22.02.2015 Views

Design of Modern Control Systems - IET Digital Library

Design of Modern Control Systems - IET Digital Library

Design of Modern Control Systems - IET Digital Library

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Control</strong> engineering series 20<br />

<strong>Design</strong> <strong>of</strong><br />

MODERN<br />

CONTROL<br />

SYSTEMS<br />

Edited by<br />

D J Bell PA Cook N Munro<br />

• •<br />

Peter Peregrinus Ltd. on behfalf <strong>of</strong> the Institution <strong>of</strong> Electrical Engineers


IEE CONTROL ENGINEERING SERIES 20<br />

Series Editors: Pr<strong>of</strong>. D. P. Atherton<br />

Dr. K. Warwick<br />

CONTROL<br />

SYSTEMS


Other volumes in this series<br />

Volume 1<br />

Volume 2<br />

Multivariable control theory J. M. Layton<br />

Elevator traffic analysis, design and control G. C. Barney and<br />

S. M. Dos Santos<br />

Volume 3 Transducers in digital systems G. A. Woolvet<br />

Volume 4 Supervisory remote control systems R. E. Young<br />

Volume 5 Structure <strong>of</strong> interconnected systems H. Nicholson<br />

Volume 6 Power system control M. J. H. Sterling<br />

Volume 7 Feedback and multivariable systems D. H. Owens<br />

Volume 8 A history <strong>of</strong> control engineering, 1800-1930 S. Bennett<br />

Volume 9 <strong>Modern</strong> approaches to control system design N. Munro (Editor)<br />

Volume 10 <strong>Control</strong> <strong>of</strong> time delay systems J. E. Marshall<br />

Volume 11 Biological systems, modelling and control D. A. Linkens<br />

Volume 12 Modelling <strong>of</strong> dynamical systems—1 H. Nicholson (Editor)<br />

Volume 13 Modelling <strong>of</strong> dynamical systems—2 H. Nicholson (Editor)<br />

Volume 14 Optimal relay and saturating control system synthesis E. P. Ryan<br />

Volume 15 Self-tuning and adaptive control: theory and application C. J. Harris<br />

and S. A. Billings (Editors)<br />

Volume 16 <strong>Systems</strong> modelling and optimisation P. Nash<br />

Volume 17 <strong>Control</strong> in hazardous environments R. E. Young<br />

Volume 18 Applied control theory J. R. Leigh<br />

Volume 19 Stepping motors: a guide to modern theory and practice P. P. Acarnley<br />

Volume 20 <strong>Design</strong> <strong>of</strong> modern control systems D. J. Bell, P. A. Cook<br />

and N. Munro (Editors)<br />

Volume 21 Computer control <strong>of</strong> industrial processes S. Bennett and<br />

D. A. Linkens (Editors)<br />

Volume 22 <strong>Digital</strong> signal processing N. B. Jones (Editor)<br />

Volume 23 Robotic technology A. Pugh (Editor)<br />

Volume 24 Real-time computer control S. Bennett and D. A. Linkens (Editors)<br />

Volume 25 Nonlinear system design S. A. Billings, J. O. Gray and<br />

D. H. Owens (Editors)<br />

Volume 26 Measurement and instrumentation for control M. G. Mylroi and<br />

G. Calvert (Editors)<br />

Volume 27 Process dynamics estimation and control A. Johnson<br />

Volume 28 Robots and automated manufacture J. Billingsley (Editor)<br />

Volume 29 Industrial digital control systems K. Warwick and D. Rees (Editors)<br />

Volume 30 Electromagnetic suspension—dynamics and control P. K. Sinha<br />

Volume 31 Modelling and control <strong>of</strong> fermentation processes J. R. Leigh (Editor)<br />

Volume 32 Multivariable control for industrial applications J. O'Reilly (Editor)<br />

Volume 33 Temperature measurement and control J. R. Leigh<br />

Volume 34 Singular perturbation methodology in control systems D. S. Naidu<br />

Volume 35 Implementation <strong>of</strong> self-tuning controllers K. Warwick (Editor)<br />

Volume 36 Robot control: theory and applications K. Warwick and A. Pugh<br />

(Editors)


