Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Sciences 4(3), 2011<br />

Laboratory Analyses<br />

Physico-chemical tests were carried out <strong>on</strong> two samples(low and medium <strong>turbidity</strong> water) before and after the water<br />

was treated with the same dosage <str<strong>on</strong>g>of</str<strong>on</strong>g> Moringa <strong>oleifera</strong> seed powder.<br />

Moringa <strong>oleifera</strong> suspensi<strong>on</strong> Preparati<strong>on</strong><br />

Moringa <strong>oleifera</strong> seed pods were obtained from Gombe State, North East, Nigeria. The seed coats were removed<br />

to get the kernels. The kernels were dried and ground to powder. One gram <str<strong>on</strong>g>of</str<strong>on</strong>g> the seed powder was mixed with<br />

clean water in a plastic bottle to form a paste. The c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> the bottle was shaken for <strong>on</strong>e minute to activate the<br />

coagulant and then filtered through a sieve into the p<strong>on</strong>d water to be treated. The water was stirred for five minutes<br />

and left to settle. The water was left to settle for 30 minutes, 1hour, 2 hours, 6 hours and 24 hours. After each<br />

<str<strong>on</strong>g>settling</str<strong>on</strong>g> period, the supernatant was taken for physico-chemical analyses. The parameters tested for include pH, total<br />

dissolved solids (tds), temperature, <strong>turbidity</strong> suspended solids (tss), salinity, electrical c<strong>on</strong>ductivity and colour.<br />

The physico-chemical tests were carried out in accordance with the procedure in Envir<strong>on</strong>mental Chemistry<br />

Laboratory Manual (2000).<br />

RESULTS AND DISCUSSION<br />

Physical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> raw water<br />

The physical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the water samples used are presented in Table 1. these include physical, chemical and<br />

bacteriological properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the samples. The two water samples used fall into two categories namely: low<br />

<strong>turbidity</strong> water (


Ozean Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Sciences 4(3), 2011<br />

In Figure 2, the variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the various parameters during the 24 hours <str<strong>on</strong>g>settling</str<strong>on</strong>g> period is<br />

shown. It can also be seen that the additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Moringa <strong>oleifera</strong> seed powder did not alter the pH, temperature,<br />

salinity, electrical c<strong>on</strong>ductivity as well as the total dissolved solids c<strong>on</strong>centrati<strong>on</strong> in the water. This is c<strong>on</strong>firmed by<br />

the respective coefficients <str<strong>on</strong>g>of</str<strong>on</strong>g> variati<strong>on</strong> which are 2.3%, 1.35%, 1.4%, 1.1% and 1.9% for the parameter values<br />

during the 24hour period. However, the residual c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>turbidity</strong>, total suspended solids and colour during<br />

the 24 hours <str<strong>on</strong>g>settling</str<strong>on</strong>g> period revealed respective coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> variati<strong>on</strong> is 43.12%, 46.5% and 37.9%. These high<br />

values <str<strong>on</strong>g>of</str<strong>on</strong>g> coefficients <str<strong>on</strong>g>of</str<strong>on</strong>g> variati<strong>on</strong>, clearly dem<strong>on</strong>strates that <strong>turbidity</strong>, total suspended solids and colour are<br />

significantly affected by the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> Moringa <strong>oleifera</strong> seed powder in water over a detenti<strong>on</strong> period. High<br />

<strong>removal</strong> efficiencies were observed for the three named parameters with respect to <str<strong>on</strong>g>settling</str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g>.<br />

The range <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>turbidity</strong> <strong>removal</strong> efficiencies <str<strong>on</strong>g>of</str<strong>on</strong>g> 12% to 82.5% are shown in Table 2 for the medium <strong>turbidity</strong> water.<br />

The additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Moringa <strong>oleifera</strong> seed powder significantly affected the <strong>turbidity</strong> <strong>removal</strong> efficiencies. After 30<br />

minute into the 24 hour <str<strong>on</strong>g>settling</str<strong>on</strong>g> period, the <strong>turbidity</strong> <strong>removal</strong> efficiency was 12%. This reduced to 5.7% after <strong>on</strong>e<br />

hour. After 2 hours, an increased <strong>removal</strong> efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> 8.96 was obtained. A six hour <str<strong>on</strong>g>settling</str<strong>on</strong>g> period gave a<br />

<strong>removal</strong> efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> 12.1% with a residual value <str<strong>on</strong>g>of</str<strong>on</strong>g> 86.30NTU which is almost the same as the <strong>turbidity</strong> residual<br />

within the first 30 minutes into he detenti<strong>on</strong> period. On increasing the <str<strong>on</strong>g>settling</str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> to 24 hours, a residual <strong>turbidity</strong><br />

value <str<strong>on</strong>g>of</str<strong>on</strong>g> 17.2NTU with a <strong>removal</strong> efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> 82.5% resulted. The foregoing shows that there is the need to extend<br />

the <str<strong>on</strong>g>settling</str<strong>on</strong>g> period <str<strong>on</strong>g>of</str<strong>on</strong>g> water being treated <strong>using</strong> the Moringa <strong>oleifera</strong>. seed powder to a 24 hour <str<strong>on</strong>g>settling</str<strong>on</strong>g> period in<br />

order to obtain better results than would have been <strong>using</strong> shorter detenti<strong>on</strong> periods. This observati<strong>on</strong> applied also to<br />

the low turbid water where the <strong>turbidity</strong> <strong>removal</strong> efficiency increased from 80% (30minutes <str<strong>on</strong>g>settling</str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g>) to 96.3%<br />

