20.03.2015 Views

possible integration of biogas+bioethanol processing - bioenergybaltic

possible integration of biogas+bioethanol processing - bioenergybaltic

possible integration of biogas+bioethanol processing - bioenergybaltic

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Integration <strong>of</strong> biogas and bioethanol process<br />

Piotr Oleskowicz-Popiel<br />

PhD student<br />

Biosystems Department<br />

Risø DTU – National Laboratory for Sustainable Energy<br />

Technical University <strong>of</strong> Denmark<br />

Email: piotr.o.popiel@risoe.dk<br />

Co-authors<br />

Erik Steen Jensen<br />

Mette Hedegaard Thomsen<br />

Henrik Haugaard-Nielsen


Bioresources for bioenergy purposes<br />

Piotr Oleskowicz-Popiel<br />

2000 – 2003: bachelor at Poznan University <strong>of</strong> Technology,<br />

Department <strong>of</strong> Chemical Technology, PL<br />

2003 – 2005: MSc in Eng in Industrial Biotechnology,<br />

Aalborg University Esbjerg, DK<br />

2005 – 2007: research assistant, Department <strong>of</strong> Bioenergy<br />

Aalborg University Esbjerg/University <strong>of</strong> Southern Denmark<br />

2007 – present: PhD student, Biosystems Department,<br />

National Laboratory for Sustainable Energy<br />

and Technical University <strong>of</strong> Denmark (Risø DTU)


Integration <strong>of</strong> biogas and bioethanol process<br />

1. Sustainable production <strong>of</strong> bi<strong>of</strong>ules: biogas and bioethanol<br />

2. Second generation bi<strong>of</strong>uels: IBUS concept<br />

3. BioConcens Project<br />

4. Bioprocess modelling (with SuperPro Designer®)<br />

What is sustainability?<br />

What are the advantages from<br />

the co-production <strong>of</strong> bi<strong>of</strong>uels?<br />

First or second generation bi<strong>of</strong>ules?


Solar CO 2 H 2 O<br />

energy N,P,K,<br />

Sustainability assessment<br />

Biorefinery<br />

Products<br />

Industrial chemicals<br />

Bi<strong>of</strong>uels<br />

Electricity<br />

Heat<br />

Polymers<br />

Materials<br />

Fertilizers<br />

Food ingredients<br />

Feed<br />

Bioresources<br />

Biochemical<br />

Thermochemical<br />

Extraction<br />

Sustainability assessment<br />

4


Multifunctional land use<br />

Land use<br />

Goods<br />

Food<br />

Fibers<br />

Fuels<br />

Chemicals/materials<br />

Water protection<br />

Soil fertility<br />

Biodiversity<br />

Recreation<br />

Bioremediation<br />

5


Biomass-to-bi<strong>of</strong>uel pathways<br />

Biomass<br />

Lignocellulosic<br />

biomass<br />

Thermoche<br />

mical/gasification<br />

Pretreament and<br />

enz.hydrolysis<br />

Syngas<br />

2G technology<br />

Catalysed<br />

synthesis<br />

BTL<br />

F-T diesel<br />

DME<br />

Methanol<br />

Sugar<br />

Fermentation<br />

og destillation<br />

Ethanol<br />

Sugar- and<br />

starch crops<br />

Oil plants and animal<br />

fat<br />

Milling and<br />

enz. hydrolysis<br />

Extraction<br />

1G technology<br />

Transesterification<br />

Biodiesel<br />

Residues and<br />

organic waste<br />

Fermentation<br />

and cleaning<br />

Biogas<br />

and H 2<br />

Adapted from: Erik Steen Jensen: Lignocellulose-based bi<strong>of</strong>uel production –bioresources, technologies and sustainability<br />

6


Biomass-to-bi<strong>of</strong>uel pathways<br />

Bi<strong>of</strong>uels in the EU. A vision for 2030 and beyond. Final draft report <strong>of</strong> the Bi<strong>of</strong>uels Research Advisory Council<br />