CONTROL<br />

SYSTEMS<br />

D J Bell • PA Cook*T\J Munro


Published by: Peter Peregrinus Ltd., London, United Kingdom<br />

© 1982 Peter Peregrinus Ltd.<br />

Reprinted 1988<br />

All rights reserved. No part <strong>of</strong> this publication may be reproduced, stored in<br />

a retrieval system or transmitted in any form or by any means—electronic,<br />

mechanical, photocopying, recording or otherwise—without the prior written<br />

permission <strong>of</strong> the publisher.<br />

While the author and the publishers believe that the information and guidance<br />

given in this work are correct, all parties must rely upon their own skill and judgment<br />

when making use <strong>of</strong> them. Neither the author nor the publishers assume any liability<br />

to anyone for any loss or damage caused by any error or omission in<br />

the work, whether such error or omission is the result <strong>of</strong> negligence or any other<br />

cause. Any and all such liability is disclaimed.<br />

British <strong>Library</strong> Cataloguing in Publication Data.<br />

Bell, D. J.<br />

<strong>Design</strong> <strong>of</strong> modern control systems.<br />

(IEE control engineering series; v. 20)<br />

1. <strong>Control</strong> theory<br />

I. Title II. Cook, P. A. III. Munro, N.<br />

ISBN 0 906048 74 5<br />

Printed in England by Antony Rowe Ltd.