(24 hour <str<strong>on</strong>g>settling</str<strong>on</strong>g> period). The <strong>removal</strong> efficiencies for colour for the low turbid and medium turbid waters increased<br />

from 74.59% (after 30 minutes <str<strong>on</strong>g>settling</str<strong>on</strong>g> period) to 88.89% (after 24 hour <str<strong>on</strong>g>settling</str<strong>on</strong>g> period) and 12.4% (after 30 minutes<br />

<str<strong>on</strong>g>settling</str<strong>on</strong>g> period) to 95.2% (after 24 hour <str<strong>on</strong>g>settling</str<strong>on</strong>g> period) respectively. The <strong>removal</strong> efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> the total suspended<br />

solids increased from 4.92% (after 30 minutes <str<strong>on</strong>g>settling</str<strong>on</strong>g> period) to 26.5% (after 24 hour <str<strong>on</strong>g>settling</str<strong>on</strong>g> period) for the how<br />

<strong>turbidity</strong> water. There was no recorded reducti<strong>on</strong> in c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the TSS for the medium <strong>turbidity</strong> water,<br />

instead increments in c<strong>on</strong>centrati<strong>on</strong> from a raw value <str<strong>on</strong>g>of</str<strong>on</strong>g> 40.33mg/l to 320. 24mg/l after <strong>on</strong>e hour <str<strong>on</strong>g>settling</str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g><br />

resulted. This reduced to 76.28mg/l after 24 hours <str<strong>on</strong>g>settling</str<strong>on</strong>g> period. The results show that <strong>using</strong> the same Moringa<br />

<strong>oleifera</strong> seed powder dosage, the low <strong>turbidity</strong> water has a higher 24 hour <strong>removal</strong> efficiency (96.3%) the medium<br />

<strong>turbidity</strong> water (82.5%). Lower <strong>turbidity</strong> <strong>removal</strong> was observed as initial <strong>turbidity</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> water samples increased with<br />

the coagulant dose remaining c<strong>on</strong>stant for both samples. This result varies from the findings <str<strong>on</strong>g>of</str<strong>on</strong>g> Katay<strong>on</strong> et al (2004)<br />

and Muyibi and Evis<strong>on</strong> (1996) which indicated that Moringa <strong>oleifera</strong> seed extract may not be an efficient coagulant<br />

for low turbid water. This variati<strong>on</strong> in results may be due to the fact that seeds from different sources (geographic<br />

locati<strong>on</strong>s) exhibit varying coagulati<strong>on</strong> performance (Narasiah et al, 2002) as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> different protein c<strong>on</strong>tents<br />

and development <str<strong>on</strong>g>of</str<strong>on</strong>g> the seeds. Additi<strong>on</strong>ally the fact that the water samples were treated with the same Moringa<br />

<strong>oleifera</strong> seed powder dosage which was the optimum for low turbid water may have had an impact <strong>on</strong> the<br />

performance <str<strong>on</strong>g>of</str<strong>on</strong>g> the coagulant <strong>on</strong> the medium turbid water. C<strong>on</strong>sequently the medium turbid water did not show<br />

initial appreciable <strong>turbidity</strong> reducti<strong>on</strong>. Katay<strong>on</strong> et al (2004) that showed that increased <strong>turbidity</strong> should have an<br />

increased Moringa <strong>oleifera</strong> dosage.<br />

The Moringa <strong>oleifera</strong> seeds did not affect the pH value <str<strong>on</strong>g>of</str<strong>on</strong>g> the water samples, these remained within the WHO<br />

approved value <str<strong>on</strong>g>of</str<strong>on</strong>g> 6.5-8.5 (WHO, 1996) for both the low and medium turbid water (Figures 1 and 2). This result<br />

agrees with the findings <str<strong>on</strong>g>of</str<strong>on</strong>g> Ndabigengesere and Narasiah (1998) and Katay<strong>on</strong> et al (2004). The treatment with the<br />

Moringa <strong>oleifera</strong> seed powder resulted in a slight reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the pH values for both water samples. Practically,<br />

this means that no chemical is needed to bring the pH <str<strong>on</strong>g>of</str<strong>on</strong>g> the treated water within the above menti<strong>on</strong>ed range.<br />

According to Katay<strong>on</strong> et al (2004) the slight decrease in pH may be due to hydrogen i<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the weak acidity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Moringa <strong>oleifera</strong> stock soluti<strong>on</strong> which balanced the hydroxide i<strong>on</strong>s in the raw water.<br />

