11.03.2015 Views

Focus on deep and shallow convection, and turbulence - cmmap

Focus on deep and shallow convection, and turbulence - cmmap

Focus on deep and shallow convection, and turbulence - cmmap

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<str<strong>on</strong>g>Focus</str<strong>on</strong>g> <strong>on</strong> <strong>deep</strong> <strong>and</strong> <strong>shallow</strong> c<strong>on</strong>vecti<strong>on</strong>,<br />

<strong>and</strong> <strong>turbulence</strong><br />

Steve Krueger <strong>and</strong> Chin-Hoh Moeng<br />

Princeville, Kauai, Hawaii<br />

20 February 2007


10,000 km<br />

Scales of Atmospheric Moti<strong>on</strong><br />

1000 km 100 km 10 km 1 km 100 m 10 m<br />

Planetary<br />

waves<br />

Extratropical<br />

Cycl<strong>on</strong>es<br />

Cumul<strong>on</strong>imbus<br />

Mesoscale<br />

clouds<br />

C<strong>on</strong>vective Systems<br />

Cumulus<br />

clouds<br />

Turbulence =><br />

Global Climate Model<br />

(GCM)<br />

Cloud System Resolving<br />

Model (CSRM)<br />

Large Eddy Simulati<strong>on</strong><br />

(LES) Model<br />

Multiscale Modeling Framework


from Arakawa <strong>and</strong> Jung (2003)


Boundary layer clouds in<br />

<strong>deep</strong>-c<strong>on</strong>vecti<strong>on</strong>-resolving models (DCRMs)<br />

• DCRMs are CRMs with horiz<strong>on</strong>tal<br />

grid sizes of 4 km or more.<br />

• Used in MMF, GCRMs (global<br />

CRMs), <strong>and</strong> tropical cycl<strong>on</strong>e<br />

models.<br />

• In MMF <strong>and</strong> GCRMs, DCRMs are<br />

expected to represent all types of<br />

cloud systems.<br />

• However, many cloud-scale<br />

circulati<strong>on</strong>s are not resolved by<br />

DCRMs.<br />

• Representati<strong>on</strong>s of SGS<br />

circulati<strong>on</strong>s currently used in<br />

DCRMs can be improved.


Boundary layers in<br />

<strong>deep</strong> precipitating c<strong>on</strong>vective cloud systems<br />

• Tropical c<strong>on</strong>vective cloud<br />

systems may organize too<br />

readily in the FRCGC GCRM<br />

<strong>and</strong> in MMF GCMs.<br />

• Possible causes:<br />

• C<strong>on</strong>vectively-generated cold<br />

pools are too str<strong>on</strong>g.<br />

• Boundary layer stabilizati<strong>on</strong><br />

due to <strong>shallow</strong> c<strong>on</strong>vecti<strong>on</strong> is<br />

under-estimated.<br />

• Poor horiz<strong>on</strong>tal resoluti<strong>on</strong> may<br />

c<strong>on</strong>tribute to both.


Shallow cumulus clouds<br />

<strong>and</strong> mesoscale organizati<strong>on</strong><br />

• Typical DCRMs grid sizes are<br />

too large to resolve <strong>shallow</strong><br />

cumulus.<br />

• A DCRM with a suitable SGS<br />

parameterizati<strong>on</strong> should be<br />

able to represent <strong>shallow</strong><br />

cumulus <strong>and</strong> resolved<br />

mesoscale organizati<strong>on</strong>.<br />

• LES can be used to provide a<br />

benchmark simulati<strong>on</strong>.


Outline of this talk<br />

•Introducti<strong>on</strong><br />

•Objectives of focus<br />

•Scope <strong>and</strong><br />

relati<strong>on</strong>ship to old<br />

WGs<br />

•Science issues<br />

•Meeting the objectives


Introducti<strong>on</strong><br />

• Objectives of focus:<br />

Improve the representati<strong>on</strong> of SGS c<strong>on</strong>vecti<strong>on</strong> <strong>and</strong> <strong>turbulence</strong> in <strong>deep</strong>c<strong>on</strong>vecti<strong>on</strong>-resolving<br />

models (DCRMs), for use in MMFs, GCRMs, <strong>and</strong> NWP.<br />

• Scope <strong>and</strong> relati<strong>on</strong>ship to old WGs:<br />

• Extensi<strong>on</strong>s, evaluati<strong>on</strong>s, <strong>and</strong> applicati<strong>on</strong>s of the prototype MMF(s)<br />

• Development <strong>and</strong> testing of improved parameterizati<strong>on</strong>s of microphysics <strong>and</strong><br />

radiati<strong>on</strong> for use in CSRMS, MMFs, <strong>and</strong> GCRMs<br />