Contents<br />

Preface<br />

1 State-space theory 1<br />

1.1 Introduction 1<br />

1.2 <strong>Control</strong>ability and observability 2<br />

1.3 Standard forms<br />

1.4 Calculation <strong>of</strong> transfer function<br />

matrix 9<br />

1.5 Realizations 11<br />

1.6 Inverse <strong>Systems</strong> 14<br />

References 15<br />

Problems 17<br />

2 Complex variable methods in feedback<br />

<strong>Systems</strong> analysis and design 18<br />

2.1 Introduction 18<br />

2.2 Generalized Nyquist and root-locus<br />

diagrams 19<br />

2.2.1 Characteristic frequencies and<br />

characteristic gains 23<br />

2.2.2 Generalized Nyquist diagrams and<br />

generalized Nyquist stability<br />

criterion 24<br />

2.2.3 Multivariable root loci 25<br />

2.2.4 Conformal nature <strong>of</strong> mapping between<br />

frequency and gain 25<br />

2.3 Zeros 27<br />

2.3.1 Restriction <strong>of</strong> operator in domain<br />

and range 29<br />

2.3.2 Spectral characterisation <strong>of</strong> Zeros 30<br />

2.3.3 Finite zeros when D is non-zero 30<br />

2.4 Bi-linear transformation <strong>of</strong><br />

frequency and gain variables 31<br />

2.5 Geometric theory <strong>of</strong> root locus and<br />

Nyquist diagrams 32<br />

2.6 Angles <strong>of</strong> arrival at zeros and<br />

angles <strong>of</strong> departure from poles 35<br />

2.7 Properties <strong>of</strong> Nyquist and root locus<br />

diagrams for optimal feedback systems 37<br />

2.8 <strong>Design</strong> techniques 38<br />

2.9 Conclusions 40<br />

References 41


Robustness in variable control systems design 46<br />

3.1 Introduction 46<br />

3.2 Sensitivity <strong>of</strong> characteristic gain loci 48<br />

3.2.1 Sensitivity indices 49<br />

3.2.2. Analysis 49<br />

3.3 Uncertainty in a feed back system 51<br />

3.3.1 Normality 53<br />

3.4 Relative stability matrices 53<br />

3.5 Multivariable gain and phase margins 55<br />

3.6 Conclusion 60<br />

References 60<br />

Problems 62<br />

A design study using the characteristic locus<br />

method 64<br />

4.1 Introduction 6 4<br />

4.2 Two-bed reactor model 67<br />

4.3 <strong>Control</strong> system design for Bed II 69<br />

4.4 Compensator design 71<br />

4.5 <strong>Design</strong> <strong>of</strong> the 2-bed system 76<br />

4.6 System performance and properties 77<br />

References 82<br />

The inverse Nyquist array design method 83<br />

5.1 Introduction 83<br />

5.2 The multi variable design problem 84<br />

5.3 Stability 88<br />

5.3.1 Diagonal dominance 91<br />

5.3.2 Further stability theorems 92<br />

5.3.3 Graphical criteria for stability 9 3<br />

5.4 <strong>Design</strong> technique 95<br />

5.5 Conclusions 100<br />

References 101<br />

Appendix 102<br />

Problems 104<br />

Analysis and design <strong>of</strong> a nuclear boiler control<br />

scheme 106<br />

6.1 Introduction<br />

6.2 Drum boiler plant and its control requirements 107<br />

6.3 Multivariable frequency response methods 109<br />

6.4 Analysis and design approach adopted 111<br />

6.4.1 Transfer function model 112<br />

6.4.2 Analysis <strong>of</strong> existing control scheme 113<br />

6.4.3 Alternative control scheme design 116<br />

6.5 Performance assessment <strong>of</strong> improved scheme 120<br />

6.5.1 Three drum version <strong>of</strong> improved scheme 121<br />

6.6 System integrity 122<br />

6.7 Conclusions 124<br />

References 125<br />

Optimal control 126<br />

7.1 The calculus <strong>of</strong> variations: classical theory 12 7<br />

7.2 The optimal control problem 129<br />

7.3 Singular control problems 133<br />

7.3.1 The generalised Legendre-Clebsch<br />

condition: a transformation approach 134


7.3.2 Jacobson's necessary condition 136<br />

7.4 Dynamic programming 137<br />

7.5 The Hamilton-Jacobi approach 140<br />

References 142<br />

Problems 14 3<br />

8 <strong>Control</strong> system design via mathematical programming 14 4<br />

8.1 Introduction 144<br />

8.2 Linear multivariable systems 146<br />

8.3 Non-linear systems<br />

8.4 Semi-infinite programming 152<br />

8.4.1 Feasible-directions algorithms 153<br />

8.4.2 Outer approximations algorithms 155<br />

8.4.3 Non-differentiability 155<br />

8.4.4 Cut-map algorithms 156<br />

8.5 Conclusion 156<br />

References 157<br />

9 Optimisation in multivariable design 159<br />

9.1 Introduction 159<br />

9.1.1 The allocation problem 159<br />

9.1.2 The scaling problem 159<br />

9.1.3 Precompensation design problem 160<br />

9.2 Problem formulation 160<br />

9.2.1 Decomposition 161<br />

9.2.2 Choice <strong>of</strong> dominance measure 161<br />

9.2.3 General problem 162<br />

9.3 Allocation problem 16 3<br />

9.4 Sealing problem 16 5<br />

9.5 Compensation design 16 7<br />

9.6 <strong>Design</strong> example 169<br />

References 17 3<br />

Problems 175<br />

10 Pole assignment 177<br />

10.1 Introduction 177<br />

10.2 State-feedback algorithms 179<br />

10.2.1 Dyadic designs 179<br />

10.2.2 Full-rank designs 183<br />

10.3 Output-feedback algorithms 187<br />

10.3.1 Dyadic designs 189<br />

10.3.2 Full-rank designs 192<br />

10.3.3 Example 194<br />

10.4 Concluding remarks 196<br />

References 19 7<br />

Appendix 198<br />

Problems 200<br />

11 Nonlinear systems 202<br />

11.1 Nonlinear behaviour 202<br />

11.2 Fourier series 203<br />

11.3 The describing function 206<br />

11.4 Prediction <strong>of</strong> limit cycles 210<br />

11.4.1 Frequency response <strong>of</strong> nonlinear<br />

systems 213<br />

11.5 Nonlinear state-space equations 213<br />

11.6 Lyapunov's method 214


11.6.1 Domains <strong>of</strong> attraction 215<br />

11.6.2 Construction <strong>of</strong> Lyapunov's<br />

functions 216<br />

11.7 Absolute stability criteria 218<br />

References 220<br />

Problems 222<br />

12 Some DDC system design procedures<br />

12.1 Introduction 223<br />

12.2 Choice <strong>of</strong> sampling frequency 225<br />

12.3 Frequency domain compensation method 227<br />

12.4 The compensation <strong>of</strong> Class 0<br />

(Regulator) systems 2 30<br />

12.5 Noisy input or output signals 232<br />

12.6 Structural resonances and digital notch<br />

networks 232<br />

12.7 Coefficient quantisation in a discrete<br />

controller 234<br />

12.8 Arithmetic round<strong>of</strong>f-noise in a discrete<br />

controller 237<br />

12.9 Multivate and substrate <strong>Control</strong>lers 2 38<br />

12.10 Comparison <strong>of</strong> time domain synthesis and<br />

frequency domain compensation techniques 240<br />

References 244<br />

13 Robust controller design 246<br />

13.1 Introduction 246<br />

13.2 General problem to be considered 24 7<br />

13.3 The servomechanism problem - structural<br />

results 248<br />

13.3.1 Problem description 248<br />

13.3.2 Existence results 251<br />

13.3.3 Robust servomechanism controller<br />

structure 259<br />

13.3.4 Some properties <strong>of</strong> the robust<br />

controller 261<br />

13.3.5 Various classes <strong>of</strong> stabilizing<br />

compensators 261<br />

13.4 Extensions <strong>of</strong> previous results<br />

13.4.1 <strong>Control</strong> <strong>of</strong> unknown systems<br />

(Multivariable timing regulators) 263<br />

13.4.2 Multivariable error constants 264<br />

13.5 Robust controller design 267<br />

13.5.1 <strong>Design</strong> example 268<br />

13.6 Conclusions 270<br />

References 2 71<br />

14 <strong>Control</strong> <strong>of</strong> distributed parameter systems 274<br />