7


Crops for 1G bi<strong>of</strong>uel<br />

8


1G bi<strong>of</strong>uels (ethanol and biodiesel) and associated crops<br />

• The use <strong>of</strong> known 1G crops and cultivations methods is not likely<br />

to influence positively the environment – but will increase the<br />

competition for land with other uses (feed and food)<br />

• The protein fraction <strong>of</strong> the biomass can be used for feed (DDGS<br />

and rapeseed cake)<br />

• Crop residues from food and feed crops can be used for 2G<br />

bi<strong>of</strong>uels to some extent<br />

• Cultivation <strong>of</strong> marginal soils (including set-aside) with annual crops<br />

increases the risk for loss <strong>of</strong> nutrients and transport <strong>of</strong> pesticides to the<br />

aquatic environment.<br />

• Some annual crops are problematic from an environmental point<br />

<strong>of</strong> view – e.g. maize and oilseed cultivation are associated with large<br />

leaching losses (table)<br />

Adapted from: Erik Steen Jensen: Lignocellulose-based bi<strong>of</strong>uel production –bioresources, technologies and sustainability<br />

9


Perennial crops for 2G bioethanol and BTL<br />

10


Lignocellulose - residues and waste<br />

11


Anaerobic Digestion (AD)<br />

Suspended organic matter<br />

Hydrolysis<br />

Proteins Carbohydrates Lipids<br />

Polypeptides<br />

Peptides Mono and disaccharides Volatile acids and glycerine<br />

AD is commonly used for the treatment<br />

<strong>of</strong> animal manure, organic waste from<br />

agriculture and urban areas and food<br />

industry.<br />

Acidogenesis<br />

Acetogenesis<br />

Organic compounds: volatile<br />

fatty acids, alcohols, lactic acid<br />

Mineral compounds: CO 2<br />

,<br />

H 2<br />

, NH 4+<br />

/NH 3<br />

, H 2<br />

S<br />

Acetic acid CO 2<br />

, H 2<br />

Microbiological conversion <strong>of</strong> organic<br />

matter to methane in the absence <strong>of</strong><br />

oxygen. The process is also known as<br />

the biogas process and has been<br />

widely utilized in wastewater treatment<br />

plants.<br />

Methanogenesis<br />

Methane production:<br />

CH 3<br />

COOH => CH 4<br />

+ CO 2<br />

(Acetotrophic methanogenesis)<br />

CO 2<br />

+ H 2<br />

=> CH 4<br />

+ H 2<br />

O (Hydrotrophic methanogenesis)<br />

adapted from: Benabdallah El-Hadj T. (2006) ISBN: 84-690-2982-7<br />

12


Sustainable cycle <strong>of</strong> Anaerobic Digestion<br />

Anaerobic digestion is a natural<br />

process during which bacteria<br />

break down the carbon in<br />

organic material<br />

The biogas plant has<br />

three main products:<br />

-biogas (source <strong>of</strong> energy)<br />

-liquid fertilizer<br />

-fiber for compost<br />

Al Seadi T.: Good practice in Quality Management <strong>of</strong> AD Residues; Task 24 – Energy from Biological Conversion <strong>of</strong><br />

Organic Waste; Department <strong>of</strong> Bioenergy; University <strong>of</strong> Southern Denmark.<br />

13


Utilisation <strong>of</strong> digestate<br />

• To be recycled as fertilizer, digestate must<br />

have a defined content <strong>of</strong> macronutrients.<br />

Average samples <strong>of</strong> digestate must also<br />

be analyzed for heavy metals and<br />

persistent organic contaminants, making<br />

sure that these are not exceeding the<br />

detection limits permitted by law.<br />

• The application <strong>of</strong> digestate must be done<br />

on the basis <strong>of</strong> a fertiliser plan, elaborated<br />

for each agricultural field. The experience<br />

shows that an environmental and<br />

economic suitable application <strong>of</strong> digestate<br />

fulfils the phosphorus requirements <strong>of</strong> the<br />

crops and completes the nitrogen<br />

requirements from mineral fertiliser.<br />

Al Seadi T. ed.: Biogas from AD, Bioexell training manual; Department <strong>of</strong> Bioenergy; University <strong>of</strong> Southern Denmark.<br />

