01.03.2015 Views

1 Computational aspects of structure determination by NMR

1 Computational aspects of structure determination by NMR

1 Computational aspects of structure determination by NMR

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

Outline<br />

<strong>Computational</strong> <strong>aspects</strong> <strong>of</strong><br />

<strong>structure</strong> <strong>determination</strong> <strong>by</strong> <strong>NMR</strong><br />

• Introduction<br />

• Structural data from <strong>NMR</strong><br />

• NOE analysis<br />

• Aspects <strong>of</strong> <strong>structure</strong> calculations <strong>by</strong> <strong>NMR</strong><br />

• Structure analysis and validation<br />

• <strong>NMR</strong> & biomolecular complexes<br />

Structural Biology - <strong>NMR</strong><br />

Alexandre Bonvin<br />

Utrecht University<br />

a.m.j.j.bonvin@uu.nl<br />

AB<br />

AB<br />

The ABC <strong>of</strong> <strong>NMR</strong> <strong>structure</strong><br />

<strong>determination</strong><br />

[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

<strong>NMR</strong> <strong>structure</strong> <strong>determination</strong> steps<br />

[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

• <strong>NMR</strong> experiment<br />

• Resonance assignment<br />

• Structural restraints<br />

• distances<br />

• NOE assignment<br />

• torsion angles, orientation restraints, …<br />

• Structure calculations<br />

• Structure validation<br />

AB<br />

AB


[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

Outline<br />

<strong>NMR</strong> experimental observables providing<br />

structural information<br />

• Introduction<br />

• Structural data from <strong>NMR</strong><br />

• NOE analysis<br />

• Aspects <strong>of</strong> <strong>structure</strong> calculations <strong>by</strong> <strong>NMR</strong><br />

• Structure analysis and validation<br />

• <strong>NMR</strong> & biomolecular complexes<br />

• Backbone conformation from secondary chemical<br />

shifts (Chemical Shift Index- CSI)<br />

• Distance restraints from NOEs<br />

• Backbone and side chain dihedral angle<br />

restraints from scalar couplings<br />

• Orientation restraints from residual dipolar<br />

couplings<br />

AB<br />

AB<br />

[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

Secondary chemical shifts<br />

Secondary chemical shifts<br />

• Chemical shifts deviations from random coil values contain<br />

information on secondary <strong>structure</strong><br />

• Chemical shift index (CSI) based on H α<br />

, C α<br />

, C β<br />

and C’<br />

secondary chemical shift (Wishart et al. J Biomol <strong>NMR</strong> 4, 171, 1994)<br />

H α<br />

C α<br />

C β<br />

C’<br />

AB<br />

AB


[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

Chemical shifts analysis with TALOS<br />

Chemical shifts analysis with TALOS<br />

• Torsion Angle Likelihood Obtained from Shift and sequence<br />

similarity (Cornilescu et al. J. Biomol. <strong>NMR</strong> 13, 289, 1999)<br />

• Analysis <strong>of</strong> secondary chemical shift patterns in tripeptides <strong>by</strong><br />

comparison with a chemical shift database with known 3D<br />

<strong>structure</strong>s (Xray, resolution < 2.2 Å, ~3000 triplets)<br />

AB<br />

AB<br />

[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

Scalar (J) couplings<br />

Distance information from NOEs<br />

• NOEs are the result <strong>of</strong> through space dipolar interactions,<br />

