12.02.2015 Views

The Acoustic Drying Of Cloth In Drum-Type Washing Machines

The Acoustic Drying Of Cloth In Drum-Type Washing Machines

The Acoustic Drying Of Cloth In Drum-Type Washing Machines

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Acoustic</strong> Processes and Devices Lab<br />

<strong>The</strong> <strong>Acoustic</strong> <strong>Drying</strong> <strong>Of</strong><br />

<strong>Cloth</strong> <strong>In</strong> <strong>Drum</strong>-<strong>Type</strong><br />

<strong>Washing</strong> <strong>Machines</strong><br />

Biysk Technological <strong>In</strong>stitute (BTI)<br />

www.u-sonic.com


<strong>Drying</strong><br />

<strong>The</strong> drying is a final stage of every cloth washing<br />

processes. Combining washing and drying process in<br />

unified machine provides full automation of cloth<br />

maintenance process at home<br />

Imperfections of<br />

convective drying:<br />

•Long time and big<br />

power consumption.<br />

•Limited minimal size of<br />

washing machine.<br />

•Impossibly to dry<br />

“delicate” cloths.<br />

•Probability of parch of<br />

garments.<br />

Humidity<br />

Comparison<br />

characteristics of<br />

different drying<br />

methods<br />

Key advantages of<br />

acoustic drying:<br />

•Decreasing power<br />

consumption.<br />

•Possibility to carry<br />

out qualitative cloth<br />

drying with low<br />

temperature .<br />

Ultrasound Convection VHF<br />

Time<br />

2


Conceptions <strong>Of</strong> <strong>Acoustic</strong> <strong>Drying</strong> Physical<br />

Mechanism<br />

• At present day uniform conception of<br />

acoustic drying physical mechanism is<br />

absent, but exists set of hypothesis: by<br />

Boucher, by Soloff, , by Greguss. . Each taken<br />

separately it is enough describes some<br />

mechanisms.<br />

• This hypothesizes are based on knowledge<br />

about physical effects that taking place in<br />

drying materials and in material-air<br />

air<br />

interface under high-intensity intensity acoustic<br />

wave propagation. This effects are driving<br />

forces of acoustic drying.<br />

3


Driving Forces <strong>Of</strong> <strong>Acoustic</strong> (Ultrasound)<br />

<strong>Drying</strong><br />

Driving forces<br />

Hydrodynamical Mechanical Calorific<br />

<strong>Acoustic</strong><br />

cavitation<br />

Radiation<br />

pressure<br />

<strong>Acoustic</strong> flows<br />

Water atomization<br />

Turbulization and<br />

reducing thickness<br />

of diffusion interface<br />

Sound-capillary<br />

effect<br />

Pressing-out water<br />

from capillaries<br />

Heating the material<br />

by means of oscillation<br />

absorption<br />

Pressure differences<br />

above material surface<br />

Arising and collapsing<br />

of cavitation bubbles<br />

in capillaries<br />

Pulsation of vapor<br />

in water-free capillaries<br />

Decreasing<br />

liquid viscosity<br />

4


Pressure Differences Above Surface<br />

• <strong>Acoustic</strong> wave, during<br />

propagation above material<br />

surface, arises quickly-changing<br />

changing<br />

zones of increasing and<br />

decreasing pressure.<br />

• Accordingly Boucher hypothesis,<br />

in the increasing pressure zones<br />

drying speed do not decreases,<br />

while in the decreasing pressure<br />

zones arises additional effect of<br />

vacuum drying<br />

<strong>In</strong>creased pressure<br />

Decreased pressure<br />

<strong>In</strong>creased pressure<br />

Decreased pressure<br />

Moisture<br />

5


<strong>Acoustic</strong> Flows <strong>In</strong> Closed Space<br />

• <strong>The</strong> flows in liquid and gas<br />

mediums, during intensity<br />

acoustic wave propagation, are<br />

caused by liquid (gas) viscosity.<br />

• <strong>In</strong>to infinite mediums the acoustic<br />

flows are laminar and directed<br />

lengthways wave propagation<br />

vector.<br />

• <strong>In</strong> the stationary waves conditions<br />

acoustic flows are closed. Near<br />

the interface layer acoustic flows<br />

rises a turbulence.<br />

• <strong>The</strong> velocity of acoustic flows<br />

secondary-degree depends from<br />

sound pressure and in range 140-<br />

150 dB is 6-10 m/s<br />

Scheme of acoustic flows in closed space<br />

<strong>The</strong> acoustic flows is main driving force of acoustic drying in 1401<br />