14


Digestate as a fertilizer<br />

Highly efficient fertiliser can be achieved<br />

from co-digestion <strong>of</strong> cow manure (high in<br />

potassium), pig manure (high in<br />

phosphorous), and suitable agricultural<br />

wastes and by-products. Due to the fact<br />

that the digestate is nutritionally defined, it<br />

can be used very efficiently. Application <strong>of</strong><br />

digestate as bio-fertiliser decreases<br />

nutrients loss as well as pollution <strong>of</strong> water<br />

from nutrients. Additionally, it results in<br />

saving energy consumption for production<br />

<strong>of</strong> chemical fertiliser. To obtain all these<br />

benefits though it is necessary to apply<br />

what is called a “good agricultural practice”<br />

Nordberg A., Edstrom M.: Waste management in<br />

northern Europe: experiences from the Linkoeping<br />

biogas plant. European workshop: Impact <strong>of</strong> Waste<br />

Management Legislation on Biogas Technology,<br />

Tulln, Austria, September 12-14, 2002.<br />

Parameter<br />

Total solids [%] 4.5<br />

Volatile solids [%TS] 75<br />

pH 8.1<br />

Total-N [kg/m 3 ] 7.2<br />

Ammonia-N [kg/m 3 ] 4.9<br />

P [kg/m 3 ] 0.7<br />

K [kg/m 3 ] 1.0<br />

Digestate<br />

Linkoeping<br />

Pb [mg/kgTS]


Digestate as a fertilizer<br />

Average concentrations <strong>of</strong> nitrogen, ammonia, and phosphorous in digestate from Danish<br />

centralised co-digestion plants<br />

http://www.mst.dk/default.asp?Sub=http://www.<br />

mst.dk/udgiv/publikationer/2004/87-7614-282-<br />

5/html/kap04.htm - Danish Environmental<br />

Protection Agency, Danish Ministry <strong>of</strong> the<br />

Environment<br />

Biogas plant<br />

Total N<br />

[kg/ton]<br />

NH 4<br />

-N/NH 3<br />

[kg/ton]<br />

P<br />

[kg/ton]<br />

Blaabjerg 4,75 3,25 1,1<br />

Blåhøj 5,30 3,8 0,84<br />

Fangel 5,83 4,38 0,92<br />

Filskov 4,90 3,7 0,94<br />

Hashøj 5,05 3,9 0,78<br />

Lemvig 4,28 3,02 1,2<br />

Lintrup 5,00 3,26 1,3<br />

Nysted 4,84 3,79 0,90<br />

Ribe 4,6 3,2 0,9<br />

Sinding-Ørre 2,6 2,2 1,2<br />

Snertinge 4,3 3,0 1,3<br />

Studsgård 3,86 2,79 0,86<br />

Thorsø 4,80 3,6 0,96<br />

16


Safe recycling <strong>of</strong> digestate<br />

Good agricultural practice - experience from Denmark<br />

• Source sorting and separate collection <strong>of</strong> digestible wastes, preferably in<br />

biodegradable recipients.<br />

• Selection / excluding from AD <strong>of</strong> the unsuitable waste types / loads, based<br />

on the complete declaration <strong>of</strong> each load: origin, content <strong>of</strong> heavy metals<br />

and persistent organic compounds, pathogen contamination, other potential<br />

hazards etc.<br />

• Periodical sampling and analysing <strong>of</strong> the biomass feedstock.<br />

• Extensive pre-treatment/on site separation (especially for unsorted waste).<br />

• Process control (temperature, retention time etc.) to obtain a stabilised end<br />

product.<br />

• Pasteurization / controlled sanitation for effective pathogen reduction.<br />

• Periodical sampling, analysing and declaration <strong>of</strong> digestate.<br />

• Including digestate in the fertiliser plan <strong>of</strong> the farm and using a “good<br />

agricultural practice” for application <strong>of</strong> digestate on farmland.<br />

Al Seadi T. ed.: Biogas from AD, Bioexell training manual; Department <strong>of</strong> Bioenergy; University <strong>of</strong> Southern Denmark.<br />

17


Ethanol fermentation<br />

IBUS<br />

http://www.nasa.gov<br />

H(C 6 H 10 O 5 ) n OH enzymes n C 6 H 12 O 6<br />

162 kg 180 kg<br />

n C 6 H 12 O 6 yeast 2n C 2 H 5 OH + 2n CO 2<br />

180 kg 92kg 88kg<br />

From the chemist/engineer point <strong>of</strong> view<br />

Jacqus K. et al.: The Alcohol Textbook. 3rd edition, Nothingam<br />

University Press, 1999.<br />

From the microbiologist point <strong>of</strong> view<br />

18


Biomass to bioethanol<br />

Mandil C. eds.: Bi<strong>of</strong>ules for transport. An international perspective. IEA, 2004.<br />