~ 1/r 6 --> max ~ 5Å<br />

• Derived from<br />

• 1H-1H (homonuclear) spectra<br />

2D<br />

3D<br />

1<br />

H 1<br />

H<br />

1<br />

H 1<br />

H 1<br />

H<br />

• 15 N- or 13 C-dispersed (heteronuclear) spectra<br />

3D<br />

1 H<br />

1<br />

H<br />

1 H<br />

1<br />

H<br />

• Can be used directly or indirectly as derived dihedral<br />

angle restraints using the Karplus relationship<br />

4D<br />

15<br />

N<br />

1 H<br />

1<br />

H<br />

13<br />

C<br />

1<br />

H<br />

1<br />

H<br />

1<br />

H<br />

1<br />

H<br />

• Problem <strong>of</strong> conformational averaging!<br />

15<br />

N<br />

13<br />

C<br />

13<br />

C<br />

13<br />

C<br />

15<br />

N<br />

15<br />

N<br />

AB<br />

AB


13C<br />

[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

Orientational restraints from dipolar (D)<br />

couplings<br />

RDC restraints<br />

Reports angle <strong>of</strong> internuclear<br />

vector relative to<br />

magnetic field H o<br />

F2<br />

F1<br />

15<br />

N<br />

• Must accommodate multiple solutions→ multiple orientations<br />

F3<br />

1<br />

H<br />

15<br />

N<br />

Ho<br />

1<br />

H<br />

1<br />

H<br />

1<br />

H<br />

1 H<br />

• The RDCs are defined <strong>by</strong> their<br />

orientation with respect to the<br />

alignment tensor<br />

• Energy term in the <strong>structure</strong><br />

calculation E RDC<br />

= Σ k RDC<br />

(D exp<br />

-D calc<br />

) 2<br />

AB<br />

AB<br />

[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

Outline<br />

NOE assignment<br />

• Introduction<br />

• Structural data from <strong>NMR</strong><br />

• NOE analysis<br />

• Aspects <strong>of</strong> <strong>structure</strong> calculations <strong>by</strong> <strong>NMR</strong><br />