40-150 dB sound<br />

pressure level range. <strong>Acoustic</strong> flows speeding up evaporation and provides humidity<br />

removal from drying zone<br />

6


Microflows Near Obstacle<br />

• When the acoustic wave interacts<br />

with drying cloth, in immediate<br />

proximity to humidity fibers the<br />

microflows are arises.<br />

• Low intensity waves provides<br />

laminar microflows that do not<br />

influence to drying speed.<br />

• When intensity of acoustic waves<br />

reach a critical value, the<br />

microflows turn into turbulence and<br />

displace a bound laminar flow, that<br />

assists for mass transfer process.<br />

Laminar mode<br />

Re1200<br />

Microflows near the obstacle along with acoustic flows appreciably intensify mass<br />

changes processes at 140-150 150 dB range<br />

7


Reducing Thickness <strong>Of</strong> Water-Air<br />

<strong>In</strong>terface Layer<br />

Air flow<br />

Air flow<br />

Evaporation<br />

Diffusion<br />

<strong>In</strong>terface<br />

Layer<br />

Water<br />

Convective drying<br />

Water<br />

<strong>Acoustic</strong> drying<br />

• Near the wet material surface are presence the interface layer, that is impediment for mass changes<br />

process<br />

• Reducing the interface layer thickness provides increasing the evaporation speed.<br />

• <strong>The</strong> thickness of interface layer depends from diffusion and hydrodynamic processes.<br />

• During the convective drying air flows in interface layer are laminar and thickness of interface layer<br />

defines by diffusion processes<br />

• <strong>In</strong> the high-intensity acoustic fields thickness of interface layer seriously decreases that caused by<br />

turbulent flows and microflows<br />

8


Radiation Pressure<br />

Radiation<br />

pressure<br />

Ultrasound<br />

Removed water<br />

Water in material<br />

• Radiation pressure is steady component of total pressure that influence to<br />

solid in acoustic wave.<br />

• <strong>The</strong> cause of radiation pressure is a transfer a part of wave mechanical<br />

impulse to a solid during absorption or reflection the acoustic wave.<br />

• <strong>The</strong> radiation pressure, that arises in intensity acoustic field (more than 135<br />