19


Lignocellulose degradation<br />

Lignocellulose<br />

pre-treatment<br />

cellulose*<br />

carboxylic acids + CO 2 + H 2 O<br />

+ lignin degradation products<br />

hemicellulose*<br />

*source: Bjerre A.B., Skammelsen<br />

Schmidt A.: Development <strong>of</strong> Chemical<br />

and Biological Processes for Production<br />

<strong>of</strong> Bioethanol: Optymalization <strong>of</strong> the Wet<br />

Oxidation Process and Characterization<br />

<strong>of</strong> Products, Risø National Laboratory,<br />

1997, Roskilde, Denmark [Riose-R-<br />

967(EN)]<br />

20


Bioethanol and Biogas potential<br />

Petersson et al.: Potential bioethanol and biogas production using lignocellulosic biomass from winter rye, oilseed rape and<br />

faba bean. Biomass and Bioenergy 31 82007) 812-819.<br />

21


Biogas and Bioethanol potential<br />

Petersson et al.: Potential bioethanol and biogas production using lignocellulosic biomass from winter rye, oilseed rape and<br />

faba bean. Biomass and Bioenergy 31 82007) 812-819.<br />

22


Real life example<br />

The principles:<br />

-About one-third <strong>of</strong> the corn—the starch—is converted<br />

into ethanol, and another one-third into thin stillage,<br />

which is used in the anaerobic digesters for heat and<br />

biogas. The other one-third, a combination <strong>of</strong> protein,<br />

oils, and fibers called distiller's grain, is usually sold as<br />

feed for cattle. However, this grain is wet when it exits<br />

the ethanol plant, and traditionally equipment costing<br />

several million dollars must be used to dry it before<br />

transport in order to prevent spoilage<br />

-Corn byproducts, including cellulose from the corn<br />

stalks, also go into the biogas brew.<br />

- the water pollution problems are solved by removing<br />

manure from feedlots<br />

How can we improve the system?<br />

How can we increase sustainability <strong>of</strong> the process?<br />

http://www.e3bi<strong>of</strong>uels.com<br />

23


Integration <strong>of</strong> biogas and bioethanol process<br />

1. Sustainable production <strong>of</strong> bi<strong>of</strong>ules: biogas and bioethanol<br />

2. Second generation bi<strong>of</strong>uels: IBUS concept<br />

3. BioConcens Project<br />

4. Bioprocess modelling (with SuperPro Designer®)<br />

First or second generation bi<strong>of</strong>ules?<br />

Based on: Mette Hedegaard Thomsen<br />

Biomass & Bioenergy Conference, 27th-29th <strong>of</strong> February 2008, Tallinn, Estonia


1. generation 2. generation<br />

The use <strong>of</strong> known 1G crops and<br />

cultivations methods is not likely to<br />

influence positively the environment – but<br />

will increase the competition for land with<br />

other uses (feed and food)<br />

Crop residues from food and<br />

feed crops can be used for 2G<br />

bi<strong>of</strong>uels to some extent<br />

Adapted from: Erik Steen Jensen: Lignocellulose-based bi<strong>of</strong>uel production –bioresources, technologies and sustainability<br />

25


Lignocellulose degradation<br />

Lignocellulose<br />

pre-treatment<br />

cellulose*<br />

carboxylic acids + CO 2 + H 2 O<br />

+ lignin degradation products<br />

hemicellulose*<br />

*source: Bjerre A.B., Skammelsen<br />

Schmidt A.: Development <strong>of</strong> Chemical<br />

and Biological Processes for Production<br />

<strong>of</strong> Bioethanol: Optymalization <strong>of</strong> the Wet<br />

Oxidation Process and Characterization<br />

<strong>of</strong> Products, Risø National Laboratory,<br />

1997, Roskilde, Denmark [Riose-R-<br />

967(EN)]<br />

26


2. generation Bioethanol production<br />

Enzymes<br />

Microorganism<br />

C5<br />

Pretreatment<br />

Hemicellulose<br />

Hydrolysis<br />

Enzymes<br />

Fermentation<br />

Yeast<br />

Cellulose<br />

C6<br />

Bio-Ethanol<br />

Lignin<br />

Hydrolysis<br />

Fermentation<br />

Distillation<br />

27


Co-production Bi<strong>of</strong>uels (EU-project: 2003-2006, Danish project: 2006-2009)<br />

