05.02.2015 Views

n-GaAs - Electronics Technology Network

n-GaAs - Electronics Technology Network

n-GaAs - Electronics Technology Network

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

THz wave probe for<br />

semiconductor wafers<br />

Terahertz Systems & Industrial Applications<br />

25 th , January, 2008, The Royal Society, London<br />

J. Darmo<br />

Institute for Photonics, Vienna University of <strong>Technology</strong>, Austria


Talk outline<br />

• Why THz waves based system<br />

• Principles of operation<br />

• Proof of principle<br />

• Ellipsometry with THz waves<br />

• Interferometry with THz wave (homogeneity mapping)


Why THz based system<br />

Van der Pauw method<br />

THz reflectometry<br />

- sample cleaved from wafer<br />

- good contacts necessary<br />

- direct sampling of wafer


THz-TDS for semiconductor scanner<br />

- conductivity<br />

(doping, mobility)<br />

- carriers’ lifetime<br />

-thickness<br />

(composition)<br />

Remote measurements of carrier<br />

concentration and mobility


Models of relevant structures<br />

THz model of semiconductor<br />

bulk n-type<br />

bulk p-type<br />

n+/n-type<br />

p+/p-type<br />

Drude response<br />

<br />

<br />

<br />

2<br />

<br />

p<br />

<br />

<br />

<br />

Nq<br />

2<br />

<br />

p<br />

2<br />

i<br />

2<br />

1<br />

<br />

m<br />

<br />

p+/n-type<br />

n+/p-type<br />

p/p+/n-type<br />

n/n+/p-type<br />

Mobility model (n-<strong>GaAs</strong>)<br />

<br />

n<br />

p<br />

n<br />

2750 <br />

1<br />

5450<br />

n<br />

0. 54<br />

9.85e16<br />

p 430<br />

0. 45<br />

1<br />

1 <br />

p<br />

6.00 17<br />

<br />

<br />

e


phase shift (rad)<br />

amplitude<br />

attenuation (1/m)<br />

THz model of semiconductor<br />

1.00<br />

0.95<br />

0.90<br />

0.85<br />

0.80<br />

0.75<br />

0.70<br />

0.65<br />

0.60<br />

0.55<br />

0.50<br />

0.45<br />

0.35<br />

0.30<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

0.00<br />

rn_<strong>GaAs</strong><br />

5e15<br />

5e16<br />

5e17<br />

5e18<br />

rn_<strong>GaAs</strong> 1 2 3 4 5 6 7 8<br />

5e16<br />

5e16<br />

frequency 5e17 (THz)<br />

5e18<br />

1 2 3 4 5 6 7 8<br />

frequency (THz)<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

1.0<br />

0.5<br />

5e17<br />

5e18<br />

5e16<br />

5e17<br />

5e15<br />

0.0<br />

0 1 2 3 4 5 6 7 8<br />

frequency (THz)<br />

Summary:<br />

Multicolour measurement:<br />

un-ambiguous recognition (slow)<br />

Two/three colour measurement:<br />

distinguishable, fast<br />

One colour measurement:<br />

Could be confusing, needs<br />

calibration


Talk outline<br />

• Why THz waves based system<br />

• Principles of operation<br />

• Proof of principle<br />

• Ellipsometry with THz waves<br />

• Interferometry with THz wave (homogeneity mapping)


Targeted parameters<br />

for semiconductorscanner (in 2005)<br />

Semiconductor materials:<br />

<strong>GaAs</strong>, Silicon, InP, GaN<br />

Parameters to access:<br />

conductivity (carrier density & mobility)<br />

(in bulk, epitaxial layer, and 2DEG)<br />

Range of parameters:<br />

typically 10 16 -10 18 cm -3<br />

(range modified to given application)<br />

artistic rendering of scanner<br />

Technicalities:<br />

1. desktop format<br />

2. >10 measurements per minute<br />

3. user/maintenance friendly


Semiconductor scanner hardware<br />

90cm<br />

45cm<br />

40cm<br />

• compact box (90 cm x 40 cm footprint)<br />

• 19“ instrument rack


eflection (arb. units)<br />

reflection (arb. units)<br />

N-<strong>GaAs</strong>: model & experiment<br />

1.1<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

3.6um, 4.0um, n=3.80E14 n=5.00E14<br />

4.0um, n=1.38E16 n=1.7E16<br />

2.0um, n=1.00E17 n=1.50E17<br />

2.0um, n=1.55E18 n=1.8E18<br />

0.6<br />

0.5<br />

0.4<br />

0.0 1.0 2.0 3.0 4.0 5.0<br />

frequency [THz]