Regressi<strong>on</strong> Analysis<br />

After the additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Moringa <strong>oleifera</strong> seed powder, the c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>stituent parameter were m<strong>on</strong>itored for<br />

after 0.5, 1, 2, 6 and 24 hours. The total suspended solids was <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the parameters measured, the measurement <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

which is <str<strong>on</strong>g>time</str<strong>on</strong>g> c<strong>on</strong>suming. Attempts have been made to correlate <strong>turbidity</strong> for predicting total suspended solids<br />

(Gippel , 1995;Saddle and Campbell, 1985; Holliday, Rasmussen and Miller, 2003 and Truhlar,1978). These<br />

predicti<strong>on</strong>s may be limited in statistical certainty, predictive power and logistical coordinati<strong>on</strong>.<br />

198


Ozean Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Sciences 4(3), 2011<br />

Despite the foregoing, there is no universal relati<strong>on</strong>ship between <strong>turbidity</strong> and total suspended solids. (Truhlar,<br />

1978; Rasmussen, 1995). Provisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a relati<strong>on</strong>ship between <strong>turbidity</strong> and total suspended solids will assist in easy<br />

m<strong>on</strong>itoring <str<strong>on</strong>g>of</str<strong>on</strong>g> the water quality parameter during water treatment <strong>using</strong> Moringa <strong>oleifera</strong> seed powder for low and<br />

medium turbid water(LT for low turbid water and MT for medium turbid water). Presently R 2 (coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

determinati<strong>on</strong>) is used to chose the best model for <strong>turbidity</strong>- total suspended solid relati<strong>on</strong>ship.<br />

The observed trends in the relati<strong>on</strong>ship between total suspended solids and <strong>turbidity</strong> were in turn evaluated<br />

statistically <strong>using</strong> a linear, logarithmic, polynomial, power and exp<strong>on</strong>ential regressi<strong>on</strong>. The equati<strong>on</strong>s obtained for<br />

low turbid water and medium turbid water are shown in Table 3. The adjusted R 2 is given by the following<br />

relati<strong>on</strong>ship (Kleinbaum and Kupper, 1978).<br />

Adjusted R 2 = R 2 k/ n − k − 1 1 − R 2 (1)<br />

where n is the number <str<strong>on</strong>g>of</str<strong>on</strong>g> observati<strong>on</strong> and k is the number <str<strong>on</strong>g>of</str<strong>on</strong>g> independent variables. The adjusted R 2 is adjusted for<br />

the degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom in the estimating equati<strong>on</strong> to avoid the upward bias in the unadjusted R 2 when the sample<br />

size is small relative to the number <str<strong>on</strong>g>of</str<strong>on</strong>g> explanatory variable in the model (Murphy, 1973).<br />

The overall F is estimated from the following equati<strong>on</strong> (Kleinbaum and Kupper, 1978),<br />

F =<br />

me an square regressi<strong>on</strong><br />

mean square residual<br />

= R 2 / 1 − R 2<br />

n−k−1<br />

k<br />

(2)<br />

The overall F value shows that the general null hypothesis “Ho: all k independent variables c<strong>on</strong>sidered together do<br />

not explain a significant amount <str<strong>on</strong>g>of</str<strong>on</strong>g> the variati<strong>on</strong> in the dependent variable” should be rejected. This is because the<br />

overall F statistic is greater than the critical F value and therefore all the independent variables together explain a<br />

significant amount <str<strong>on</strong>g>of</str<strong>on</strong>g> variati<strong>on</strong> in the dependent variable.<br />

The resulting R 2 (coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> determinati<strong>on</strong>) value for equati<strong>on</strong> LT1 to LT5 generally ranged between 0.672 and<br />

0.956 for the low <strong>turbidity</strong> water while the medium <strong>turbidity</strong> water with equati<strong>on</strong>s MT1 to MT5 had R 2 values<br />

ranging between 0.542 and 0.905. The critical F statistic for equati<strong>on</strong>s LT1, LT2, LT4 and LT5 as wells equati<strong>on</strong>s<br />

MT1, MT2, MT4 and MT5 at 95% and 90% c<strong>on</strong>fidence intervals are F 2 , 2, 95 = 19.0 and F 2, 2, 90 = 9.0 respectively.<br />

Equati<strong>on</strong>s LT3 and MT3 have critical F-values <str<strong>on</strong>g>of</str<strong>on</strong>g> F 1,3,95 = 10.1 and F 1, 3,90 = 5.54 for 5% and 10% levels <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

significance. The overall F statistic for equati<strong>on</strong>s LT1, LT3 and LT5 are statistically significant at 10% level.<br />

Equati<strong>on</strong>s LT1 and LT5 exceed F 2, 2, 90 = 9.0 while equati<strong>on</strong> LT3 exceeds F 1,3,90 = 5.54. These values are valid for<br />

the low <strong>turbidity</strong> water. At 5% level <str<strong>on</strong>g>of</str<strong>on</strong>g> significance <strong>on</strong>ly equati<strong>on</strong> LT3 has a significant overall F-value as it<br />

exceeds F 1, 3, 95 = 10.1. The overall F-statistic for equati<strong>on</strong>s MT4 and MT5 are statistically significant at 10% level<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> significance as they exceed F 2 , 2,90 = 9.00 while equati<strong>on</strong> MT3 is significant at 90% at its overall F-value exceed<br />