• Development <strong>and</strong> testing of improved parameterizati<strong>on</strong>s of boundary layer<br />

clouds <strong>and</strong> <strong>turbulence</strong> for use in CSRMS, MMFs, <strong>and</strong> GCRMs<br />

• Accelerated improvement of c<strong>on</strong>venti<strong>on</strong>al parameterizati<strong>on</strong>s<br />

• Optimal use of computati<strong>on</strong>al <strong>and</strong> data storage resources<br />

• Knowledge-transfer to climate modeling centers<br />

• Knowledge transfer to numerical weather predicti<strong>on</strong> centers


Science Issues<br />

Representati<strong>on</strong> of the following cloud systems <strong>and</strong> boundary layer<br />

regimes in DCRMs:<br />

• Deep precipitating c<strong>on</strong>vective<br />

• Transiti<strong>on</strong> from <strong>shallow</strong> to <strong>deep</strong> c<strong>on</strong>vecti<strong>on</strong><br />

• Diurnal cycle of <strong>shallow</strong> c<strong>on</strong>vecti<strong>on</strong> over l<strong>and</strong><br />

• Trade cumulus<br />

• Marine stratocumulus<br />

• Cold-air outbreaks over mid-latitude oceans<br />

• C<strong>on</strong>vective plumes from leads during winter<br />

• Boundary layers over inhomogenous surfaces or terrain


Meeting the Objectives<br />

Develop <strong>and</strong> test improved representati<strong>on</strong>s of SGS c<strong>on</strong>vecti<strong>on</strong> <strong>and</strong> <strong>turbulence</strong><br />

in DCRMs.<br />

• Proposed parameterizati<strong>on</strong>s<br />

• PDF/HOC: Cheng & Xu, Lappen & R<strong>and</strong>all<br />

• Two-scale MMF: DCRM plus boundary-layer-eddy-resolving model (ERM)<br />

• Additi<strong>on</strong>al physics to be included<br />

• Effects of surface inhomogeniety (elevati<strong>on</strong>, l<strong>and</strong> surface properties): both<br />

resolved by the DCRM <strong>and</strong> SGS<br />

• Proposed evaluati<strong>on</strong> methods<br />

• Analysis of <strong>and</strong> comparis<strong>on</strong> to benchmark simulati<strong>on</strong>s<br />

• Comparis<strong>on</strong> to observati<strong>on</strong>al datasets


Boundary-layer Clouds in a Multiscale<br />

Modeling Framework (MMF)<br />

Anning Cheng , Kuan-Man Xu , Yali Luo,<br />

Jiundar Chern, <strong>and</strong> Wei-Kuo Tao


Joint PDF of total water <strong>and</strong> liquid<br />

water potential temperature<br />

LES PDF<br />

double Gaussian PDF<br />

single Gaussian PDF


C<strong>on</strong>tinental <strong>shallow</strong> cumuli (ARM)<br />

LES PDF<br />

double Gaussian PDF<br />

single Gaussian PDF


R<strong>and</strong>all, D. A., Q. Shao, <strong>and</strong> C.-H. Moeng 1992: A<br />

Sec<strong>on</strong>d-Order Bulk Boundary-Layer Model. J. Atmos.<br />

Sci., 49, 1903-1923.<br />

Lappen, C.-L, <strong>and</strong> D. A. R<strong>and</strong>all, 2001: Towards a unified<br />

parameterizati<strong>on</strong> of the boundary layer <strong>and</strong> moist<br />

c<strong>on</strong>vecti<strong>on</strong>. Part I. A new type of mass-flux model. J.<br />

Atmos. Sci., 58, 2021-2036.<br />

These papers show that:<br />

• Mass flux methods can be married with higher-order<br />

closure.<br />

• With this approach, the triple-moment terms of the<br />

sec<strong>on</strong>d moment equati<strong>on</strong>s can either advect or<br />

diffuse, depending <strong>on</strong> the regime.


Proposed Evaluati<strong>on</strong> Methods<br />

•Benchmark simulati<strong>on</strong>s<br />

•Large-domain LES (e.g., 100 km x 100 km domain,<br />

0.1 km grid size)<br />

•Compare to DCRM results using various SGS<br />

parameterizati<strong>on</strong>s.<br />

•Compare to SCM results.<br />

•Analyze results to gain insight into scale interacti<strong>on</strong>s,<br />

etc.