• Structure analysis and validation<br />

• <strong>NMR</strong> & biomolecular complexes<br />

Resonance assignment<br />

NOE peak list<br />

Chemical shift table<br />

Assignment <strong>of</strong> NOE peaks<br />

AB<br />

AB


[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

Structural restraints from NOEs<br />

• Selection <strong>of</strong> peaks<br />

• Assignment to proton<br />

pair<br />

• Calibration to<br />

distance<br />

From NOEs to distances<br />

NOE intensity A ij<br />

given <strong>by</strong>:<br />

with<br />

⎡⎡<br />

ρ 1<br />

σ 12<br />

... σ<br />

⎤⎤<br />

⎢⎢<br />

1N<br />

⎥⎥<br />

σ<br />

R =<br />

⎢⎢ 21<br />

ρ 2<br />

... σ 2N ⎥⎥<br />

⎢⎢ ... ... ... € ... ⎥⎥<br />

⎢⎢<br />

⎥⎥<br />

⎣⎣ ⎢⎢ σ N 1<br />

σ N 2<br />

... ρ N ⎦⎦ ⎥⎥<br />

A ij<br />

= [ exp( −τ m<br />

R )] ij<br />

and<br />

σ ij ≈ 1<br />

Series expansion:<br />

€<br />

A = exp(−τ m<br />

R ) = 1 − τ m<br />

R + τ 2<br />

m<br />

2 R 2 − ...<br />

r 6 f (motion)<br />

AB<br />

AB<br />

€<br />

[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

Two-spin approximation<br />

(ISPA isolated spin-pair approximation)<br />

• From the series expansion and assuming:<br />

• no internal dynamics<br />

• no spin diffusion<br />

• short mixing times<br />

• Get calibration factor C cal from<br />

• reference distances<br />

• averages over all distances<br />

⎛⎛ ⎞⎞<br />

1<br />

d ij ≈ c<br />

⎜⎜ ⎟⎟<br />

cal ⎜⎜<br />

⎝⎝ A<br />

⎟⎟<br />

ij ⎠⎠<br />

⎛⎛ ⎞⎞<br />

A<br />

d ij ≈ d<br />

⎜⎜ ref ⎟⎟<br />

ref ⎜⎜<br />

⎝⎝ A<br />

⎟⎟<br />

ij ⎠⎠<br />

• Problems: approximate, introduces systematic errors<br />

1<br />

6<br />

1<br />

6<br />

Spin diffusion<br />

• Spin diffusion is major source<br />

<strong>of</strong> error in NOE derived<br />

distances (in particular for long<br />

mixing times and large molecules)<br />

• Indirect paths (---) are more<br />

efficient than direct path<br />

(1/r 6 ), --> underestimation <strong>of</strong><br />

distance --> wide error<br />

bounds necessary<br />

AB<br />

AB


[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

Standard treatment <strong>of</strong> errors:<br />

upper and lower bounds<br />

• Loose upper and lower bounds are typically defined to<br />

account for errors such as peak integration, spin<br />

diffusion, internal dynamics, e.g.<br />

• distance ± 10,20%<br />

• Strong-medium-weak classification:<br />

Strong 1.8-2.8 Å<br />

Medium 1.8-3.5 Å<br />

Weak 1.8-4.5 Å<br />

(Very weak 1.8-5.5 Å)<br />

Distance restraints<br />

• S<strong>of</strong>t-square potential (Nilges) used to avoid large<br />

forces<br />

Force becomes constant<br />

>2Å violation<br />

AB<br />

AB<br />

[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

Consequence <strong>of</strong> bounds<br />

• Bounds have to be large<br />

enough for cumulative error<br />

• Precise value not (too)<br />

important: even loose bounds<br />

restrict conformational space<br />

• May affect<br />

• precision <strong>of</strong> <strong>structure</strong><br />

• validation<br />

Outline<br />

• Introduction<br />

• Structural data from <strong>NMR</strong><br />

• NOE analysis<br />

• Aspects <strong>of</strong> <strong>structure</strong> calculations <strong>by</strong> <strong>NMR</strong><br />

• Structure analysis and validation<br />

• <strong>NMR</strong> & biomolecular complexes<br />

AB<br />

AB


[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

Structure calculations<br />

• 3D <strong>structure</strong> has to satisfy:<br />

• experimental restraints<br />

• chemical knowledge<br />

• --> find the minimum <strong>of</strong> a target<br />

function that combines empirical<br />

force field with experimental<br />

restraints<br />

Outline<br />

• Introduction<br />

• Structural data from <strong>NMR</strong><br />

• NOE analysis<br />

• Aspects <strong>of</strong> <strong>structure</strong> calculations <strong>by</strong> <strong>NMR</strong><br />