n-doping (THz data)<br />

Comparison of THz<br />

and standard method<br />

1E19<br />

1E18<br />

N-<strong>GaAs</strong><br />

Thickness: 2-4 m<br />

Substrate: undoped <strong>GaAs</strong><br />

1E17<br />

1E16<br />

1E15<br />

min.<br />

max.<br />

1E14<br />

1E14 1E15 1E16 1E17 1E18 1E19<br />

n-doping (Hall data)<br />

Usable range:<br />

Doping fitting:<br />

1e16 – 5e18 cm -3<br />

Mobility fittting:<br />

1e16 – 5e17 cm -3


mobility (cm 2 /Vs)<br />

mobility (cm 2 /Vs)<br />

<strong>GaAs</strong> & Silicon: model/experiment<br />

8000<br />

doping (cm -3 )<br />

1E15 1E16 1E17 1E18 1E19<br />

10000<br />

<strong>GaAs</strong><br />

<strong>GaAs</strong><br />

deviation from model mobility<br />

observed -> DC vs. HF conductivity<br />

6000<br />

4000<br />

2000<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

1E15 1E16 1E17 1E18 1E19<br />

doping (cm -3 )<br />

Silicon<br />

Measurement:<br />

N-doped <strong>GaAs</strong>:<br />

( min : 1800 ->3000 cm 2 /Vs)<br />

N-doped Silicon<br />

( min : 92 ->320 cm 2 /Vs)


HEMT measurement<br />

Heterostructure used:<br />

n+ <strong>GaAs</strong> cap (5 nm)<br />

Al 0.3 Ga 0.7 As (150nm)<br />

undoped <strong>GaAs</strong><br />

undoped <strong>GaAs</strong> substrate


Probing of bulk and 2D carriers<br />

original<br />

THz<br />

in-plane field component<br />

– sheet conductance<br />

normal field component<br />

– optical transitions in QW<br />

2DEG<br />

d


carrier sheet density (THz data)<br />

Summary of the HEMTs measurement<br />

1E12<br />

In<strong>GaAs</strong>/<strong>GaAs</strong><br />

In<strong>GaAs</strong>/InP A<br />

Design of HEMTs:<br />

• <strong>GaAs</strong>/Al<strong>GaAs</strong> (d-doping)<br />

• <strong>GaAs</strong>/In<strong>GaAs</strong> system<br />

• InP/In<strong>GaAs</strong><br />

(single and double doping)<br />

1E11<br />

Al<strong>GaAs</strong>/<strong>GaAs</strong><br />

In<strong>GaAs</strong>/InP B<br />

Conclusions:<br />

• structure model<br />

improvement needed<br />

• calibration works<br />

1E11<br />

1E12<br />

carrier sheet density (Hall data)


Talk outline<br />

• Why THz waves based system<br />

• Principles of operation<br />

• Proof of principle<br />

• Ellipsometry with THz waves<br />

• Interferometry with THz wave (homogeneity mapping)


Ellipsometry & THz waves<br />

p<br />

p<br />

s<br />

s<br />

polarizer<br />

/4 shifter /4 shifter<br />

analyzer<br />

THz ellipsometry:<br />

• wide frequency range available (inherent spectroscopic feature)<br />

• optical components to manipulate polarization of THz needed (!)<br />

• direct evaluation of y and D from FT spectra of E p and E s (standard approach)


