31.01.2015 Views

LECTURES ON ZARISKI VAN-KAMPEN THEOREM 1. Introduction ...

LECTURES ON ZARISKI VAN-KAMPEN THEOREM 1. Introduction ...

LECTURES ON ZARISKI VAN-KAMPEN THEOREM 1. Introduction ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>LECTURES</strong> <strong>ON</strong> <strong>ZARISKI</strong> <strong>VAN</strong>-<strong>KAMPEN</strong> <strong>THEOREM</strong> 3<br />

0 q<br />

s s s s<br />

✻<br />

u ′ v ′ ✻<br />

u<br />

✻ ✻<br />

u v w<br />

❆<br />

❆<br />

❈<br />

❈<br />

F G<br />

❆<br />

❆<br />

❈ ❈<br />

❆<br />

❆<br />

❆<br />

❆<br />

✲ t ❆ ✲ t ❆✁ ❈ ❈<br />

❈ ❈<br />

✲ t ❈ ❈ ✲<br />

u v<br />

t<br />

0 p u ū u u v w<br />

(1)<br />

(2)<br />

(3)<br />

(4)<br />

Figure 2.2. Proof of Lemma 2.2.<strong>1.</strong><br />

a homotopy H : I × I → X stationary on ∂I from uv to u ′ v ′ by<br />

{<br />

F (2t, s) if 0 ≤ t ≤ 1/2<br />

H(t, s) :=<br />

G(2t − 1,s) if 1/2 ≤ t ≤ <strong>1.</strong><br />

(2) We can construct a homotopy F : I × I → X stationary on ∂I from 0 p u to<br />

u by<br />

{<br />

p<br />

if 0 ≤ t ≤ (1 − s)/2<br />

F (t, s) :=<br />

u(1 − 2(1 − t)/(s + 1)) if (1 − s)/2 ≤ t ≤ <strong>1.</strong><br />

A homotopy stationary on ∂I from u0 p to u can be constructed in a similar way.<br />

(3) We can construct a homotopy F : I × I → X stationary on ∂I from ūu to<br />

0 q by<br />

⎧<br />

⎪⎨ ū(2t)<br />

if 0 ≤ t ≤ (1 − s)/2<br />

F (t, s) := ū(1 − s) =u(s) if (1− s)/2 ≤ t ≤ (1 + s)/2<br />

⎪⎩<br />

u(2t − 1) if (1 + s)/2 ≤ t ≤ <strong>1.</strong><br />

A homotopy stationary on ∂I from uū to 0 p can be constructed in a similar way.<br />

(4) We can construct a homotopy F : I × I → X stationary on ∂I from u(vw)<br />

to u(vw) by<br />

⎧<br />

⎪⎨ u(4t/(2 − s))<br />

if 0 ≤ t ≤ (2 − s)/4<br />

F (t, s) := v(4t + s − 2)<br />

if (2 − s)/4 ≤ t ≤ (3 − s)/4<br />

⎪⎩<br />

w((4t + s − 3)/(s + 1)) if (3 − s)/4 ≤ t ≤ <strong>1.</strong><br />

The following is obvious from the definition:<br />

Lemma 2.2.2. Let u and v be paths on X with u(1) = v(0), and φ : X → Y a<br />

continuous map. Then φ ◦ u and φ ◦ v are paths on Y with (φ ◦ u)(1) = (φ ◦ v)(0)<br />

and they satisfy φ ◦ (uv) =(φ ◦ u)(φ ◦ v).<br />

We fix a point b of X, and call it a base point of X. A path from b to b is<br />

called a loop with the base point b. Let π 1 (X, b) denote the set of homotopy classes<br />

(relative to ∂I) of loops with the base point b. We define a structure of the group<br />

on π 1 (X, b) by<br />

[u] · [v] :=[uv].<br />

From Lemma 2.2.1 (1), this product is well-defined; that is, [uv] does not depend<br />

on the choice of the representatives u of [u] and v of [v]. By Lemma 2.2.1 (4), this

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!