• Empirical force field<br />

• Structure analysis and validation<br />

• <strong>NMR</strong> & biomolecular complexes<br />

AB<br />

AB<br />

[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

Empirical force fields<br />

Bond stretching<br />

l<br />

• Rather simple description <strong>of</strong> the forces in the system<br />

• Energetic penalties associated with deviation from<br />

“reference” or “equilibrium” values<br />

• V potential = V bonds<br />

+ V angles<br />

+ V torsion<br />

+ V non-bonded<br />

• Various forms possible, e.g.:<br />

• Morse potential<br />

V(l) = D c<br />

{1 − e [− a (l − l 0 )] } 2<br />

<br />

<br />

Allows dissociation<br />

<strong>Computational</strong>ly more expensive<br />

V(l)<br />

• Harmonic potential<br />

V(l) = k 2 (l − l 0) 2 l 0<br />

l<br />

+ V exp<br />

Van der Waals electrostatic<br />

<br />

Most commonly used<br />

AB<br />

AB


[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

Angle bending<br />

ϑ<br />

Torsional terms<br />

ω<br />

• Usually harmonic potential as for the bond stretching<br />

term<br />

V(θ) = k 2 (θ − θ 0) 2<br />

V(ϑ)<br />

• Describe rotation around bonds<br />

• The torsion angle ω around the B-C bond<br />

is defined as the angle<br />

between the ABC and<br />

BCD planes<br />

• V torsion should allow<br />

for multiple minima<br />

(rotameric states)<br />

ϑ<br />

AB<br />

AB<br />

[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

Torsional terms<br />

ω<br />

Improper torsions and out-<strong>of</strong> plane bending<br />

motions<br />

• Usually expressed as a cosine series expansion:<br />

[ ]<br />

N<br />

V<br />

• V(ω) = n<br />

where V n is the “barrier height”<br />

2 1 + cos(nω − γ )<br />

∑<br />

n= 0<br />

O-CH 2 -CH 2 -O<br />

• Defined to maintain planarity <strong>of</strong> aromatic rings or<br />

chirality <strong>of</strong> atoms, e.g.:<br />

• Torsion C α -N-C-C β to maintain<br />

• tetrahedral conformation <strong>of</strong> C α<br />

35° for L-amino acids<br />

C ε1<br />

-35° for D-amino acids<br />

H δ1 C δ1<br />

• Torsion C δ1 -C γ -C ε1 -H δ1 to keep<br />

• aromatic hydrogen H δ1 in the plane<br />

C γ<br />

• <strong>of</strong> the ring<br />

C β<br />

• Usually implemented<br />

C α<br />

as harmonic potentials<br />

N<br />

C<br />

Tyr<br />

Single term: all minima equal<br />

Two terms: minima no longer equal<br />

AB<br />

AB


[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

Electrostatic interactions<br />

• Atoms carry small partial charges<br />

• Electrostatic interactions<br />

calculated as the sum <strong>of</strong> interactions<br />

between pairs <strong>of</strong> point<br />

charges using Coulomb’s law<br />

• Slow decay as function <strong>of</strong> distance<br />

between atoms (~ 1/r)<br />

• Long-range contributions<br />

V elec<br />

=<br />

N<br />

N<br />

∑ ∑<br />

i= 1 j = 1<br />

q i<br />

q j<br />

4πε 0<br />

r ij<br />

q: partial charges<br />

ε: dielectric constant<br />

Van der Waals interactions<br />

• Attractive long-range forces<br />

• Repulsive short-range forces<br />

Repulsion<br />

between nuclei<br />

Attraction between<br />

induced dipoles from<br />

fluctuations in electron<br />

clouds (London forces)<br />

• Often expressed using the<br />

Lennard-Jones 12-6 function<br />

V L−J<br />

⎡⎡<br />

⎢⎢ ⎛⎛<br />

σ<br />

⎞⎞<br />

= 4ε ⎢⎢ ⎜⎜ ⎟⎟<br />

⎢⎢<br />

⎜⎜<br />

⎝⎝ r<br />

⎟⎟<br />

⎣⎣<br />

⎠⎠<br />

12<br />

σ: collision diameter<br />

ε: well depth<br />

−<br />

σ 6⎤⎤<br />

⎛⎛ ⎞⎞ ⎥⎥<br />

⎜⎜ ⎟⎟<br />

⎜⎜<br />

⎝⎝ r<br />

⎟⎟<br />

⎥⎥<br />

⎠⎠ ⎥⎥<br />

⎦⎦<br />

AB<br />

AB<br />

[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

Force field: chemical information<br />

• topology:<br />

• atom names<br />

• atom types<br />

• atom masses<br />

• connectivity<br />

• parameters:<br />

• energy constants<br />

• ideal values<br />

€<br />

Derivatives <strong>of</strong> the energy function<br />

• Many molecular modelling techniques based on force fields<br />

require the derivative <strong>of</strong> the energy (i.e. the force) to<br />

be calculated with respect to the coordinates.<br />

• The derivative can be calculated using the chain rule:<br />

∂V(θ)<br />

∂x i<br />

• The force on atom i due<br />

to V(θ) is given <strong>by</strong>:<br />

= ∂V(θ)<br />

∂θ<br />

∂θ<br />

∂r ij<br />

∂r ij<br />

∂x i<br />

F i<br />

(θ ) = − ∂V(θ)<br />

∂x i<br />

AB<br />

AB


[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

Outline<br />

• Introduction<br />

• Structural data from <strong>NMR</strong><br />

• NOE analysis<br />

• Aspects <strong>of</strong> <strong>structure</strong> calculations <strong>by</strong> <strong>NMR</strong><br />

• Empirical force field<br />

• Structure calculation methods<br />

• Structure analysis and validation<br />

• <strong>NMR</strong> & biomolecular complexes<br />

<strong>NMR</strong> <strong>structure</strong> calculation methods<br />

• Energy minimization ("build-up method", DIANA)<br />

• Metric matrix distance geometry (DISGEO, DG2)<br />

• Molecular dynamics methods:<br />

• Simulated annealing in Cartesian space from random<br />

<strong>structure</strong>s (X-PLOR, CNS)<br />

• Simulated annealing in torsion angle space from<br />

random <strong>structure</strong>s (X-PLOR, CNS, DYANA)<br />

AB<br />

AB<br />

[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

Energy minimization (EM)<br />

Distance Geometry<br />

• At the minimum <strong>of</strong> the function f(x) the following is true:<br />