F 1 , 3, 90 = 5.54 respectively.<br />

A comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the values <str<strong>on</strong>g>of</str<strong>on</strong>g> the regressi<strong>on</strong> properties <str<strong>on</strong>g>of</str<strong>on</strong>g> equati<strong>on</strong>s LT1, LT3 and LT5 as well as MT3, MT4 and<br />

MT5 are shown in Table 4. For the low <strong>turbidity</strong> water, equati<strong>on</strong> LT1 yielded the lowest R 2 and adjusted R 2 but the<br />

highest value <str<strong>on</strong>g>of</str<strong>on</strong>g> residual variance and residual standard deviati<strong>on</strong>, while equati<strong>on</strong> LT3 had the highest value <str<strong>on</strong>g>of</str<strong>on</strong>g> R 2<br />

and adjusted R 2 but the least residual variance and residual standard deviati<strong>on</strong>.<br />

The Root Means Square Error (RMSE, Eq 3) was also used to determine the overall predicti<strong>on</strong> accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

models, and the bias (d, Eq 4) was used to evaluate the model’s over or under-predicti<strong>on</strong>.<br />

RMSE =<br />

1<br />

n<br />

n 2<br />

i=1 d i (3)<br />

199


Ozean Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Sciences 4(3), 2011<br />

d = 1 n<br />

n<br />

i=1 d i<br />

(4)<br />

where di is the difference between the predicted and measured values and n is the number <str<strong>on</strong>g>of</str<strong>on</strong>g> measured values <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

total suspended solids. The lowest value <str<strong>on</strong>g>of</str<strong>on</strong>g> RMSE was obtained with equati<strong>on</strong> LT3 (0.834). However, equati<strong>on</strong><br />

LT3 yielded a bias <str<strong>on</strong>g>of</str<strong>on</strong>g> 9 x 10 -4 . Thus c<strong>on</strong>sidering the values <str<strong>on</strong>g>of</str<strong>on</strong>g> R 2 , adjusted R 2 , overall F statistic, residual variance,<br />

residual standard deviati<strong>on</strong> as well as the RMSE and bias d, equati<strong>on</strong> LT3 can be taken to give the best overall<br />

predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> total suspended solids in low <strong>turbidity</strong> water during treatment <strong>using</strong> Moringa <strong>oleifera</strong> seed powder.<br />

The values <str<strong>on</strong>g>of</str<strong>on</strong>g> total suspended solids predicti<strong>on</strong> from equati<strong>on</strong> LT3 were compared with the corresp<strong>on</strong>ding measured<br />

values and presented in Fig 3. Alternatively, use can be made <str<strong>on</strong>g>of</str<strong>on</strong>g> Eq LT5 for predicting the total suspend solids in<br />

low <strong>turbidity</strong> water <strong>using</strong> Moringa <strong>oleifera</strong> seed powder at it yielded the next highest R 2 value and the next lowest<br />

value <str<strong>on</strong>g>of</str<strong>on</strong>g> RMSE.<br />

C<strong>on</strong>sidering the medium <strong>turbidity</strong> water, equati<strong>on</strong> MT4 yielded the lowest value <str<strong>on</strong>g>of</str<strong>on</strong>g> R 2 and the lowest value <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

adjusted R 2 , but the highest residual variance and residual standard deviati<strong>on</strong> while Eq MT3 had the highest value <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

R 2 and adjusted R 2 but the lowest residual variance and residual standard deviati<strong>on</strong>. The lowest values <str<strong>on</strong>g>of</str<strong>on</strong>g> RMSE<br />

were obtained with Eq MT3 and Eq MT5 as shown in Table 4. Equati<strong>on</strong> MT3 yielded the lowest value <str<strong>on</strong>g>of</str<strong>on</strong>g> bias,<br />

although the highest overall F-statistic was exhibited by Eq MT5 (F = 13.43). C<strong>on</strong>sidering the R 2 , adjusted R 2 ,<br />

residual variance, residual standard deviati<strong>on</strong>, F-statistic, bias and RMSE Eq 3 can be taken to give the best overall<br />

predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> total suspended solids for medium turbid water which is undergoing treatment <strong>using</strong> the Moringa<br />

<strong>oleifera</strong> seed powder. An alternative equati<strong>on</strong> which can be used is Eq MT5.<br />

The results <str<strong>on</strong>g>of</str<strong>on</strong>g> this study indicate that the polynomial equati<strong>on</strong>s (LT3 and MT3) give the best overall predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

total suspended solids(TSS) in low-med turbid water undergoing treatment <strong>using</strong> the Moringa <strong>oleifera</strong> seed powder.<br />

This means that the relati<strong>on</strong>ship between the TSS and <strong>turbidity</strong> in water undergoing treatment <strong>using</strong> the Moringa<br />