Ellipsometry & THz waves<br />

• Electro-optic detector<br />

‣ intrinsic polarization sensitivity<br />

DS<br />

~ cos sin 2<br />

2sin<br />

cos 2<br />

P.C.M. Planken et al., J.Opt.Soc.Am. B313<br />

• THz emitter<br />

‣ electrically controlled (modulated) polarization<br />

~<br />

Phase: linear – circular – elliptical ‘polarization‘<br />

~<br />

Amplitude: ellipticity


Ellipsometry & THz waves<br />

ellipsometric angle D<br />

200<br />

195<br />

190<br />

185<br />

180<br />

175<br />

170<br />

Al<strong>GaAs</strong>/<strong>GaAs</strong><br />

2.90<br />

3.00<br />

3.10<br />

3.20<br />

3.30<br />

ellipsometric angle D<br />

200<br />

195<br />

190<br />

185<br />

180<br />

175<br />

170<br />

Al<strong>GaAs</strong>/<strong>GaAs</strong><br />

=<br />

0.000<br />

0.005<br />

0.010<br />

0.020<br />

165<br />

160<br />

lambda<br />

thickness<br />

0.20 0.25 0.30 0.35 0.40<br />

ellipsometric angle y<br />

Heteroepitaxy case:<br />

• high sensitivity to composition and doping<br />

• high sensitivity to 2DEG presence<br />

(anisotropy)<br />

Homoepitaxy case:<br />

• higher sensitivity for highly doped (strongly<br />

absorbing) layers<br />

ellipsometric angle D<br />

165<br />

160<br />

185<br />

180<br />

175<br />

0.20 0.25 0.30 0.35 0.40<br />

plain <strong>GaAs</strong><br />

ellipsometric angle y<br />

<strong>GaAs</strong>/<strong>GaAs</strong><br />

=<br />

0.05<br />

0.01<br />

0.02<br />

170<br />

0.30 0.35 0.40<br />

ellipsometric angle y


carrier density (10 18 /cm 3 )<br />

Ellipsometry demonstration<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

standard THz-TDS<br />

THz ellipsometry<br />

- tests on epitaxial layers (n-<strong>GaAs</strong>)<br />

- tests on heterostructure samples<br />

(2DEG) pHEMT (In<strong>GaAs</strong>/InP)<br />

Al<strong>GaAs</strong>/<strong>GaAs</strong> (MODFET)<br />

1.0<br />

0.5<br />

0.5 1.0 1.5 2.0 2.5 3.0 3.5<br />

Hall carrier density (10 18 /cm 3 )


Talk outline<br />

• Why THz waves based system<br />

• Principles of operation<br />

• Proof of principle<br />

• Ellipsometry with THz waves<br />

• Interferometry with THz wave (homogeneity mapping)


eflectivity change (%)<br />

reflectivity change in phase (rad)<br />

THz model of semiconductor<br />

0.6 1% modulation of doping<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

10 19<br />

10 17 10 18 10 16<br />

0 2 4 6 8<br />

0.10<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0.00<br />

-0.02<br />

-0.04<br />

10% modulation of doping<br />

10 18<br />

10 17<br />

10 16 10 19<br />

0 2 4 6 8<br />

frequency (THz)<br />

frequency (THz)<br />

Accessibility range<br />

n-<strong>GaAs</strong> 1e16 – 5e19<br />

p-<strong>GaAs</strong> 5e16 – 2e19<br />

n-Si 2e16 – 1e19<br />

p-Si 5e16 – 2e19<br />

(layer’s thickness and structure dependent)


THz interferometer<br />

Schematic drawing of setup


Parameters homogeneity map<br />

4x10 11<br />

3x10 11<br />

Al<strong>GaAs</strong>/<strong>GaAs</strong> based 2DEG<br />

map of 2DEG density<br />

scanned area: 16x16 mm<br />

step size: 0.5 mm<br />

2x10 11<br />

4x10 11<br />

3x10 11<br />

2x10 11<br />

Al<strong>GaAs</strong>/<strong>GaAs</strong> based 2DEG<br />

Map of 2DEG density after treatment<br />

(sample subjected to surface oxidation)<br />

Scanner area: 16x16 mm<br />

Step size: 0.25 mm<br />

1x10 11


Lehighton <strong>Electronics</strong>, Inc. (PA)<br />

LEI 1600/1605 – contactless alternative to Hall measurement<br />

( 10 GHz microwave technology)<br />

LEI 1500/1510 – resistivity mapping (Eddy current measurement)<br />

RS300/LEI 88 – sheet resistivity<br />

LEI 1600 LEI 1500 RS 300<br />

LEI 1605 LEI 1510 LEI88


Summary<br />

• semiconductor scanner demonstrator is built and tested on<br />

epitaxial layers<br />

• potential of ellipsometry for THz wave probe evaluated<br />

• spatial mapping of elecrical parameters with THz wave<br />

probe is demontrated


Those who contributed<br />

scanner team<br />

D. Dietze, T. Prikoszowitch,<br />

P. Kelly, and K. Unterrainer<br />

Institute for Photonics, Vienna University of <strong>Technology</strong>, Austria<br />

fs-oscillator with PhC fiber delivery team<br />

T. Le and A. Stingl<br />

Femtolasers Produktions GmbH, Austria

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!