05.02.2015 Views

n-GaAs - Electronics Technology Network

n-GaAs - Electronics Technology Network

n-GaAs - Electronics Technology Network

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

THz wave probe for<br />

semiconductor wafers<br />

Terahertz Systems & Industrial Applications<br />

25 th , January, 2008, The Royal Society, London<br />

J. Darmo<br />

Institute for Photonics, Vienna University of <strong>Technology</strong>, Austria


Talk outline<br />

• Why THz waves based system<br />

• Principles of operation<br />

• Proof of principle<br />

• Ellipsometry with THz waves<br />

• Interferometry with THz wave (homogeneity mapping)


Why THz based system<br />

Van der Pauw method<br />

THz reflectometry<br />

- sample cleaved from wafer<br />

- good contacts necessary<br />

- direct sampling of wafer


THz-TDS for semiconductor scanner<br />

- conductivity<br />

(doping, mobility)<br />

- carriers’ lifetime<br />

-thickness<br />

(composition)<br />

Remote measurements of carrier<br />

concentration and mobility


Models of relevant structures<br />

THz model of semiconductor<br />

bulk n-type<br />

bulk p-type<br />

n+/n-type<br />

p+/p-type<br />

Drude response<br />

<br />

<br />

<br />

2<br />

<br />

p<br />

<br />

<br />

<br />

Nq<br />

2<br />

<br />

p<br />

2<br />

i<br />

2<br />

1<br />

<br />

m<br />

<br />

p+/n-type<br />

n+/p-type<br />

p/p+/n-type<br />

n/n+/p-type<br />

Mobility model (n-<strong>GaAs</strong>)<br />

<br />

n<br />

p<br />

n<br />

2750 <br />

1<br />

5450<br />

n<br />

0. 54<br />

9.85e16<br />

p 430<br />

0. 45<br />

1<br />

1 <br />

p<br />

6.00 17<br />

<br />

<br />

e


phase shift (rad)<br />

amplitude<br />

attenuation (1/m)<br />

THz model of semiconductor<br />

1.00<br />

0.95<br />

0.90<br />

0.85<br />

0.80<br />

0.75<br />

0.70<br />

0.65<br />

0.60<br />

0.55<br />

0.50<br />

0.45<br />

0.35<br />

0.30<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

0.00<br />

rn_<strong>GaAs</strong><br />

5e15<br />

5e16<br />

5e17<br />

5e18<br />

rn_<strong>GaAs</strong> 1 2 3 4 5 6 7 8<br />

5e16<br />

5e16<br />

frequency 5e17 (THz)<br />

5e18<br />

1 2 3 4 5 6 7 8<br />

frequency (THz)<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

1.0<br />

0.5<br />

5e17<br />

5e18<br />

5e16<br />

5e17<br />

5e15<br />

0.0<br />

0 1 2 3 4 5 6 7 8<br />

frequency (THz)<br />

Summary:<br />

Multicolour measurement:<br />

un-ambiguous recognition (slow)<br />

Two/three colour measurement:<br />

distinguishable, fast<br />

One colour measurement:<br />

Could be confusing, needs<br />

calibration


Talk outline<br />

• Why THz waves based system<br />

• Principles of operation<br />

• Proof of principle<br />

• Ellipsometry with THz waves<br />

• Interferometry with THz wave (homogeneity mapping)


Targeted parameters<br />

for semiconductorscanner (in 2005)<br />

Semiconductor materials:<br />

<strong>GaAs</strong>, Silicon, InP, GaN<br />

Parameters to access:<br />

conductivity (carrier density & mobility)<br />

(in bulk, epitaxial layer, and 2DEG)<br />

Range of parameters:<br />

typically 10 16 -10 18 cm -3<br />

(range modified to given application)<br />

artistic rendering of scanner<br />

Technicalities:<br />

1. desktop format<br />

2. >10 measurements per minute<br />

3. user/maintenance friendly


Semiconductor scanner hardware<br />

90cm<br />

45cm<br />

40cm<br />

• compact box (90 cm x 40 cm footprint)<br />

• 19“ instrument rack


eflection (arb. units)<br />

reflection (arb. units)<br />

N-<strong>GaAs</strong>: model & experiment<br />

1.1<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

3.6um, 4.0um, n=3.80E14 n=5.00E14<br />

4.0um, n=1.38E16 n=1.7E16<br />

2.0um, n=1.00E17 n=1.50E17<br />

2.0um, n=1.55E18 n=1.8E18<br />

0.6<br />

0.5<br />

0.4<br />

0.0 1.0 2.0 3.0 4.0 5.0<br />

frequency [THz]