<strong>oleifera</strong> seed powder is a polynomial relati<strong>on</strong>ship to the 2 nd order. An alternative relati<strong>on</strong>ship between these two<br />

parameter (total suspended solids and <strong>turbidity</strong>) is an exp<strong>on</strong>ential (LT5 and MT5). The values <str<strong>on</strong>g>of</str<strong>on</strong>g> predicted TSS<br />

values from Eq MT3 were compared with the corresp<strong>on</strong>ding measured values and presented in Fig 4.<br />

CONCLUSION AND RECOMMENDATION<br />

Moringa <strong>oleifera</strong> seed powder is a widely acclaimed coagulant which does not alter the pH <str<strong>on</strong>g>of</str<strong>on</strong>g> the finished water and<br />

proper Moringa <strong>oleifera</strong> seed dosage will produce better results. Cost <str<strong>on</strong>g>of</str<strong>on</strong>g> treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> water in developing countries<br />

will greatly be reduced if the Moringa <strong>oleifera</strong> seed powder is employed in water treatment because its use will<br />

reduce the cost <strong>on</strong> other coagulants currently being employed in water purificati<strong>on</strong>. The <str<strong>on</strong>g>settling</str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> 24 hours in<br />

being advocated for Moringa <strong>oleifera</strong> seed powder because better coagulati<strong>on</strong> and <strong>turbidity</strong> <strong>removal</strong> was achieved<br />

with the extended <str<strong>on</strong>g>time</str<strong>on</strong>g>s<br />

200


Ozean Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Sciences 4(3), 2011<br />

REFERENCES<br />

Agrawal H., C.Shee and A.K Shamma., (2007) Isolati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a 66kDa protein with coagulati<strong>on</strong> activity from seeds <str<strong>on</strong>g>of</str<strong>on</strong>g> Moringa<br />

<strong>oleifera</strong>. Research Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture and Biological Sciences 3 (5): 418-421.<br />

American Public Health Associati<strong>on</strong>/American Water Works Associati<strong>on</strong> & Water Polluti<strong>on</strong> C<strong>on</strong>trol<br />

Federati<strong>on</strong>(1989)Standard Methods for the Examinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Water and Wastewater. 17 th Editi<strong>on</strong>, Washingt<strong>on</strong>, DC.<br />

:2-12.<br />

CDC(safewater@cdc.gov) Pre-treatment fact sheet. Opti<strong>on</strong>s to pre-treat water in chlorinati<strong>on</strong> projects. Safe water @<br />

edc.gov. :1-5.<br />

Doerr B. (2005). Moringa water treatment. An Echo Technical Note. http:www.ech<strong>on</strong>et.org/ Envir<strong>on</strong>mental Chemistry<br />

Laboratory Manual (2000) Selected Analytical Method(s). Internati<strong>on</strong>al Institute for Infrastructural, Hydraulic and<br />

Envir<strong>on</strong>mental Engineering. The Netherlands: 92. EPA Turbidity provisi<strong>on</strong>s, EPA Guidance manual: 7-1-7-8,<br />

1999.<br />

Faby J.A. and A. Eleli (1993) Utilisati<strong>on</strong> de la graine de Moringa essai de flocculati<strong>on</strong> en laboratoire et en vraie grandeur C.I.<br />

E.H. :90.<br />

Gippel C.J.,(1995)Potential <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>turbidity</strong> m<strong>on</strong>itoring for measuring the transport <str<strong>on</strong>g>of</str<strong>on</strong>g> suspended solids in streams. Hydrological<br />

processes. 9:83-97.<br />

Holliday, G.P., T.C Rasmussen and W.P Miller (2003) Establishing the relati<strong>on</strong>ship between <strong>turbidity</strong> and total suspended<br />

sediment c<strong>on</strong>centrati<strong>on</strong>. Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> the 2003 Georgia Water Resources C<strong>on</strong>ference held <strong>on</strong> April 23-24, 2003<br />

at the University <str<strong>on</strong>g>of</str<strong>on</strong>g> Georgia, Kathryn J. Hatcher, Editor, Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology, The University <str<strong>on</strong>g>of</str<strong>on</strong>g> Georgia, Athens,<br />

Georgia.<br />

Hsu R., S. Midcap and A. Lucienne de Wilte (2006)Moringa Oleifera :Medicinal and Socio-ec<strong>on</strong>omic uses. Internati<strong>on</strong>al<br />

Course <strong>on</strong> Ec<strong>on</strong>omic Botany. Nati<strong>on</strong>al Herbarium Leiden, The Netherlands. September.<br />

Jahn S.A. (1986) Proper use <str<strong>on</strong>g>of</str<strong>on</strong>g> African natural coagulants for rural water supplies:<br />

Research in the Sudan and a guide for new projects. (Schriftenreihe der GTZ; No.<br />

191). Eschbom, Germany, Deutsche Gesellschaft fur Technsche Zusammenarbeit<br />

(GTZ).<br />

Jahn S.A.(1988)Using Moringa seeds as coagulants in developing countries In:<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> the America Water Works Associati<strong>on</strong> 80 ( 6 ):43-50.<br />