∂f<br />

∂x i<br />

= 0; ∂ 2 f<br />

∂x i<br />

2 > 0 AB<br />

• EM will only locate the<br />

nearest minimum<br />

• Can not cross energy<br />

barriers<br />

• Avoids "folding problem":<br />

• direct conversion from distances to (approximate)<br />

coordinates<br />

AB


[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

Sir Isaac Newton<br />

(1642-1727)<br />

Classical mechanics<br />

• Newton’s laws <strong>of</strong> motion:<br />

1. A body moves in a straight line unless a<br />

force acts on it<br />

2. Force equal mass times acceleration<br />

3. To every action there is an equal reaction<br />

Classical mechanics<br />

• Molecular dynamics: generates successive configurations<br />

<strong>of</strong> the system <strong>by</strong> integrating Newton’s second law<br />

d 2<br />

dt 2 <br />

ri =<br />

<br />

F i<br />

m i<br />

with<br />

t 1<br />

t 2<br />

t 3<br />

€<br />

<br />

F i<br />

= − ∂V<br />

∂ r i<br />

€<br />

<br />

r (t 1<br />

)<br />

€<br />

<br />

r (t 2<br />

)<br />

<br />

F (t 1<br />

)<br />

<br />

v (t 1<br />

)<br />

<br />

v (t 2<br />

)<br />

AB<br />

AB<br />

€<br />

€<br />

[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

Molecular dynamics<br />

Simulated annealing<br />

• Direction <strong>of</strong> motion<br />

depends on<br />

• forces (derived from force<br />

field and experimental<br />

restraints)<br />

• momentum<br />

• Temperature control and variation<br />

• Molecular dynamics can<br />

overcome local energy<br />

barriers<br />

AB<br />

AB


[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

Simulated annealing with energy scaling<br />

Example <strong>of</strong> a <strong>NMR</strong> simulated annealing<br />

scheme<br />

• More flexible annealing schemes<br />

• Different variation <strong>of</strong><br />

different energy terms<br />

• E.g.:<br />

• E chem / E exp<br />

• E covalent / E exp / E nonbond<br />

AB<br />

AB<br />

[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

SA example<br />

SA example: IL8 dimer<br />

AB<br />

AB


[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

SA example: BPTI<br />

Torsion angle dynamics<br />

• dynamics time step dictated<br />

<strong>by</strong> bond stretching: waste <strong>of</strong><br />

CPU time<br />

• important motions are around<br />

torsions<br />

• ~ 3 degrees <strong>of</strong> freedom per<br />

AA (vs 3N atom<br />

for Cartesian<br />

dynamics)<br />

• Available in DYANA, X-PLOR,<br />

CNS, X-PLOR-NIH<br />

AB<br />

AB<br />

[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

Calculation <strong>of</strong> <strong>structure</strong> ensembles<br />

Outline<br />

• Repeat calculation (20-200-xxx<br />

times)<br />

• Random variation <strong>of</strong> initial<br />

conditions (starting <strong>structure</strong>/<br />

velocities)<br />

• Obtain information on<br />

• uniqueness / different folds<br />

• "dynamics”<br />

• Introduction<br />

• Structural data from <strong>NMR</strong><br />

• NOE analysis<br />

• Aspects <strong>of</strong> <strong>structure</strong> calculations <strong>by</strong> <strong>NMR</strong><br />