n-doping (THz data)<br />

Comparison of THz<br />

and standard method<br />

1E19<br />

1E18<br />

N-<strong>GaAs</strong><br />

Thickness: 2-4 m<br />

Substrate: undoped <strong>GaAs</strong><br />

1E17<br />

1E16<br />

1E15<br />

min.<br />

max.<br />

1E14<br />

1E14 1E15 1E16 1E17 1E18 1E19<br />

n-doping (Hall data)<br />

Usable range:<br />

Doping fitting:<br />

1e16 – 5e18 cm -3<br />

Mobility fittting:<br />

1e16 – 5e17 cm -3


mobility (cm 2 /Vs)<br />

mobility (cm 2 /Vs)<br />

<strong>GaAs</strong> & Silicon: model/experiment<br />

8000<br />

doping (cm -3 )<br />

1E15 1E16 1E17 1E18 1E19<br />

10000<br />

<strong>GaAs</strong><br />

<strong>GaAs</strong><br />

deviation from model mobility<br />

observed -> DC vs. HF conductivity<br />

6000<br />

4000<br />

2000<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

1E15 1E16 1E17 1E18 1E19<br />

doping (cm -3 )<br />

Silicon<br />

Measurement:<br />

N-doped <strong>GaAs</strong>:<br />

( min : 1800 ->3000 cm 2 /Vs)<br />

N-doped Silicon<br />

( min : 92 ->320 cm 2 /Vs)


HEMT measurement<br />

Heterostructure used:<br />

n+ <strong>GaAs</strong> cap (5 nm)<br />

Al 0.3 Ga 0.7 As (150nm)<br />

undoped <strong>GaAs</strong><br />

undoped <strong>GaAs</strong> substrate


Probing of bulk and 2D carriers<br />

original<br />

THz<br />

in-plane field component<br />

– sheet conductance<br />

normal field component<br />

– optical transitions in QW<br />

2DEG<br />

d


carrier sheet density (THz data)<br />

Summary of the HEMTs measurement<br />

1E12<br />

In<strong>GaAs</strong>/<strong>GaAs</strong><br />

In<strong>GaAs</strong>/InP A<br />

Design of HEMTs:<br />

• <strong>GaAs</strong>/Al<strong>GaAs</strong> (d-doping)<br />

• <strong>GaAs</strong>/In<strong>GaAs</strong> system<br />

• InP/In<strong>GaAs</strong><br />

(single and double doping)<br />

1E11<br />

Al<strong>GaAs</strong>/<strong>GaAs</strong><br />

In<strong>GaAs</strong>/InP B<br />

Conclusions:<br />

• structure model<br />

improvement needed<br />

• calibration works<br />

1E11<br />

1E12<br />

carrier sheet density (Hall data)


Talk outline<br />

• Why THz waves based system<br />

• Principles of operation<br />

• Proof of principle<br />

• Ellipsometry with THz waves<br />

• Interferometry with THz wave (homogeneity mapping)


Ellipsometry & THz waves<br />

p<br />

p<br />

s<br />

s<br />

polarizer<br />

/4 shifter /4 shifter<br />

analyzer<br />

THz ellipsometry:<br />

• wide frequency range available (inherent spectroscopic feature)<br />

• optical components to manipulate polarization of THz needed (!)<br />

• direct evaluation of y and D from FT spectra of E p and E s (standard approach)