Katay<strong>on</strong> S., M.J. Megat Mohd Noor, A. Asma, A.N. Thamer, A.G. Liwe Abdullar, A. Idris, A.M. Suleyman, M.B.<br />

Aminuddin,., and B.C. Khor (2004) Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> storage durati<strong>on</strong> and temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> Moringa <strong>oleifera</strong> stock soluti<strong>on</strong><br />

<strong>on</strong> its performance in coagulati<strong>on</strong>. Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineering and Technology 1(2):146-151.<br />

Lechevallier M.W., T.M. Evans, and R.J Seidher (1981) Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>turbidity</strong> <strong>on</strong> chlorinati<strong>on</strong> efficiency and bacterial<br />

persistence in drinking water. Applied and Envir<strong>on</strong>mental Microbiology, 42 (1): 159-167.<br />

Lewis J. (1996) Turbidity –c<strong>on</strong>trolled suspended sediment sampling for Run<str<strong>on</strong>g>of</str<strong>on</strong>g>f-Event load estimati<strong>on</strong>. Water Resources<br />

Research 32(7): 2299-2310.<br />

Lilliehook H.(2005)Use <str<strong>on</strong>g>of</str<strong>on</strong>g> Sand filterati<strong>on</strong> <strong>on</strong> River flocculated with Moringa Oleifera. Unpublished Masters Thesis<br />

submitted to Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Civil and Envir<strong>on</strong>mental Engineering. Lulea University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology.<br />

Mbora A. and G. Mundia (2004) River water purificati<strong>on</strong> <strong>using</strong> Moringa <strong>oleifera</strong> seeds. World Agr<str<strong>on</strong>g>of</str<strong>on</strong>g>orestry centre.<br />

Muyibi S.A. and L.M. Evis<strong>on</strong> (1995) Moringa Oleifera seeds for s<str<strong>on</strong>g>of</str<strong>on</strong>g>tening hard water. Water Resources 29 (4)1099 – 1105.<br />

201


Ozean Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Sciences 4(3), 2011<br />

Muyibi S.A. and L.M Evis<strong>on</strong> (1996) Coagulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> turbid water and s<str<strong>on</strong>g>of</str<strong>on</strong>g>tening <str<strong>on</strong>g>of</str<strong>on</strong>g> hard water with Moringa <strong>oleifera</strong> seeds.<br />

Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Studies, 56: 483-495.<br />

Nacoulima G., J. Piro and A. Bayane ( 2000) Etude de l’activite floculante d’un complexe proteine-mucilage vegetal dans la<br />

clarificati<strong>on</strong> des eaux brutes J. Soc. Quest-Af chim. 9:43-57.<br />

Narasiah, K.S., A.Vogel and N.N Kramadhati (2002) Coagulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> turbid water <strong>using</strong> Moringa <strong>oleifera</strong> from two distinct<br />

sources. Water Science Technology: Water Supply 2 (5-6): 83-88.<br />

Ndabigengerese A. and K.S. Narasiah (1998) Quality <str<strong>on</strong>g>of</str<strong>on</strong>g> water treated by coagulati<strong>on</strong> <strong>using</strong> Moringa <strong>oleifera</strong> seed. Water<br />

Resources 32 (3):781-797.<br />

Nwaiwu N.E and C.A. Oku<str<strong>on</strong>g>of</str<strong>on</strong>g>u (2006) Knowledge, Attitude and Practice (KAP) study <str<strong>on</strong>g>of</str<strong>on</strong>g> water use and financial possibilities<br />

in rural areas <str<strong>on</strong>g>of</str<strong>on</strong>g> Borno State, Nigeria. Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Gender & Health Studies 3( 1 & 2 ):146-155.<br />

Nwaiwu N.E and C.A. Oku<str<strong>on</strong>g>of</str<strong>on</strong>g>u (2006) Knowledge, Attitude and Practice (KAP) study <str<strong>on</strong>g>of</str<strong>on</strong>g> water supply in rural areas <str<strong>on</strong>g>of</str<strong>on</strong>g> Borno<br />

State, North East, Nigeria. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineering Science & Technology 1 (1):64-70.<br />

Nwaka G.I.C. (1991) Pedogenic factors and soil resources <str<strong>on</strong>g>of</str<strong>on</strong>g> Borno State. Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 st Internati<strong>on</strong>al C<strong>on</strong>ference <strong>on</strong><br />

Arid z<strong>on</strong>e hydrology and water resources. University <str<strong>on</strong>g>of</str<strong>on</strong>g> Maiduguri, Nigeria. : 235-262.<br />

Rasmussen T.C.(1995) Erosi<strong>on</strong> and sedimentati<strong>on</strong>: Scientific and regulatory issues. Report developed by Georgia Board <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Regents scientific panel <strong>on</strong> evaluating the erosi<strong>on</strong> measurement standard defined by the Georgia Erosi<strong>on</strong><br />

sedimentati<strong>on</strong> Act.<br />

Sidle R.C. and A.J Campbell (1985) Patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> suspended sediment transport in a coastal Alaska stream. Water Resources<br />