dB) capable to squeeze out water drops from material<br />

9


Cavitation<br />

• <strong>The</strong> acoustic cavitation arises in<br />

liquid during propagation high-<br />

intensity acoustic wave.<br />

• <strong>The</strong> cavitation is a key driving<br />

force, that speeding-up many<br />

physiochemical processes in<br />

acoustic fields, includes drying<br />

process.<br />

• <strong>The</strong> cavitation connects with liquid<br />

continuousness violation in<br />

decreased pressure phase, arising<br />

vapor-gas bubbles in gaps and its<br />

collapsing in next increasing<br />

pressure phase.<br />

• When the bubble collapsing, on<br />

account of bubble skewness, , arises<br />

a jet stream that excite micro<br />

shock wave in liquid<br />

<strong>In</strong>creased pressure<br />

Decreased pressure<br />

Decreased pressure<br />

SHOCK WAVES<br />

<strong>In</strong>creased pressure<br />

<strong>In</strong>creased pressure<br />

Decreased pressure<br />

10


Cavitation Atomizing <strong>Of</strong> Liquid<br />

• Collapsing of cavitation bubbles near<br />

free surface excites capillary-gravitation<br />

waves. Wave crests splints up to little<br />

drops.<br />

• Detached drops make up an aerosol.<br />

When other influences (e.g. air flows)<br />

are absent the aerosol is in equilibrium.<br />

• <strong>The</strong> air flows, acoustic flows and<br />

radiation pressure provides effective<br />

removing of aerosol from surface.<br />

• Cavitation atomizing provides water<br />

removal without evaporation. It<br />

decreases power consumption of drying<br />

process<br />

• Cavitation atomizing arises only in<br />

conditions of high cloth humidity<br />

(more than 60%) and high-<br />

intensity ultrasound – more that<br />

160 dB.<br />

• For the cloth drying in washing<br />

machines cavitation atomizing is limited<br />

applicable<br />

Cavitation<br />

Water<br />

aerosol<br />

Capillarygravitation<br />

waves<br />

aerosol<br />

11


Sound-Capillary Effect<br />

• If cavitation bubble arises at<br />

capillary entrance, the shock wave<br />

will be directed into capillary.<br />

• <strong>The</strong> overpressure in capillary, that<br />

excited by shock wave, squeezes<br />

out liquid outside. This<br />

phenomenon named as “soundcapillary<br />

effect”.<br />

• Sound-capillary effect promotes to<br />

accelerated water transfer from<br />

deep layers to surface, that<br />

provides drying speeding up<br />

Water squeeze out<br />

Capillary<br />

Cavitation bubble<br />

12


Pulsation And Explosion <strong>Of</strong> Vapor-gas<br />

Bubbles <strong>In</strong>to Capillaries. Decreasing<br />

Liquid Viscosity<br />

• With a increasing acoustic wave intensity a<br />

part of bubbles does not have a time to<br />

collapse in increasing pressure phase. <strong>In</strong><br />

the next decreasing pressure phase these<br />

bubbles again swell. <strong>The</strong> process may to<br />

repeat continuous time. <strong>The</strong>se bubbles<br />

named as “resonant bubbles”<br />

• Pulsation of resonant bubbles in capillaries<br />

excites low-frequency oscillations of<br />

capillary walls and speeding up water<br />

transfer from deep layers to surface<br />

• Explosions of bubbles into capillary also<br />

promote water transfer process<br />

• Cavitation bubbles provides “loosening” of<br />

liquid and, as result, decreasing the<br />

viscosity, that is additional factor of mass<br />

transfer too.<br />

Water<br />

Water<br />

squeeze out<br />

Borders<br />

vibration<br />

Cavitation<br />

bubbles<br />

13


Effect <strong>Of</strong> Radiation Pressure<br />

Objects “hover” over acoustic radiator<br />

by means of radiation surface<br />

14


Calorific Effect<br />

• Absorption of ultrasonic oscillations<br />

in wet material provides its heating<br />

• <strong>Acoustic</strong> heating arising almost<br />

uniformly on all deepness of<br />

material, that promote water<br />

transfer from deep layers.<br />

• Calorific effect observes only under<br />

high-intensity intensity ultrasonic (more 165<br />

dB) and may be effectively using<br />

for poured materials (e.g. sugar,<br />

corn or silica).<br />

• <strong>In</strong> the acoustic cloth drying calorific<br />

effect show weakly and do not<br />

influence to drying speed<br />

Ultrasound<br />

Heat<br />

Wet material<br />

15


Pulsations <strong>Of</strong> Vapor <strong>In</strong> Water-free<br />

Capillaries<br />

• Due to decreasing humidity, part of<br />

capillaries become water-free.<br />

• <strong>In</strong> the water-free zones a vapor locks<br />

are arising. That fact is a hinder for<br />

transfer humidity remnants to surface.<br />

• High-intensity oscillations excites<br />

pulsations of vapor in water free<br />

capillaries, that breaks a vapor locks.<br />

• Accordingly with Simonian hypothesis,<br />

vapor pulsation and vapor locks<br />

removal provides drying speeding up<br />

Ultrasound<br />

Vapor<br />

squeeze<br />

out<br />

Capillary<br />

16


<strong>In</strong>dustrial Applications <strong>Of</strong> <strong>Acoustic</strong><br />