Objective: Co-production <strong>of</strong> electricity and bioethanol<br />

Goal: Construction and testing <strong>of</strong> a pilot scale pretreatment reactor system<br />

with a planned capacity <strong>of</strong> 1000 kg <strong>of</strong> biomass per hour.<br />

Integrated Biomass Utilisation System (IBUS)<br />

1.step: Pilot scale reactor with a capacity <strong>of</strong> 100 kg/h<br />

Partners:<br />

Elsam A/S (DONG Energy)<br />

Risø National Laboratory - DTU<br />

The Royal Veterinary and<br />

Agricultural University<br />

TMO Biotech (EU-project)<br />

BioCentrum - DTU (Danish<br />

project)


IBUS 1000 kg/h plant<br />

195-200ºC<br />

90-100% cellulose<br />

convertibility<br />

50% hemicellulose<br />

recovery<br />

180ºC + 195ºC<br />

90-100% cellulose<br />

convertibility<br />

83% hemicellulose<br />

recovery


Advantages <strong>of</strong> the IBUS process<br />

• Simple and fast process<br />

• Enzymes and hot water<br />

• Process time < 100 h<br />

• Can be upscaled<br />

• Energy efficient<br />

• No milling<br />

• High dry matter (40%)<br />

• Power plant <strong>integration</strong><br />

• Flexible biorefinery<br />

• The lignin fraction contains sufficient energy to<br />

run the process!


Cut wheat straw<br />

Heat pretreated wheat straw<br />

31


High dry matter liquefaction <strong>of</strong> fibre fraction<br />

Larsen et al, 2006<br />

32


GHG balance for IBUS<br />

Grain<br />

Straw<br />

van Maarschalkerweerd, Risø (2006)<br />

33


How far are we? - Feasibility study<br />

Production cost for straw-based ethanol<br />

Ethanol prod. costs [$/gal]<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

20% 30% 40% 50% 60% 70% 80% 90% 100%<br />

Case 1<br />

Case 2<br />

Case 3<br />

Case 1 = C6, stand alone<br />

Case 2 = C6, integrated (with power plant)<br />

Case 3 = C6+C5, integrated<br />

Cellulose conversion ratio [%]<br />

Ref. Jan Larsen, Dong Energy, 28th Symposium on Biotechnology for Fuels and Chemicals, May 2006, Nashville.<br />

Latest feasibility study based on 1000 ton pr day IBUS ethanol plant located in the US (cost and<br />

income), corn stover 40 EUR/t DM and enzyme cost 0.14 EUR/liter ethanol.<br />

Raw production cost: 0.43 EUR/liter ethanol (2.40 US$/gal)<br />

World market price 0.35 EUR/liter, EU-market price 0.55 EUR/liter [Morgan Stanley Equity Research, oct. 2007]


AD manure as water and nutrient source<br />

Pre-treatment (Wet-Oxidation)<br />

Straw, Water or AD Manure<br />

SSF: Enzymes, Yeast<br />

Product: Ethanol<br />

Xylose Fermentation<br />

Product: Ethanol<br />

Source: Thomsen A.B., Medina C., Ahrling B.K.: Risø Energy Report<br />

2. Biotechnology in ethanol production. Risø National Laboratory,<br />

Denmark, November 2003.<br />

Anaerobic Digestion<br />

Product: Biogas<br />

Oleskowicz-Popiel P. et al.: Ethanol production from maize silage as lignocellulosic biomass in anaerobically<br />

digested and wet-oxidized manure. Bioresource Technology. in press<br />

35


AD manure as water and nutrient source<br />

fermentation <strong>of</strong> IBUS straw in pre-treated AD manure and water<br />

