11.03.2015 Views

Roughness Sublayer Turbulence in the Community Land ... - cmmap

Roughness Sublayer Turbulence in the Community Land ... - cmmap

Roughness Sublayer Turbulence in the Community Land ... - cmmap

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Roughness</strong> <strong>Sublayer</strong> <strong>Turbulence</strong> <br />

<strong>in</strong> <strong>the</strong> <strong>Community</strong> <strong>Land</strong> Model <br />

Edward Pa


Canopy turbulence and <strong>the</strong> roughness sublayer <br />

0<br />

W<strong>in</strong>d speed <br />

<strong>in</strong>creas<strong>in</strong>gly unstable <br />

z-d<br />

L = 0 .016 0.045 -0.065 -0.085 -0.107 -0.306<br />

Poten6al temperature <br />

-0.03 -0.047 -0.065 -0.082 -0.104 -0.239<br />

z-d<br />

L<br />

-1<br />

-2<br />

-3<br />

OBS<br />

MOST<br />

N = 18<br />

43<br />

50<br />

33<br />

33<br />

49<br />

2 1<br />

N = 13<br />

36<br />

48<br />

26<br />

30<br />

60<br />

Flow with<strong>in</strong> 2-­‐3 canopy heights above/with<strong>in</strong> tall (plant) canopies does not conform to <br />

Mon<strong>in</strong>-­‐Obukhov Similarity Theory (M-­‐O); this region is called <strong>the</strong> roughness sublayer (RSL). <br />

Raupach (1976), Chen and SchwerdPeger (1989)


Theory for canopy-­‐structure forma6on <br />

F<strong>in</strong>nigan, Shaw and PaRon (2009)


Simple roughness sublayer <strong>the</strong>ory <br />

§ Extensive use of scal<strong>in</strong>g arguments & 1 st order turbulence closures <br />

§ With<strong>in</strong> canopy: <br />

§ Mass / momentum balance for horizontally homogeneous canopy <br />

§ Canopy characterised by adjustment length, L c (Stanton number rc) <br />

§ Above Canopy: <br />

§ Displacement height: Height of mean canopy drag momentum absorp6on <br />

§ Modified M-­‐O <br />

§ Modifica6on <strong>in</strong>troduces an addi6onal length scale – vor6city thickness <br />

from <strong>in</strong>stability process (δ ω ) <br />

§ Couple two toge<strong>the</strong>r <br />

§ requires an observable value for β = u * (h) / U(h) <br />

§ rema<strong>in</strong><strong>in</strong>g parameters <strong>in</strong> both profiles fixed by match<strong>in</strong>g canopy-­‐top <br />

means and fluxes <br />

Ø roughness lengths and displacement height are func6ons of <strong>the</strong> flow <br />

Harman and F<strong>in</strong>nigan (2007, 2008)


Comparison with observa6ons – Neutral condi6ons <br />

LAI ~ 2 <br />

β = 0.31 <br />

Tumbarumba <br />

LAI ~ 3 <br />

β = 0.39 <br />

Duke <br />

LAI ~3.8 <br />

β = 0.28 <br />

<strong>in</strong>creas<strong>in</strong>gly dense <br />

Harman and F<strong>in</strong>nigan (2007)


Comparison with observa6ons – Unstable condi6ons <br />

β = 0.36 β = 0.39 β = 0.44 <br />

<strong>in</strong>creas<strong>in</strong>gly unstable <br />

Profiles from <strong>the</strong> CSIRO flux sta6on near Tumbarumba <br />

Harman and F<strong>in</strong>nigan (2007)


Comparison with observa6ons -­‐ stable condi6ons <br />

β = 0.37 β = 0.29 β = 0.26 <br />

<strong>in</strong>creas<strong>in</strong>gly stable <br />

Profiles from <strong>the</strong> CSIRO flux sta6on near Tumbarumba <br />

rema<strong>in</strong>s an empirical parameter vary<strong>in</strong>g with stability <br />

Harman and F<strong>in</strong>nigan (2007)


Comparison with observa6ons -­‐ scalar profiles <br />

unstable ~neutral stable <br />

Similar agreement for water vapor concentra6on but not for CO 2 concentra6on <br />

Harman and F<strong>in</strong>nigan (2008)


RSL impact on CLM4 surface fluxes (diurnal cycle) <br />

• Howland Forest, ME <br />

• Average over <strong>the</strong> 1996 <br />

grow<strong>in</strong>g season -­‐ DOY <br />

153 to 244 <br />

• Offl<strong>in</strong>e simula6on -­‐ <br />

driven by observa6ons <br />

• Currently only <br />

modify<strong>in</strong>g above-­canopy<br />

flux-­‐gradient <br />

rela6onships


Surface flux comparison -­‐ Obs vs. M-­‐O or RSL <br />

M-­‐O <br />

RSL <br />

• Howland Forest, ME <br />

• 1996 grow<strong>in</strong>g season -­‐ DOY 153 to 244 <br />

• Offl<strong>in</strong>e simula6on -­‐ driven by observa6ons


RSL impact on CLM4 surface fluxes (diurnal cycle) <br />

• UMBS, MI <br />

• Average over <strong>the</strong> 2000 <br />

grow<strong>in</strong>g season -­‐ DOY <br />

152 to 243 <br />

• Offl<strong>in</strong>e simula6on -­‐ <br />

driven by observa6ons <br />

• Currently only <br />

modify<strong>in</strong>g above-­canopy<br />

flux-­‐gradient <br />

rela6onships


Surface flux comparison -­‐ Obs vs. M-­‐O or RSL <br />

M-­‐O <br />

RSL <br />

• UMBS, MI <br />

• 2000 grow<strong>in</strong>g season -­‐ DOY 152 to 243 <br />

• Offl<strong>in</strong>e simula6on -­‐ driven by observa6ons


Summary and Conclusions <br />

• Introduced physically-­‐based roughness sublayer <br />

parameteriza6on <strong>in</strong>to CLM <br />

• Generally improves CLM’s surface flux predic6ons when tested <br />

<strong>in</strong> offl<strong>in</strong>e mode <br />

• Need to iden6fy mechanisms responsible for stomatal <br />

shutdown (i.e., overly high leaf temperatures). <br />

• Next steps: <br />

- Coupled mode <br />

- With<strong>in</strong>-­‐canopy transport <br />

- Reac6ve chemistry (VOCs)


Ques6ons?

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!