<strong>Drying</strong><br />

• Low-temperature drying of bioactive<br />

substances<br />

• <strong>Drying</strong> of thermolabile vegetables raw<br />

(corn, mushrooms, herbs)<br />

• <strong>Drying</strong> of flammable and explosive material<br />

• <strong>Drying</strong> of wood<br />

• <strong>Drying</strong> of thermolabile chemical and<br />

medical preparation<br />

• <strong>Drying</strong> of tissues in textile fabrics industry<br />

17


<strong>In</strong>dustrial <strong>Drum</strong>-type <strong>Acoustic</strong> Dryers<br />

• <strong>Drum</strong>-type acoustic dryers are<br />

used for poured materials<br />

drying<br />

• Operation mode of drum-type<br />

dryers is periodical<br />

• Wet material is placed into<br />

drum, where undergo acoustic<br />

influence (including with<br />

heating).<br />

• Rotation of drum promote<br />

uniform acoustic influence<br />

onto all volume of material.<br />

• Wet air from drum-type<br />

dryers removes by airexhauster.<br />

• <strong>Acoustic</strong> field in drum-type<br />

dryers excites by gas-jet<br />

radiators<br />

1 – case, 2 – air-heater, 3 –<br />

chamber, 4 – drum, 5 – door, 6 –<br />

gas-jet radiator, 7 – air-exhauster, 8<br />

-filter<br />

18


<strong>In</strong>dustrial Tunnel-type <strong>Acoustic</strong> Dryers<br />

• <strong>The</strong> tunnel-type<br />

type<br />

dryers, as a opposed<br />

to drum-type<br />

dryers, are<br />

continuous action<br />

apparatus.<br />

• Wet material moves<br />

by transporter<br />

through tunnel,<br />

where presence<br />

high-intensity<br />

intensity<br />

acoustic field<br />

• Tunnel-type dryers<br />

are used for poured<br />

or sheet materials<br />

and also wood<br />

1-wet material, 2– acoustic<br />

radiators, 3- air inlet, 4- air<br />

exhaust<br />

19


<strong>In</strong>dustrial Ellipsoidal-type <strong>Acoustic</strong><br />

Dryers (Project)<br />

• Chamber of ellipsoidal dryers<br />

are generated by truncated<br />

ellipsoid of revolution, at that<br />

revolution axel passing<br />

through one focus of<br />

generatrix ellipse.<br />

• <strong>Acoustic</strong> radiator is allocated<br />

on revolution axel of ellipsoid.<br />

• Wet material allocated along<br />

line that circumscribed by<br />

another generatix ellipse<br />

focus.<br />

• As well known, ellipse collects<br />

in one focus a radiation,<br />

emitting from other focus.<br />

1 - container with wet material, 2 – drying<br />

chamber,<br />

3 – acoustic radiator<br />

20


Contact-<strong>Type</strong> <strong>Acoustic</strong> Dryers<br />

• <strong>In</strong> the contact-type<br />

type<br />

acoustic dryers,<br />

oscillations are<br />

leading into<br />

material under<br />

direct contact with<br />

acoustic radiator.<br />

• Contact-type<br />

type<br />

acoustic dryers are<br />

used for sheet and<br />

roll materials (e.g.<br />

paper, cardboard,<br />

tissues) and wood.<br />

• Contact-type<br />

type<br />

acoustic dryers<br />

based on solid<br />

acoustic radiators<br />

(magnetostrictive<br />

or piezoelectric)<br />

21


Problems <strong>Of</strong> <strong>Acoustic</strong> <strong>Drying</strong><br />