14.1 Introduction 274<br />

14.2 <strong>Control</strong>lability 278<br />

14.3 Observability 281<br />

14.4 Optimal control 281<br />

14.5 Optimal estimation (Kalman filter) 2 82<br />

References 284<br />

Problems 285<br />

15 Decentralised control 286


15.1 Introduction 2 86<br />

15.2 Non-classical information patterns 286<br />

15.2.1 Partially nested information<br />

structures 2 88<br />

15.3 Decentralised stabilisation and pole<br />

placement 2 89<br />

15.4 <strong>Design</strong> technique <strong>of</strong> decentralised control 294<br />

15.4.1 The algorithm <strong>of</strong> Geromel and<br />

Bernussou 294<br />

15.4.2 The model following method 29 8<br />

15.5 Concluding remarks 301<br />

References 302<br />

Solutions<br />

Chapter 1 304<br />

Chapter 3 306<br />

Chapter 5 309<br />

Chapter 7 313<br />

Chapter 10 316<br />

Chapter 11 324<br />

Chapter 14 32 6<br />

Index 331


Preface<br />

Over the last seven years the Science and Engineering<br />

Research Council (previously the Science Research Council)<br />

have been instrumental in the organization and financing <strong>of</strong><br />

a series <strong>of</strong> vacation schools. These have been aimed primarily<br />

at recipients <strong>of</strong> SFFC postgraduate awards but some<br />

non-SFRC students, together with a few workers from industry<br />

(in the UK and elsewhere) have also taken part. Two <strong>of</strong><br />

these vacation schools have been on the subject <strong>of</strong> analysis<br />

and design <strong>of</strong> control systems and have been held at the<br />

<strong>Control</strong> <strong>Systems</strong> Centre in the University <strong>of</strong> Manchester<br />

Institute <strong>of</strong> Science and Technology (UMIST). The chapters<br />

<strong>of</strong> this present book form the lectures to be given at the<br />

third UMIST vacation school during the week 2 9 March<br />

3 April, 1982. The title <strong>of</strong> the vacation school is the<br />

same as that for this book.<br />

It is inevitable and indeed desirable that a subject such<br />

as engineering design <strong>of</strong> multivariable systems will develop<br />

over a period <strong>of</strong> six years. This becomes apparent if one<br />

compares the contents <strong>of</strong> the 1976 UMIST vacation school as<br />

given in "<strong>Modern</strong> approaches to control system design"<br />

(N. Munro, Fd., IFE <strong>Control</strong> Engineering Series 9, Peter<br />

Peregrinus, 1979) with the contents <strong>of</strong> the volume before you.<br />

Some <strong>of</strong> the 1976 topics no longer appear in this 1982 version,<br />

not because they are now obsolete or research is no<br />

longer taking place in those areas but because we have felt<br />

it right and proper to make way for either new subjects<br />

(such as large scale systems) or interesting new applications<br />

(e.g. the nuclear boiler in Chapter 6). Even in the case


where 1976 topics are retained we have arranged for some<br />

different aspects to be presented in this new publication.<br />

It will be noticed that no fundamental background material<br />

on single-input single-output systems and linear algebra is<br />

presented in the present volume, unlike in the reference<br />

given above. This is because we feel that such material is<br />

readily available from many sources and in particular the<br />

quoted reference may be consulted.<br />

The organization <strong>of</strong> a vacation school and at the same time<br />

the preparation <strong>of</strong> a book to be published before the school<br />

takes place is a daunting task. We certainly would not have<br />

succeeded without the full cooperation <strong>of</strong> all the lecturers<br />

involved in the school, the typist who prepared the cameraready<br />

copy and the staff <strong>of</strong> the publishers. Our grateful<br />

thanks therefore go to all those who honoured deadlines and<br />

delivered the drafts <strong>of</strong> the chapters which follow this preface,<br />

to Vera Butterworth who typed the whole volume under<br />

exceptionally trying circumstances, and to Pauline Maliphant<br />

<strong>of</strong> Peter Peregrinus Ltd. who waited so patiently for the<br />

chapters to arrive at Stevenage from Manchester. This book<br />

would not have appeared but for the support given by the<br />

Science and Engineering Research Council and our sincere<br />

thanks go to staff <strong>of</strong> the SERC and to the other members <strong>of</strong><br />

the planning panel which organized the vacation school.<br />

D.J. Bell<br />

P.A. Cook<br />

N. Munro<br />

Manchester, 1982.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!