ethanol [g/100g]<br />

1,8<br />

1,6<br />

1,4<br />

1,2<br />

1<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

0<br />

0 20 40 60 80 100 120 140 160<br />

time [h]<br />

Straw+121.0<br />

Straw+121.12<br />

Straw+Water<br />

manure 121.12<br />

Successful ethanol<br />

fermentation in AD manure as a<br />

water and nutrient source<br />

3400<br />

3200<br />

ammonia [mg/L]<br />

3000<br />

2800<br />

2600<br />

2400<br />

2200<br />

2000<br />

0 20 40 60 80 100 120 140 160<br />

time [h]<br />

Straw 1 Straw 2 Maize 1 Maize 2<br />

Nitrogen uptake during ethanol<br />

fermentation.<br />

AD manure can be recirculated<br />

several times as a N-source<br />

36


Integration <strong>of</strong> biogas and bioethanol process<br />

1. Sustainable production <strong>of</strong> bi<strong>of</strong>ules: biogas and bioethanol<br />

2. Second generation bi<strong>of</strong>uels: IBUS concept<br />

3. BioConcens Project<br />

4. Bioprocess modelling (with SuperPro Designer)<br />

Is there a future for organic farming?


BioConcens<br />

• Biomass and Bioenergy Production in Organic Farming –<br />

Consequences for Soil Fertility, Environment, Spread <strong>of</strong> Animals<br />

Parasites and Socio-Economy.<br />

• The production <strong>of</strong> bi<strong>of</strong>ules in organic agriculture can reduce its<br />

dependency <strong>of</strong> fossil fuels and decrease GHG emission<br />

• It might increase sustainability <strong>of</strong> organic farming<br />

organic<br />

farming<br />

Main stream agriculture<br />

38


• DARCOF – The Danish Research Centre for Organic Farming:<br />

”The remit <strong>of</strong> DARCOF is to coordinate research for organic farming,<br />

with a view to achieving optimum benefit from the allocated<br />

resources. Its aim is to elucidate the ideas and problems faced in<br />

organic farming through the promotion <strong>of</strong> high quality research <strong>of</strong><br />

international standard.”<br />

http://www.darc<strong>of</strong>.dk<br />

• DARCOF III – research programme “International research<br />

cooperation and organic integrity”:<br />

BioConcens http://www.bioconcens.elr.dk/uk/<br />

39


• BioConcens – Biomass and bioenergy production in organic<br />

agriculture – consequence for soil fertility, environment, spread <strong>of</strong><br />

animal parasites and socio-economy<br />

• work package 1: Co-production <strong>of</strong> biogas, bioethanol and animal<br />

feed from organic raw materials:<br />

1. biogas potentials <strong>of</strong> raw materials<br />

2. co-production <strong>of</strong> biogas and fodder protein<br />

3. co-production <strong>of</strong> biogas and bioethanol<br />

40


BioConcens<br />

41


BioConcens – co-production <strong>of</strong> biogas and bioethanol<br />

• Bioethanol from starch can be substitute for diesel or gasoline. The<br />

method for bioethanol production from rye grain by utilizing the<br />

inherent amylase activity <strong>of</strong> the seed is going to be developed (to<br />

avoid GMO based enzymes)<br />

• Usage <strong>of</strong> natural enzymes and whey permeate as nutrients and<br />

process water in bioethanol fermentation will decrease production<br />

cost and increase sustainability <strong>of</strong> the process. Application <strong>of</strong> the<br />

effluent into the biogas process will be the additional advantage.<br />

42


BioConcens – co-production <strong>of</strong> biogas, bioethanol and fodder<br />

• The goal is to develop farm-scale, low energy demanding and “easy to<br />

handle” technology for production <strong>of</strong> bioethanol from rye grain. To keep the<br />

frame <strong>of</strong> organic farming natural enzymes will be applied (commercial<br />

enzymes will be used only for reference experiments). The remaining<br />

compounds will be recycled into biogas process.<br />

• Co-fermentation <strong>of</strong> clover grass (commonly grown in OA) with animal manure<br />

• Co-fermentation <strong>of</strong> clover grass with whey (co-production <strong>of</strong> energy and animal<br />

feed)<br />

43


BioConcens<br />

• From the energy balance point <strong>of</strong><br />

view, the most relevant utilization <strong>of</strong><br />

feedstocks and co-products will be<br />

modelled in SuperPro Designer<br />

(Intelligen, INC)<br />

• Bioenergy from organic sources<br />

should not negatively influence the<br />

carbon and nutrients cycle – the<br />

intelligent management <strong>of</strong> organic<br />

residues and crop rotation is<br />

necessary<br />

• Design and evaluate a combined<br />

concept for biomass and bioenergy<br />

production in OA (considering the<br />

soil fertility)<br />

44


Initial results – the idea does really work<br />

Ethanol concentration (g/L)<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Malted rye, 13% dw<br />