• Structure analysis and validation<br />

• <strong>NMR</strong> & biomolecular complexes<br />

• Structure selection problem!<br />

AB<br />

AB


[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

Validation <strong>of</strong> <strong>structure</strong>s: Why?<br />

• Structures should be reliable:<br />

• Satisfy experimental data<br />

• Good local and overall quality<br />

• Protein <strong>structure</strong>s are a valuable source for<br />

understanding biology<br />

• Structure based drug design<br />

• Homology modeling<br />

• --> Only “good” <strong>structure</strong>s are typically used<br />

Structure analysis and validation<br />

• Geometry (rmsd from idealized bonds, angles…)<br />

• Energetics (non-bonded, restraint energies…)<br />

• Violations analysis<br />

• Rmsd: pairwise (useful e.g. for clustering),<br />

from average, per residue rmsds<br />

• Stereochemical quality<br />

AB<br />

AB<br />

[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

Validation <strong>of</strong> <strong>structure</strong>s<br />

Validation <strong>of</strong> <strong>structure</strong>s<br />

Bonded geometry<br />

Rotamers<br />

Electrostatics and hydrogen bonding<br />

AB<br />

Inter-atomic bumps<br />

AB


[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

Validation <strong>of</strong> <strong>structure</strong>s<br />

Improving protein <strong>NMR</strong> <strong>structure</strong>s<br />

• Refinements in explicit or implicit water for final<br />

optimization<br />

• Better packing (van der Waals, electrostatic)<br />

• Better “outside” <strong>of</strong> proteins<br />

Backbone conformation<br />

• Refinement in explicit water:<br />

• Solvate the protein in water<br />

• Run restrained Molecular Dynamics simulation, including full<br />

electrostatics and van der Waals<br />

• Minimize the <strong>structure</strong>s<br />

Ramachandran plot<br />

AB<br />

AB<br />

[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

Outline<br />

Protein-protein complexes<br />

• Introduction<br />

• Structural data from <strong>NMR</strong><br />

• NOE analysis<br />

• Aspects <strong>of</strong> <strong>structure</strong> calculations <strong>by</strong> <strong>NMR</strong><br />

• Structure analysis and validation<br />

• <strong>NMR</strong> & biomolecular complexes<br />

AB<br />

AB<br />

Understanding protein function<br />

requires to take the step from<br />

<strong>structure</strong> to interactions, the latter<br />

being much more numerous<br />

PNAS 100, 12123 (2003)<br />

Science 302, 1727 (2003)


[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

<strong>NMR</strong>-based protein complexes<br />

Application example: lactose repressor<br />

• Typically based on intermolecular NOEs and residual<br />

dipolar couplings<br />

• Collection <strong>of</strong> restraints is a difficult and rather lengthy<br />

process<br />

• Requires rather complete assignments (side-chains) at the<br />

interface<br />

Headpiece<br />

Core<br />

domain<br />

Folding <strong>of</strong> a<br />

fourth helix<br />

upon binding<br />

To DNA<br />

• For efficient <strong>structure</strong> <strong>determination</strong> and large complexes,<br />