Ellipsometry & THz waves<br />

• Electro-optic detector<br />

‣ intrinsic polarization sensitivity<br />

DS<br />

~ cos sin 2<br />

2sin<br />

cos 2<br />

P.C.M. Planken et al., J.Opt.Soc.Am. B313<br />

• THz emitter<br />

‣ electrically controlled (modulated) polarization<br />

~<br />

Phase: linear – circular – elliptical ‘polarization‘<br />

~<br />

Amplitude: ellipticity


Ellipsometry & THz waves<br />

ellipsometric angle D<br />

200<br />

195<br />

190<br />

185<br />

180<br />

175<br />

170<br />

Al<strong>GaAs</strong>/<strong>GaAs</strong><br />

2.90<br />

3.00<br />

3.10<br />

3.20<br />

3.30<br />

ellipsometric angle D<br />

200<br />

195<br />

190<br />

185<br />

180<br />

175<br />

170<br />

Al<strong>GaAs</strong>/<strong>GaAs</strong><br />

=<br />

0.000<br />

0.005<br />

0.010<br />

0.020<br />

165<br />

160<br />

lambda<br />

thickness<br />

0.20 0.25 0.30 0.35 0.40<br />

ellipsometric angle y<br />

Heteroepitaxy case:<br />

• high sensitivity to composition and doping<br />

• high sensitivity to 2DEG presence<br />

(anisotropy)<br />

Homoepitaxy case:<br />

• higher sensitivity for highly doped (strongly<br />

absorbing) layers<br />

ellipsometric angle D<br />

165<br />

160<br />

185<br />

180<br />

175<br />

0.20 0.25 0.30 0.35 0.40<br />

plain <strong>GaAs</strong><br />

ellipsometric angle y<br />

<strong>GaAs</strong>/<strong>GaAs</strong><br />

=<br />

0.05<br />

0.01<br />

0.02<br />

170<br />

0.30 0.35 0.40<br />

ellipsometric angle y


carrier density (10 18 /cm 3 )<br />

Ellipsometry demonstration<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

standard THz-TDS<br />

THz ellipsometry<br />

- tests on epitaxial layers (n-<strong>GaAs</strong>)<br />

- tests on heterostructure samples<br />

(2DEG) pHEMT (In<strong>GaAs</strong>/InP)<br />

Al<strong>GaAs</strong>/<strong>GaAs</strong> (MODFET)<br />

1.0<br />

0.5<br />

0.5 1.0 1.5 2.0 2.5 3.0 3.5<br />

Hall carrier density (10 18 /cm 3 )


Talk outline<br />

• Why THz waves based system<br />

• Principles of operation<br />

• Proof of principle<br />

• Ellipsometry with THz waves<br />

• Interferometry with THz wave (homogeneity mapping)


eflectivity change (%)<br />

reflectivity change in phase (rad)<br />

THz model of semiconductor<br />

0.6 1% modulation of doping<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

10 19<br />

10 17 10 18 10 16<br />

0 2 4 6 8<br />

0.10<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0.00<br />

-0.02<br />

-0.04<br />

10% modulation of doping<br />

10 18<br />

10 17<br />

10 16 10 19<br />

0 2 4 6 8<br />

frequency (THz)<br />

frequency (THz)<br />

Accessibility range<br />

n-<strong>GaAs</strong> 1e16 – 5e19<br />

p-<strong>GaAs</strong> 5e16 – 2e19<br />

n-Si 2e16 – 1e19<br />

p-Si 5e16 – 2e19<br />

(layer’s thickness and structure dependent)


THz interferometer<br />

Schematic drawing of setup


Parameters homogeneity map<br />

4x10 11<br />

3x10 11<br />

Al<strong>GaAs</strong>/<strong>GaAs</strong> based 2DEG<br />

map of 2DEG density<br />

scanned area: 16x16 mm<br />

step size: 0.5 mm<br />

2x10 11<br />

4x10 11<br />

3x10 11<br />

2x10 11<br />

Al<strong>GaAs</strong>/<strong>GaAs</strong> based 2DEG<br />

Map of 2DEG density after treatment<br />

(sample subjected to surface oxidation)<br />

Scanner area: 16x16 mm<br />

Step size: 0.25 mm<br />

1x10 11


Lehighton <strong>Electronics</strong>, Inc. (PA)<br />

LEI 1600/1605 – contactless alternative to Hall measurement<br />

( 10 GHz microwave technology)<br />

LEI 1500/1510 – resistivity mapping (Eddy current measurement)<br />

RS300/LEI 88 – sheet resistivity<br />

LEI 1600 LEI 1500 RS 300<br />

LEI 1605 LEI 1510 LEI88


Summary<br />

• semiconductor scanner demonstrator is built and tested on<br />

epitaxial layers<br />

• potential of ellipsometry for THz wave probe evaluated<br />

• spatial mapping of elecrical parameters with THz wave<br />

probe is demontrated


Those who contributed<br />

scanner team<br />

D. Dietze, T. Prikoszowitch,<br />

P. Kelly, and K. Unterrainer<br />

Institute for Photonics, Vienna University of <strong>Technology</strong>, Austria<br />

fs-oscillator with PhC fiber delivery team<br />

T. Le and A. Stingl<br />

Femtolasers Produktions GmbH, Austria

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!