Research. 21 (6): 909-917.<br />

Sutherland J.P., G.K. Folkard, M.A. Mtawali and W.D. Grant (1994) Moringa Oleifera as a natural coagulant. Proceedings<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the 20 th WEDC C<strong>on</strong>ference <strong>on</strong> Affordable Water Supply and Sanitati<strong>on</strong>. Colombo, Srilanka. : 297-299.<br />

Technical Advisory Group (TAG) for Georgia C<strong>on</strong>servancy (2002) A protocol for establishing sediment TMDLs. TAG white<br />

paper.<br />

Trular J.F. (1978) Determining suspended sediment loads from <strong>turbidity</strong> records. Hydrological Sciences Bulletin 20, 4,<br />

12/1978:409-417.<br />

World Agr<str<strong>on</strong>g>of</str<strong>on</strong>g>orestry Centre (2004) CDC pre-treatment Fact sheet. Safewater @cdc.gov.<br />

World Health Organizati<strong>on</strong> (WHO) (1996) Guidelines for drinking water quality –Sec<strong>on</strong>d Editi<strong>on</strong> -Volume 2- Health Criteria<br />

and other supporting informati<strong>on</strong>: 971.<br />

Yao B., E. Assidjo, S. Gueu and C. Ado (2005) Study <str<strong>on</strong>g>of</str<strong>on</strong>g> the Hibiscus esculentus mucilage coagulati<strong>on</strong> – flocculati<strong>on</strong><br />

activity. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Science and Envir<strong>on</strong>mental Management 9 (1): 173 – 176.<br />

Yung K. (2003) Biosand Filtrati<strong>on</strong>: Applicati<strong>on</strong> in the Developing World CE401 project prepared for University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Waterloo. Civil Engineering Department.<br />

202


Ozean Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Sciences 4(3), 2011<br />

Table 1: Physico chemical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> raw water samples<br />

A. Low <strong>turbidity</strong> water<br />

Parameters<br />

Quantity<br />

Temperature(ºC ) 22.4<br />

pH 7.72<br />

Total dissolved solids (mg/l) 68.4<br />

Turbidity (NTU) 32.8<br />

Electrical c<strong>on</strong>ductivity (mS/m) 98.2<br />

Salinity (mg/l) 48.4<br />

Colour(TCU) 52.83<br />

Total Suspended Solids(mg/l) 51.94<br />

B<br />

Medium <strong>turbidity</strong> water<br />

Parameters<br />

Temperature (ºC ) 23.7<br />

pH 8.1<br />

Total dissolved solids (mg/l) 113<br />

Turbidity (NTU) 98.2<br />

Electrical c<strong>on</strong>ductivity (mS/m) 167.5<br />

Salinity (mg/l) 83.5<br />

Colour (TCU) 89.34<br />

Total Suspended Solids (mg/l) 40.33<br />

203


Ozean Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Sciences 4(3), 2011<br />

Table 2: Turbidity, Total Suspended Solids, and Colour <strong>removal</strong> efficiencies (%)<br />

with respect to <str<strong>on</strong>g>time</str<strong>on</strong>g><br />

A. Low <strong>turbidity</strong> water<br />

Parameters<br />

Removal efficiencies (%) with respect to <str<strong>on</strong>g>time</str<strong>on</strong>g><br />

30 minutes 60 minutes 2 hours 6 hours 24 hours<br />

Turbidity(NTU) 80 84.1 86.3 87.5 96.3<br />

Total Suspended 4.92 12.46 16.4 22.9 26.5<br />

Solids(mg/l)<br />

Colour(TCU) 74.59 81.7 85.94 86.37 88.89<br />

B<br />

Medium <strong>turbidity</strong> water<br />

Parameters<br />

Removal efficiencies (%) with respect to <str<strong>on</strong>g>time</str<strong>on</strong>g><br />

30 minutes 60 minutes 2 hours 6 hours 24 hours<br />

Turbidity(NTU) 12 5.7 8.96 12.1 82.5<br />

Total Suspended -ve -ve -ve -ve -ve<br />

Solids(mg/l)<br />

Colour(TCU) 12.4 5.5 13.69 16.8 75.2<br />

204


Ozean Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Sciences 4(3), 2011<br />

Table 3: Regressi<strong>on</strong> Analyses for relati<strong>on</strong>ship between Total suspended solids<br />