Malted rye, 13% dw<br />

Comm. enz., 13% dw<br />

Comm. enz., 13% dw<br />

0 10 20 30 40<br />

Time (h)<br />

400<br />

300<br />

[mL CH4 / gVS]<br />

200<br />

100<br />

0<br />

0 5 10 15 20 25 30 35 40<br />

time [day]<br />

dry grass (low conc.)<br />

dry clover grass (low conc.)<br />

clover grass silage (low conc.)<br />

dry grass (high conc.)<br />

dry clover grass (high conc.)<br />

clover grass silage (high conc.)<br />

45


Integration <strong>of</strong> biogas and bioethanol process<br />

1. Sustainable production <strong>of</strong> bi<strong>of</strong>ules: biogas and bioethanol<br />

2. Second generation bi<strong>of</strong>uels: IBUS concept<br />

3. BioConcens Project<br />

4. Bioprocess modelling (with SuperPro Designer ® )<br />

How to design<br />

an environmentally friendly process?


Modeling <strong>of</strong> a bioprocess<br />

Process concept<br />

Process design and<br />

development<br />

Modeling and<br />

simulation<br />

Literature<br />

Patents<br />

Expert<br />

knowledge<br />

Improvements<br />

needed<br />

Sustainability<br />

assessment<br />

Not<br />

eco-efficient<br />

Stop<br />

Eco-efficient<br />

Industrial application<br />

adapted from:<br />

Heinzle E., et al., (2006)Development <strong>of</strong><br />

Sustainable Bioprocesses – Modelling and<br />

Assessment. John Wiley & Sons Ltd.<br />

47


Modeling <strong>of</strong> a bioprocess<br />

• in process development we should try<br />

understand <strong>of</strong> the actual production process<br />

as early and as detailed as <strong>possible</strong><br />

• the modeling <strong>of</strong> the process under<br />

development and a through assessment<br />

helps to improve this knowledge<br />

• the assessment should include economic<br />

and environmental evaluation<br />

• the simulation results are used to evaluate<br />

the process and to guide the R&D effort to<br />

the most promising directions and the most<br />

urgent problems<br />

• it is important to look at the whole process<br />

and not only to optimize single parts<br />

• the created models and the assessment<br />

based on these models include a certain<br />

inherent uncertainty; this uncertainty has to<br />

be considered and quantified<br />

48


Modeling <strong>of</strong> a bioprocess<br />

• besides the economic structure <strong>of</strong> a process, environmental and<br />

social aspects should be considered<br />

• process modeling and simulation enhances our insight and<br />

understanding <strong>of</strong> a process and helps to identify potential<br />

improvements as well as <strong>possible</strong> difficulties<br />

• in process development, simulation can supplement experiments<br />

49


Modeling <strong>of</strong> a bioprocess<br />

Define goal & process boundaries<br />

Collect data (internal and external)<br />

Define bioreactions<br />

Identify process flow diagram (unit operations and streams)<br />

Define unit operation models<br />

Perform simulations<br />

Make inventory analysis and assessment<br />

adapted from:<br />

50<br />

Heinzle E., et al., (2006)Development <strong>of</strong> Sustainable Bioprocesses – Modelling and Assessment. John Wiley & Sons Ltd.


Modeling <strong>of</strong> a bioprocess<br />

• What are required amounts <strong>of</strong> raw materials and utilities?<br />

• What is the required size <strong>of</strong> process equipment and supporting utilities?<br />

• Can the product be produced in an existing facility or a new plant is required?<br />