• <strong>In</strong> spite of evident advantages of acoustic drying method<br />

its broad distribution are restrained by set of technical<br />

problems:<br />

1. Low efficiency of existent gas-jet radiators<br />

2. High cost of compressors for pressured air feeding<br />

3. Short life-time of gas-jet radiators<br />

4. Necessity to protection a humans from harmful acoustic<br />

radiation<br />

• Existent constructions of acoustic dryers has been<br />

specified only for industrial applications and absolutely<br />

unfit for household<br />

22


<strong>The</strong> <strong>Acoustic</strong> <strong>Drying</strong> <strong>Of</strong> <strong>Cloth</strong> <strong>In</strong> <strong>Drum</strong>-<br />

<strong>Type</strong> <strong>Washing</strong> <strong>Machines</strong><br />

<strong>Acoustic</strong> <strong>Drying</strong> of <strong>Cloth</strong><br />

in <strong>Drum</strong>-<strong>Type</strong> <strong>Washing</strong><br />

<strong>Machines</strong><br />

Contact method<br />

Noncontact method<br />

<strong>Drum</strong>-walls<br />

oscillations<br />

exciting<br />

Aerodynamically<br />

radiators<br />

Piezoelectric<br />

radiators<br />

Directly<br />

acoustic influence<br />

to cloth<br />

Dynamic<br />

Sirens<br />

Gas-Jet<br />

radiators<br />

23


Gas-Jet Radiators:<br />

Advantages And Imperfections<br />

+ Good acoustic<br />

matching with air<br />

medium<br />

+ Small dimensions<br />

+ Capability to<br />

change working<br />

frequency<br />

- Necessity of high air<br />

flow ratio<br />

- Low efficiency<br />

- Wear of nozzle and<br />

resonator<br />

24


Action <strong>Of</strong> Gas-Jet Radiator To Wet Material<br />

25


Piezoelectric-<strong>Type</strong> Radiator<br />

Advantages<br />

Imperfections.<br />

+ More high effectiveness<br />

in comparison with gas-<br />

jet radiator<br />

+ Simplicity of electronic<br />

generator in mass<br />

production<br />

+ Possibility to focusing<br />

and beam forming<br />

Electronic E; generator<br />

- Complicacy to oscillator<br />

system production<br />

- Necessity to final tuning of<br />

electronic generator with<br />

oscillatory system<br />

- High Q-factor Q<br />

of<br />

piezoelectric radiator<br />

requires special means of<br />

acoustic and electric<br />

matching<br />

- Complicacy<br />

electromechanical<br />

construction<br />

26


Operation Principle <strong>Of</strong> Piezoelectric-type<br />

type<br />

Radiator<br />

Russian patent #2059239,<br />

V.N. Khmelev et. al.<br />

Russian patent #2141386,<br />

V.N. Khmelev et. al.<br />

27


Distribution <strong>Of</strong> Oscillations <strong>Of</strong> Radiating<br />