isotope labeling is a requisite<br />

Lewis et al. (1996). Science 271,1247.<br />

AB<br />

AB<br />

Solution <strong>structure</strong>s <strong>of</strong> the<br />

free and (SymL)DNA-bound lac<br />

headpiece solved <strong>by</strong> <strong>NMR</strong><br />

Spronk et al. (1999) Structure 7, 1483<br />

[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

Isotope labeling helps a lot!<br />

Filter out all but protein-DNA NOEs<br />

13<br />

C, 15 N 13<br />

C, 15 N<br />

12<br />

C, 14 N<br />

12<br />

C, 14 N<br />

protein<br />

1 H<br />

12<br />

C, 14 N 12<br />

C, 14 N<br />

13<br />

C, 15 N<br />

13<br />

C, 15 N<br />

AB<br />

AB<br />

1 H<br />

DNA


[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

Lac hp62VC-DNA(O1) restraints statistics<br />

Lac hp62VC-DNA(O1) docking<br />

protocol<br />

Protein (dimer)<br />

Intraresidue NOEs 514<br />

Sequential NOEs(|i-j| = 1) 419<br />

Medium range NOEs(1


[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

Experimental sources: mutagenesis<br />

Experimental sources: H/D exchange<br />

Advantages/disadvantages<br />

Detection<br />

Advantages/disadvantages<br />

Detection<br />

+ Residue level information<br />

- Loss <strong>of</strong> native <strong>structure</strong><br />

should be checked<br />

- Binding assays<br />

- Surface plasmon resonance<br />

- Mass spectrometry<br />

- Yeast two hybrid<br />

- Phage display libraries, …<br />

+ Residue information<br />

- Direct vs indirect effects<br />

- Labeling needed for <strong>NMR</strong><br />

- Mass spectrometry<br />

- <strong>NMR</strong> 15 N HSQC<br />

AB<br />

AB<br />

[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

Experimental sources:<br />

<strong>NMR</strong> chemical shift perturbations<br />

Experimental sources:<br />

<strong>NMR</strong> orientational data (RDCs, relaxation)<br />

Advantages/disadvantages<br />

+ Residue/atomic level<br />

+ No need for assignment if<br />

combined with a.a. selective labeling<br />

- Direct vs indirect effects<br />

- Labeling needed<br />

Detection<br />

- <strong>NMR</strong> 15 N or 13 C HSQC<br />

Advantages/disadvantages<br />

+ Atomic level<br />

- Labeling needed<br />

Detection<br />

- <strong>NMR</strong><br />

AB<br />

AB


Experimental sources:<br />

<strong>NMR</strong> saturation transfer<br />

[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

HADDOCK: High Ambiguity Driven DOCKing<br />

<strong>NMR</strong> titrations<br />

<strong>NMR</strong> crosssaturation<br />

mutagenesis<br />

Amide protons at interface<br />

are saturated<br />

==> intensity decrease<br />

Cross-linking<br />

HADDOCK<br />

High Ambiguity Driven DOCKing<br />

H/D exchange<br />

A<br />

j<br />

i<br />

eff<br />

k d iAB<br />

x y<br />

z<br />

B<br />

Advantages/disadvantages<br />

+ Residue/atomic level<br />

+ No need for assignment if<br />

combined with a.a. selective labeling<br />

- Labeling (including deuteration) needed<br />

Bioinformatic predictions<br />

EFRGSFSHL<br />

EFKGAFQHV<br />

EFKVSWNHM<br />

LFRLTWHHV<br />

IYANKWAHV<br />

EFEPSYPHI<br />

<strong>NMR</strong> anisotropy data<br />

RDCs, para-restraints, diffusion anisotropy<br />

Other sources<br />

e.g. SAXS, cryoEM<br />

AB<br />

Dominguez, Boelens & Bonvin (2003). JACS 125, 1731 http://www.nmr.chem.uu.nl/haddock<br />

[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

HADDOCK docking protocol<br />

AB


Protein biosynthesis and export<br />

Signal sequences control the entry <strong>of</strong> proteins to export pathways<br />

SecA - signal sequence recognition<br />

The 204-kDa SecA is the central player <strong>of</strong> the secretion machinery<br />

Crystal <strong>structure</strong> known, but no structural information<br />

for the the complex<br />

MMITLRKRRKLPLAVAVAAGVMSAQAMA<br />

Use the power <strong>of</strong> <strong>NMR</strong> to study this very large complex<br />

⎡⎡<br />

K<br />

r<br />

=<br />

⎢⎢<br />

⎢⎢⎣⎣<br />

R<br />

c<br />

2 ,<br />

para<br />

1<br />

1 1<br />

6 6<br />

⎛⎛<br />

3<br />

τ<br />

⎞⎞⎤⎤<br />

c<br />

⎞⎞⎤⎤<br />

c<br />

⎜⎜<br />

⎜⎜<br />

2 2 ⎟⎟<br />

⎟⎟<br />

4τ<br />

+<br />

2 2 ⎥⎥⎥⎥<br />

hτ<br />

⎟⎟<br />

⎟⎟<br />

⎝⎝ + ωhτ<br />

c c⎠⎠⎥⎥⎦⎦<br />

⎠⎠⎥⎥⎦⎦<br />

SecA - signal sequence recognition<br />

SecA - signal sequence recognition<br />

Use relaxation paramagnetic enhancement (RPE)<br />

to obtain inter-molecular distances<br />

Use relaxation paramagnetic enhancement (RPE)<br />

to obtain inter-molecular distances<br />

MMITLRKRRKLPLAVAVAAGVMSAQAMA<br />

C<br />

C<br />

Measure distances between ~ 10-28 Å<br />

Battiste & Wagner, Biochemistry 2000, 39, 5355.<br />

SecA perdeutarated, only methyl groups <strong>of</strong> Val, Ile and Leu protonated


SecA - signal sequence recognition<br />

SecA - signal sequence recognition<br />

We obtained 160 SecA-signal peptide distance restraints!<br />

Structure <strong>of</strong> the complex calculated with HADDOCK<br />

based on 160 SecA-signal peptide distance restraints!<br />

SecA - signal sequence recognition<br />

[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

The End.<br />

hydrophobic<br />

acidic<br />

Arg8<br />

Arg6<br />

Lys10<br />

Lys7<br />

Ala19<br />

Val15<br />

Ala16<br />

Ala14 Val17<br />

Leu13<br />

Leu11<br />

Met22<br />

Structural basis for the promiscuous<br />

recognition<br />

… dual binding mode!<br />

Thank you for your attention!<br />

Gelis et al., Cell 2007<br />

AB


Rigid body energy minimization<br />

[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

Semi-flexible SA refinement in<br />

torsion angle space<br />

[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

AB<br />

AB<br />

[Faculty <strong>of</strong> Science<br />

Chemistry]<br />

Refinement in explicit water<br />

AB

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!