(mg/l) and Turbidity (NTU)<br />

A. Low <strong>turbidity</strong> water<br />

Equati<strong>on</strong> Number<br />

Remarks<br />

Equati<strong>on</strong><br />

LT1 TSS=2.1514T +34.254 R 2 = 0.84, Adjusted<br />

R 2 = 0.79, F =15.75<br />

LT2 TSS=5.598ln (T) +35.991 R 2 = 0.672, Adjusted<br />

R 2 = 0.51, F =6.15<br />

LT3 TSS = 0.4478(T) 2 -1.294 + 38.93 R 2 = 0.9559, Adjusted<br />

R 2 = 0.912, F =21.68<br />

LT4 TSS = 36.37T 0.1311 R 2 = 0.697, Adjusted<br />

R 2 = 0.596, F =6.885<br />

LT5 TSS = 34.955e 0.0499T R 2 = 0.855, Adjusted R 2<br />

= 0.807, F =17.68<br />

B. Medium <strong>turbidity</strong> water<br />

Equati<strong>on</strong> Number<br />

Remarks<br />

Equati<strong>on</strong><br />

MT1 TSS=2.060 T +33.76 R 2 = 0.5775, Adjusted<br />

R 2 = 0.438, F =4.1<br />

MT2 TSS=87.173ln (T) -175.36 R 2 = 0.5415, Adjusted<br />

R 2 = 0.39, F =3.54<br />

MT3 TSS = 0.2653(T) 2 -26.183 + 448.22 R 2 = 0.9049, Adjusted<br />

R 2 = 0.8098, F =9.52<br />

MT4 TSS = 12.845 0.6211 R 2 = 0.7888, Adjusted<br />

R 2 = 0.719, F =11.2<br />

MT5 TSS = 57.88e 0.0145T R 2 = 0.8174, Adjusted R 2<br />

= 0.757, F =13.43<br />

205


Ozean Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Sciences 4(3), 2011<br />

Table 4: Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Regressi<strong>on</strong> Analyses for relati<strong>on</strong>ship between Total suspended solids<br />

(mg/l) and Turbidity (NTU)<br />

A<br />

Low <strong>turbidity</strong> water<br />

Regressi<strong>on</strong> Equati<strong>on</strong>LT1 Equati<strong>on</strong>LT2 Equati<strong>on</strong>LT3 Equati<strong>on</strong>LT4<br />

Equati<strong>on</strong>LT5<br />

Parameters<br />

R 2 0.84 0.672 0.96 0.697<br />

0.885<br />

Adjusted R 2 0.79 0.51 0.912 0.596<br />

0.807<br />

F 15.75 6.15 21.68 6.89<br />

17.68<br />

Residual variance 3.151 6.459 0.8696 6.0577<br />

2.2879<br />

Residual mean 0.00012 -0.000282 0.0009 0.0569<br />

0.0342<br />

Residual standard deviati<strong>on</strong> 1.775 2.541 0.9325 2.461<br />

1.6394<br />

Bias1. 2*10 -4 -2.2*10 -4 9*10 -4 0.057<br />

0.0222<br />

RMSE 1.589 2.273 0.834 2.202<br />

1.467<br />

B<br />

Medium <strong>turbidity</strong> water<br />

Regressi<strong>on</strong> Equati<strong>on</strong>MT1 Equati<strong>on</strong>MT2 Equati<strong>on</strong>MT3 Equati<strong>on</strong>MT4<br />

Equati<strong>on</strong>MT5<br />

Parameters<br />

R 2 0.5775 0.5415 0.9049 0.7888<br />

0.8174<br />

Adjusted R 2 0.438 0.39 0.8099 0.719<br />

0.757<br />

F 4.10 3.54 9.52 11.2<br />

13.43<br />

Residual variance 3192.67 3464.79 718.323 3339.32<br />

2925.54<br />

Residual mean 0.0032 0.00033 0.2437 5.9334<br />

4.495<br />

Residual standard deviati<strong>on</strong> 56.50 58.86 26.802 57.787<br />

54.088<br />

Bias 3.2*10 -3 3.29*10 -4 0.244 5.393<br />

4.48<br />

RMSE 50.54 52.65 23.97 51.97<br />

48.59<br />

206


parameters<br />

parameters<br />

Ozean Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Sciences 4(3), 2011<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

ph<br />

tds<br />

temp<br />

tur<br />

tss<br />

salinity<br />

ec<br />

colour<br />

0<br />

0 5 10 15 20 25<str<strong>on</strong>g>time</str<strong>on</strong>g>(hr)<br />

30<br />

Figure 1 Residual values (low <strong>turbidity</strong> water ) with <str<strong>on</strong>g>time</str<strong>on</strong>g><br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

ph<br />

tds<br />

temp<br />

tur<br />

tss<br />

salinity<br />

ec<br />

colour<br />

0<br />

0 5 10 15 20 25 <str<strong>on</strong>g>time</str<strong>on</strong>g> (hr) 30<br />

Figure 2 Residual values (medium <strong>turbidity</strong> water ) with <str<strong>on</strong>g>time</str<strong>on</strong>g><br />

207


predicted values<br />

predicted values<br />

Ozean Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Sciences 4(3), 2011<br />

51<br />

49<br />

47<br />

45<br />

43<br />

41<br />

39<br />

37<br />

35<br />

35 37 39 41 43 45 47 49 observed values 51<br />

Figure 3 Predicted versus observed values for total suspended solids (low <strong>turbidity</strong> water)<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

0 50 100 150 200 250 observed 300 values350<br />

Figure 4 Predicted versus observed values for total suspended solids (medium <strong>turbidity</strong><br />

water)<br />

208

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!