Surface During Working Frequency Change<br />

28


Piezoelectric-<strong>Type</strong> Radiator<br />

Key features:<br />

Radiating surface diameter,<br />

mm<br />

Weight, kg<br />

Working frequency, kHz<br />

Material:<br />

-of radiating disk<br />

-of acoustic concentrator<br />

<strong>Acoustic</strong> waves intensity in<br />

focus, dB<br />

Focal length, mm<br />

Radiator size<br />

(length*diameter), mm<br />

Cooling<br />

200<br />

1,8<br />

22±1,6<br />

steel 40Х13<br />

titanium alloy BT5<br />

≤200<br />

140..200<br />

150*200<br />

Air, forced by<br />

ventilator<br />

1 – disk, 2 – phase changing<br />

riffles, 3 – oscillatory system<br />

29


Action <strong>Of</strong> Piezoelectric Radiator To Wet<br />

Material<br />

30


Electronic Generator<br />

Electric<br />

Power<br />

<strong>Acoustic</strong><br />

Energy<br />

1 – regulated power supply, 2-output inverter, 3-matching<br />

circuit, 4-oscillatory system, 5-driving oscillator, 6,8,10-<br />

feedback, 7-controller, 9-control panel<br />

Maximal power consumption, W (RMS)<br />

Dimensions, mm<br />

Weight, kg<br />

Working frequency, kHz<br />

Power grid voltage*, V<br />

Output power adjusting range %<br />

* - in mass production may be in 100-240 V range<br />

Key features:<br />

630<br />

250х25<br />

250х110<br />


First Mock-up<br />

(Based On “Vyatka” <strong>Washing</strong> Machine)<br />

Appearance<br />

Gas-jet radiators<br />

Piezoelectric typeradiator<br />

32


Test Procedure<br />

• Testing and comparison gas-jet and piezoelectric-type type radiators.<br />

• Testing possibility to drying different materials.<br />

• Testing soundproofing<br />

<strong>Drying</strong> speed (grams per minute) per weight unit<br />

Pants (wool)<br />

Material<br />

Towel (double)<br />

Thin linen tissue<br />

Sport shirt (cotton)<br />

Gas-Jet radiator<br />

5<br />

5,1<br />

9,5<br />

4<br />

Piezoelectric-type type radiator<br />

13<br />

11<br />

11<br />

8,7<br />

Average speed, gpm<br />

8,2 (7,7)<br />

12,3 (11,6)<br />

33


Obtained Results<br />

<strong>Acoustic</strong> power, W<br />

<strong>Drying</strong> speed, gpm<br />

200<br />

14<br />

12<br />

150<br />

10<br />

100<br />

8<br />

6<br />

50<br />

4<br />

2<br />

0<br />

1GJR<br />

PZT<br />

0<br />

GJR1<br />

PZT<br />

Energy, consumed for removal 1 gram of water, kJ<br />

Consumed power, kW<br />

12<br />

1,6<br />

1,4<br />

10<br />

1,2<br />

8<br />

1<br />

6<br />

4<br />

0,8<br />

0,6<br />

0,4<br />

2<br />

0,2<br />

0<br />

1GJR<br />

PZT<br />

0<br />

GJR 1<br />

PZT<br />

34


Selecting Radiator <strong>Type</strong><br />

Feature<br />

Gas-Jet Radiator<br />

Piezoelectric radiator<br />

Power consumption<br />

≥1000<br />

W<br />

≤500<br />

W<br />

Efficiency<br />

Problems of realization<br />

Cost of acoustic drying<br />

system<br />

Life-time<br />

≤25%<br />

Absence of “domestic”<br />

compressors with high air flow<br />

ratio<br />

10..20$ + compressor cost<br />

≤100<br />

hours<br />

≤50%<br />

none<br />

≤100$ $ in mass production<br />

≥ 1000 hours<br />

Noise level<br />

Over safety level<br />

<strong>In</strong> safety range<br />

Conclusion: Piezoelectric-type radiator is more effective and has<br />

better parameter in comparison with gas-jet radiator<br />

35


Results <strong>Of</strong> Experiments With First Mock-up<br />

(Based On “Vyatka”)<br />

1.Necessity of integrating acoustic radiator into<br />

washing machine with convective drying<br />

system<br />

2.Necessity to make up acoustic drying unit<br />

3.Necessity to investigate soundproofing features<br />

of washing machine<br />

4.Necessity to search optimal drying conditions<br />

For the solving this problem has been build<br />

second mock-up, based on LG WD14124RD<br />

washing machine<br />

36


Second Mock-up, Based On LG<br />

WD14124<br />

14124RD <strong>Washing</strong> Machine<br />

Scheme of mock-up<br />

Appearence<br />