High-Resoluti<strong>on</strong> Simulati<strong>on</strong> of Shallow-to-Deep<br />

C<strong>on</strong>vecti<strong>on</strong> Transiti<strong>on</strong> over L<strong>and</strong><br />

(Khairoutdinov <strong>and</strong> R<strong>and</strong>all 2006)<br />

Figure 8. PDF of cloud size as a functi<strong>on</strong> of height shown for three different simulati<strong>on</strong> times. Mean <strong>and</strong><br />

st<strong>and</strong>ard deviati<strong>on</strong>s are shown by the white <strong>and</strong> yellow lines, respectively.<br />

150 km x 150 km, 100 m grid size, 6 h


Grid-size dependence in a large domain LES<br />

•RICO trade wind cumulus case: 19 Jan 2005<br />

•C<strong>on</strong>trol simulati<strong>on</strong>: 100 m horiz<strong>on</strong>tal grid size, 40 km x<br />

40 km domain, 24 h simulati<strong>on</strong><br />

•Grid-size dependence simulati<strong>on</strong>s: 500 m, 1000 m,<br />

2000 m, 4000 m horiz<strong>on</strong>tal grid sizes, otherwise<br />

unchanged from c<strong>on</strong>trol<br />

•Next: stereo images of clouds at 12 h


100 m


500 m


1000 m


2000 m


4000 m


100 m


500 m


1000 m


2000 m


4000 m


100 m<br />

Figure 12:


Avg’d to 500 m<br />

log 10<br />

of Liquid Water Path (g/m 2 ), hour 12<br />

40<br />

35<br />

3<br />

30<br />

2.5<br />

25<br />

2<br />

y (km)<br />

20<br />

1.5<br />

15<br />

10<br />

1<br />

5<br />

0.5<br />

0<br />

0 5 10 15 20 25 30 35 40<br />

x (km)


Avg’d to 1000 m<br />

log 10<br />

of Liquid Water Path (g/m 2 ), hour 12<br />

40<br />

35<br />

3<br />

30<br />

2.5<br />

25<br />

2<br />

y (km)<br />

20<br />

1.5<br />

15<br />

10<br />

1<br />

5<br />

0.5<br />

0<br />

0 5 10 15 20 25 30 35 40<br />

x (km)


1000 m<br />

log 10<br />

of Liquid Water Path (g/m 2 ), hour 12<br />

40<br />

35<br />

3<br />

30<br />

2.5<br />

25<br />

2<br />

y (km)<br />

20<br />

1.5<br />

15<br />

10<br />

1<br />

5<br />

0.5<br />

0<br />

0 5 10 15 20 25 30 35 40<br />

x (km)


1<br />

Cloud Fracti<strong>on</strong><br />

0.9<br />

0.8<br />

0.7<br />

cloud fracti<strong>on</strong><br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

100 m<br />

500 m<br />

0.2 1000 m<br />

2000 m<br />

4000 m<br />

0.1<br />

0 200 400 600 800 1000 1200 1400<br />

time (min)<br />

Figure 1:


last 6 hrs 100 m 500 m 1000 m 2000 m 4000 m<br />

cloud fracti<strong>on</strong> 0.18 0.28 0.58 0.87 0.94<br />

LWP (g/m 2 ) 23.9 26.7 46.0 69.1 96.7<br />

precip rates (mm/hr) 0.003 0.022 0.050 0.038 0.070<br />

Table 1: Statistics from the last 6 hrs


5000<br />

4500<br />

4000<br />

Water Vapor Mixing Ratio<br />

100 m<br />

500 m<br />

1000 m<br />

2000 m<br />

4000 m<br />

3500<br />

height (m)<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

0 2 4 6 8 10 12 14 16<br />

water vapor mixing ratio (g/kg)<br />

Figure 3:


5000<br />

4500<br />

4000<br />

Cloud Water Mixing Ratio<br />

100 m<br />

500 m<br />

1000 m<br />

2000 m<br />

4000 m<br />

3500<br />

height (m)<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2<br />

cloud water mixing ratio (g/kg)<br />

Figure 2:


5000<br />

4500<br />

4000<br />

Rain Water Mixing Ratio<br />

100 m<br />

500 m<br />

1000 m<br />

2000 m<br />

4000 m<br />

3500<br />

height (m)<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

0 1 2 3 4 5 6 7<br />

rain water mixing ratio (g/kg)<br />

x 10 !3<br />

Figure 4:


Proposed Evaluati<strong>on</strong> Methods<br />

•Observati<strong>on</strong>al datasets<br />

•High-resoluti<strong>on</strong> cloud properties from satellites:<br />

MODIS, ISCCP, etc<br />

•Vertical structure of clouds: CloudSat, ARM MMCR,<br />

TRMM<br />

•High-resoluti<strong>on</strong> hourly precipitati<strong>on</strong> from rain gage<br />

<strong>and</strong> unbiased radar<br />

•Surface mes<strong>on</strong>et observati<strong>on</strong>s of T, RH, p, u, v<br />

•Aircraft-based measurements during field<br />

experiments

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!