• What is the total capital investments?<br />

• What is the manufacturing cost?<br />

• What is the optimum batch size?<br />

• How long does the single batch take?<br />

• How much product can be generated per year?<br />

• What is the demand for raw materials, labor, utilities, etc.?<br />

• Which process step can be a bottleneck?<br />

• What changes can increase throughout?<br />

• What is the environmental impact <strong>of</strong> the process?<br />

• Which design is the best among several <strong>possible</strong> alternatives?<br />

adapted from:<br />

Petrides D., Bioprocess Design and<br />

Economics. Oxford University Press, 2003.<br />

51


Modeling <strong>of</strong> a bioprocess<br />

• After a model for the entire process is developed on the computer,<br />

tools like SuperPro Designer ® can be used to ask and readily answer<br />

”what if” questions and carry out sensitivity analysis with respect to<br />

key design variables.<br />

• SuperPro Designer ® - simulation program that is able to estimate<br />

both process and economic parameters.<br />

52


Modeling <strong>of</strong> a bioprocess<br />

• Computer simulations provide the ability to estimate the effect <strong>of</strong><br />

increasing costs <strong>of</strong> raw materials or utilities, variations in material<br />

compositions, and the incorporation <strong>of</strong> new technologies<br />

• Beginning with a base-case scenario and designing the model to<br />

simulate those conditions effectively allows the user to estimate<br />

results <strong>of</strong> alternative processes with confidence.<br />

photo: www.siteselection.com<br />

Kwiatkowski J.R. et al: Modeling the process and costs <strong>of</strong> fuel ethanol production by the corn dry-grind process.<br />

Industrial Crops and Products 23 (2006) 288-296<br />

53


Modeling the process - simplified flow diagram<br />

150 million l/year plant<br />

Kwiatkowski J.R. et al: Modeling the process and costs <strong>of</strong> fuel ethanol production by the corn dry-grind process.<br />

Industrial Crops and Products 23 (2006) 288-296<br />

54


Modeling the process - simplified flow diagram<br />

• Grain receiving<br />

• Liquefaction, saccharification, and fermentation – all the reaction,<br />

volumes, residence times, agitation/pumping power required, and<br />

other operating parameters may be adjusted to imitate an existing<br />

fermenter or make use <strong>of</strong> experimental data. The model will scale<br />

the unit to accommodate any change in raw material plant<br />

throughput<br />

• distillation and ethanol recovery<br />

• stillage <strong>processing</strong> –<br />

• final products – fuel ethanol (with app. 5% denaturant – gaoline),<br />

DDGS (an animal feed rich in protein – 27.8%)<br />

Kwiatkowski J.R. et al: Modeling the process and costs <strong>of</strong> fuel ethanol production by the corn dry-grind process.<br />

Industrial Crops and Products 23 (2006) 288-296<br />

55


Modeling the process - simplified flow diagram<br />

• The actual process contains more than 100 pieces <strong>of</strong> equipment and unit<br />

operations<br />

• The process simulator quantifies the <strong>processing</strong> characteristic, energy<br />

requirements, and equipment parameters <strong>of</strong> each major piece <strong>of</strong> equipment<br />

for the specified operating scenario.<br />

• Volumes, composition, and other physical characteristic <strong>of</strong> input and output<br />

streams for each equipment item are identified. This information becomes<br />

the basis <strong>of</strong> utility consumptions and purchased equipment costs for each<br />

equipment item.<br />

• Composition <strong>of</strong> a raw agricultural feedstock varies by year and location, this<br />

can be easy adjusted<br />

• Different raw materials can be input in the model. although, maybe some<br />

extra unit operation need to be given<br />

Kwiatkowski J.R. et al: Modeling the process and costs <strong>of</strong> fuel ethanol production by the corn dry-grind process.<br />

Industrial Crops and Products 23 (2006) 288-296<br />

56


Cost model description<br />

• Equipment costs<br />

• Feedstock costs<br />

• Product values<br />

• Utility costs<br />

• Capital costs<br />

• Annual production and unit costs<br />

• Sensitivities<br />

Kwiatkowski J.R. et al: Modeling the process and costs <strong>of</strong> fuel ethanol production by the corn dry-grind process.<br />

Industrial Crops and Products 23 (2006) 288-296<br />

57


Lysine flow sheet<br />

The lactic acid fermentation <strong>of</strong> brown juice in the green crop drying plant as it<br />

was simulated in SuperPro Designer<br />

Thomsen MH: Complex media from <strong>processing</strong> <strong>of</strong> agricultural crops for microbial fermentation.<br />

Mini-Review, Appl. Microbiol. Biotechnol (2005) 68: 598-606<br />

58


Priority <strong>of</strong> sustainable land and bioresource use<br />

Erik Steen Jensen<br />

59

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!