1 – case, 2 – inner drum, 3 – outer drum, 4 – drum drive, 5<br />

–convective drying system, 6 – PZT, 7 – front door, 8 –<br />

case soundproof, 9 – outer drum soundproof, 10 – front<br />

door soundproof<br />

37


Sound Pressure Meter<br />

Standard SPLmeter<br />

Developed<br />

SPL-meter<br />

Imperfections:<br />

Measured SPL – less than 130 dB<br />

Frequency range – less than 20kHz<br />

Single channel<br />

Realized features:<br />

Measured SPL -up to 175 dB<br />

Frequency range – up to 25 kHz<br />

Dual channel<br />

38


Testing Soundproofing System<br />

Scheme of soundproofing system<br />

and SPL measurement<br />

First<br />

channel<br />

SPL-meter<br />

Second<br />

channel<br />

Reducing the level of outside<br />

harmful acoustic radiation and<br />

noise the washing machine was<br />

been soundproofed used special<br />

sound absorption material<br />

SPLAN-8<br />

SPL level into washing<br />

machine and outside was<br />

measured used standard and<br />

developed SPL meters.<br />

Results:<br />

1. Average SPL into drum – 130<br />

dB.<br />

2. Outside SPL at distance 1<br />

meter from washing machine –<br />

less than 70 dB.<br />

* - SPLAN-8 – is a trademark of CG<br />

“Standartplast”, Russia, http://en.stplus.ru/<br />

39


Experimental Studies Method<br />

1. <strong>Drying</strong> same-type tissues samples in different<br />

conditions:<br />

• without ultrasound - temperature 120°С<br />

• without ultrasound - temperature 60°С<br />

• with ultrasound - without heating<br />

• with ultrasound - temperature 120°С<br />

• with ultrasound - temperature 60°С<br />

2. Measuring the humidity over same time intervals.<br />

3. Analysis of results.<br />

40


Experimental Results<br />

(11 kg of cloth, maximal temperture 120°С)<br />

<strong>Drying</strong> speed<br />

<strong>Cloth</strong> humidity dynamics<br />

16<br />

45<br />

15<br />

14<br />

40<br />

<strong>Drying</strong> speed, gpm<br />

13<br />

12<br />

11<br />

10<br />

9<br />

8<br />

w/o US<br />

US var A<br />

US var B<br />

US var C<br />

<strong>Cloth</strong> humidity, %<br />

35<br />

30<br />

25<br />

20<br />

w/o US<br />

US var A<br />

US var B<br />

US var C<br />

7<br />

6<br />

15<br />

0 5 10 15 20 25 30<br />

0 5 10 15 20<br />

Time, minutes<br />

Time, minutes<br />

<strong>Cloth</strong> humidity, %<br />

45<br />

40<br />

35<br />

30<br />

25<br />

<strong>Cloth</strong> humidity dinamics<br />

US var C<br />

w/o US<br />

On the diagrams use following abbreviations: «w/o<br />

US» -without ultrasound influence. «US var A» –<br />

ultrasound influence by PZT #1 (steel acoustic<br />

concentrator), electrical power 330W. «US var B» -<br />

ultrasound influence by PZT #1 (steel acoustic<br />

concentrator), electrical power 500W. «US var C»<br />

ultrasound influence by PZT #2 (titanium acoustic<br />

concentrator), electrical power 250-280W<br />

20<br />

15<br />

0 5 10 15 20 25 30<br />

Time, minutes<br />

41


Experimental Results<br />

(11 kg of cloth, temperature 60°С)<br />

<strong>Drying</strong> speed dynamic<br />

<strong>Cloth</strong> humidity dynamic<br />

10<br />

41<br />

<strong>Drying</strong> speed, gpm<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

w/o US<br />

US var C<br />

<strong>Cloth</strong> humidity, %<br />

39<br />

37<br />

35<br />

33<br />

31<br />

29<br />

27<br />

w/o US<br />

US<br />

0<br />

0 5 10 15 20 25<br />

25<br />

0 5 10 15 20 25<br />

Time, minutes<br />

Time, minutes<br />

Since the requirements for final cloth humidity are absent, while it is known that exists<br />

optimal humidity for following ironing of cloth and taking into account that equilibrium<br />

humidity of cloth may alternates from 6% to 20% depends from air moisture, WE<br />

SUPPOSES THAT OPTIMAL CLOTH HUMIDITY AFTER DRYING IS 25%<br />

42


Experimental Results<br />

(11 kg of cloth, temperature 60°С)<br />

18<br />

36<br />

16<br />

34<br />

D ry in g s p e e d , g p m<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

