12.03.2015 Views

View - Martin Kröger - ETH Zürich

View - Martin Kröger - ETH Zürich

View - Martin Kröger - ETH Zürich

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

THERMODYNAMICALLY ADMISSIBLE REPTATION MODEL<br />

1315<br />

References<br />

Attané, P., M. Pierrand, and G. Turrel, ‘‘Steady and transient shear flows of polystyrene solutions I: Concentration<br />

and molecular weight dependence of non-dimensional viscometric functions,’’ J. Non-Newtonian<br />

Fluid Mech. 18, 295–317 1985.<br />

Bercea, M., C. Peiti, B. Dimionescu, and P. Navard, ‘‘Shear rheology of semidilute polymethylmethacrylate<br />

solutions,’’ Macromolecules 26, 7095–7096 1993.<br />

Bonvin, J. and M. Picasso, ‘‘Variance reduction methods for CONNFFESSIT-like simulations,’’ J. Non-<br />

Newtonian Fluid Mech. 84, 191–215 1999.<br />

Brown, E. F. and W. R. Burghardt, ‘‘First and second normal stress difference relaxation in reversing doublestep<br />

strain flows,’’ J. Rheol. 40, 37–54 1996.<br />

de Gennes, P. G., ‘‘Reptation of a polymer chain in the presence of fixed obstacles,’’ J. Chem. Phys. 55,<br />

572–579 1971.<br />

des Cloizeaux, J., ‘‘Double reptation vs simple reptation in polymer melts,’’ Europhys. Lett. 5, 437–442 1988.<br />

Doi, M., ‘‘Stress relaxation of polymeric liquids after double step strain,’’ J. Polym. Sci., Polym. Phys. Ed. 18,<br />

1891–1905 1980a.<br />

Doi, M., ‘‘A constitutive equation derived from the model of Doi and Edwards for concentrated polymer<br />

solutions and polymer melts,’’ J. Polym. Sci., Polym. Phys. Ed. 18, 2055–2067 1980b.<br />

Doi, M., ‘‘Explanation for the 3.4-power law for viscosity of polymeric liquids on the basis of the tube model,’’<br />

J. Polym. Sci., Polym. Phys. Ed. 21, 667–684 1983.<br />

Doi, M. and S. F. Edwards, ‘‘Dynamics of concentrated polymer systems. Part 1. Brownian motion in the<br />

equilibrium state,’’ J. Chem. Soc., Faraday Trans. 2 74, 1789–1801 1978a.<br />

Doi, M. and S. F. Edwards, ‘‘Dynamics of concentrated polymer systems. Part 2. Molecular motion under<br />

flow,’’ J. Chem. Soc., Faraday Trans. 2 74, 1802–1817 1978b.<br />

Doi, M. and S. F. Edwards, ‘‘Dynamics of concentrated polymer systems. Part 3. The constitutive equation,’’<br />

J. Chem. Soc., Faraday Trans. 2 74, 1818–1832 1978c.<br />

Doi, M. and S. F. Edwards, ‘‘Dynamics of concentrated polymer systems. Part 4. Rheological properties,’’ J.<br />

Chem. Soc., Faraday Trans. 2 75, 38–54 1979.<br />

Doi, M. and S. F. Edward, The Theory of Polymer Dynamics Clarendon, Oxford, 1986.<br />

Ferguson, J., N. E. Hudson, and M. A. Odriozola, ‘‘Interpretation of transient extensional viscosity data,’’ J.<br />

Non-Newtonian Fluid Mech. 68, 241–257 1997.<br />

Ferry, J. D., Viscoelastic Properties of Polymers Wiley, New York, 1980.<br />

Fetters, L. J., D. J. Lohse, and R. H. Colby, ‘‘Chain dimensions and entanglement spacings,’’ in Physical<br />

Properties of Polymers Handbook, edited by J. E. Mark AIP, New York, 1996.<br />

Flory, P. J., Statistical Mechanics of Chain Molecules Hanser, Munich, 1988.<br />

Fuller, G. G., Optical Rheometry of Complex Fluids Oxford University Press, Oxford, U.K., 1995<br />

Gallez, X., P. Halin, G. Lielens, R. Keunings, and V. Legat, ‘‘The adaptive Lagrangian particle method for<br />

macroscopic and micro-macro computations of time-dependent viscoelastic flows,’’ Comput. Methods<br />

Appl. Mech. Eng. 68, 345–364 1999.<br />

Grmela, M. and H. C. Öttinger, ‘‘Dynamics and thermodynamics of complex fluids. I. Development of a<br />

general formalism,’’ Phys. Rev. E 56, 6620–6632 1997.<br />

Hua, C. C. and J. D. Schieber, ‘‘Segment connectivity, chain-length breathing, segmental stretch, and constraint<br />

release in reptation models. I. Theory and single-step strain predictions,’’ J. Chem. Phys. 109, 10018–10027<br />

1998.<br />

Hua, C. C., J. D. Schieber, and D. C. Venerus, ‘‘Segment connectivity, chain-length breathing, segmental<br />

stretch, and constraint release in reptation models. II. Double-step strain predictions,’’ J. Chem. Phys. 109,<br />

10028–10032 1998.<br />

Hua, C. C., J. D. Schieber, and D. C. Venerus, ‘‘Segment connectivity, chain-length breathing, segmental<br />

stretch, and constraint release in reptation models. III. Shear flows,’’ J. Rheol. 43, 701–717 1999.<br />

Hulsen, M. A., A. P. G. van Heel, and B. H. A. A. van den Brule, ‘‘Simulation of viscoelastic flows using<br />

Brownian configuration fields,’’ J. Non-Newtonian Fluid Mech. 70, 79–101 1997.<br />

Ianniruberto, G., and G. Marrucci, ‘‘On compatibility of the Cox-Merz rule with the model of Doi and Edwards,’’<br />

J. Non-Newtonian Fluid Mech. 65, 241–246 1996.<br />

Ianniruberto, G. and G. Marrucci, ‘‘Stress tensor and stress-optical law in entangled polymers,’’ J. Non-<br />

Newtonian Fluid Mech. 79, 225–234 1998.<br />

Kahvand, H., ‘‘Strain Coupling Effects in Polymer Rheology,’’ Ph.D. thesis, Illinois Institute of Technology,<br />

1995.<br />

Ketzmerick, R. and H. C. Öttinger, ‘‘Simulation of a Non-Markovian process modelling contour length fluctuation<br />

in the Doi-Edwards model,’’ Continuum Mech. Thermodyn. 1, 113–124 1989.<br />

Koyama, K. and O. Ishizuka, ‘‘Nonlinearity in uniaxial elongational viscosity at a constant strain rate,’’ Polym.<br />

Proc. Eng. 1, 55–70 1983.<br />

<strong>Kröger</strong>, M. and S. Hess, ‘‘Viscoelasticity of polymeric melts and concentrated solutions. The effect of flowinduced<br />

alignment of chain ends,’’ Physica A 195, 336–353 1993.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!