US var C<br />

w/o US<br />

H u m id ity , %<br />

32<br />

30<br />

28<br />

26<br />

24<br />

US var C<br />

w/o US<br />

2<br />

22<br />

0<br />

0 5 10 15 20 25<br />

20<br />

0 5 10 15 20 25<br />

Time, minutes<br />

Time, minutes<br />

Since the requirements for final cloth humidity are absent, while it is known that exists<br />

optimal humidity for following ironing of cloth and taking into account that equilibrium<br />

humidity of cloth may alternates from 6% to 20% depends from air moisture, WE<br />

SUPPOSES THAT OPTIMAL CLOTH HUMIDITY AFTER DRYING IS 25%<br />

43


Experimental Results<br />

(Removing 1 kg of moisture, temperature 120°С)<br />

35<br />

80<br />

30<br />

70<br />

<strong>Drying</strong> speed, gpm<br />

25<br />

20<br />

15<br />

10<br />

US var C<br />

w/o US<br />

<strong>Cloth</strong> humidity, %<br />

60<br />

50<br />

40<br />

30<br />

20<br />

US var C<br />

w/o US<br />

5<br />

10<br />

0<br />

0 10 20 30 40 50 60<br />

Time, minutes<br />

0<br />

0 10 20 30 40 50 60<br />

Time, minutes<br />

<strong>In</strong>fluence<br />

Maximal drying speed,<br />

gpm<br />

Average drying speed,<br />

gpm<br />

<strong>Drying</strong> time<br />

Convective-Heat<br />

24<br />

21,3<br />

47<br />

Combined (convective-<br />

heat + ultrasonic)<br />

29<br />

26,5<br />

39<br />

44


Optimal <strong>Drying</strong> Conditions Selecting<br />

14<br />

12<br />

12<br />

14<br />

10<br />

8,8<br />

9<br />

9,5<br />

9,5<br />

8<br />

6<br />

4<br />

4,4<br />

6,9<br />

6<br />

2<br />

0<br />

1,6<br />

1 2 3 4 5<br />

w/o US<br />

with US<br />

1 – Cold air, 2- Warm air at initial drying period,<br />

3 –Warm air (temperature 60°С), 4 – Hot air (120°C), 5- Hot air<br />

(120°C) + high-power of ultrasonic ( 500 W )<br />

45


Analysis <strong>Of</strong> Experimental Results<br />

1. <strong>Drying</strong> speed with acoustic influence always greater than<br />

drying speed without acoustic influence at same air<br />

temperature and air convection conditions<br />

2. <strong>The</strong> drying speed non-linearly increases depends on<br />

increasing acoustic influence power<br />

3. Maximal drying speed under acoustic influence provides at<br />

initial drying period when cloth humidity is maximal<br />

4. <strong>In</strong> the conditions our experiments maximal drying speed<br />

reach up to 14 gpm at maximal power of PZT 500W<br />

5. Optimal drying speed is 12 gpm (at 350W for “steel” PZT<br />

and 210W of “titanium” PZT)<br />

6. More quick increasing the drying speed at initial period<br />

when using acoustic influence one should be account for non-<br />

inertial character of acoustic influence in comparison with<br />

thermal influence<br />

7. More quick decreasing the drying speed at final period<br />

when using acoustic influence one should be account for more<br />

quick decreasing of cloth humidity.<br />

46


Conclusion<br />

• 1. <strong>The</strong> integration of acoustic drying system into<br />

washing drying machine provides increasing the<br />

drying features by increasing the drying and<br />

decreasing energy consumption.<br />

• 2. <strong>The</strong> energy consumption of drying process<br />

decreases with increasing the acoustic radiation<br />

power.<br />

• 3. Maximal growth of drying speed by acoustic<br />

influence provides on initial drying period when the<br />

cloth and air into drum are cold and cloth humidity is<br />

high.<br />

• 4. <strong>The</strong> most advantages of drying process with<br />

acoustic influence in comparision with drying without<br />

acoustic influence obtains when air temperature in<br />

drum is low.<br />

47

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!