25.03.2015 Views

Notes on Boussinesq Equation

Notes on Boussinesq Equation

Notes on Boussinesq Equation

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

20 2. LINEAR PROBLEM<br />

Since φ ′ (ξ) ≠ 0, there exists ψ such that φ(ψ(ξ)) = ξ, ξ ≥ 0. Then making the change<br />

of variables η = φ(ξ) we have that<br />

∫<br />

I 1 =<br />

e itη ixψ(η) dη<br />

e<br />

ˆ˜f(ψ(η))<br />

φ ′ (ψ(η)) . (2.42)<br />

where ˜f(x) = f(x), for x < 0 and equals 0 otherwise.<br />

Taking the L 2 –norm of I 1 in t, using Plancherel’s identity and returning to the previous<br />

variables we have that<br />

‖I 1 ‖ 2 L 2 t<br />

= c<br />

∫ ∞<br />

−∞<br />

∫ ∞<br />

|e ixψ(η) ˆ˜f(ψ(η))|<br />

2<br />

|φ ′ (ψ(η))| 2 dη<br />

| ˆ˜f(ψ(η))| 2<br />

= c<br />

|φ ′ (ψ(η))| 2 dη<br />

(2.43)<br />

−∞<br />

∫ | ˆ˜f(ξ)|<br />

2<br />

= c<br />

|φ ′ (ξ)| dξ.<br />

A similar argument can be used to estimate I 2 . Hence the result follows.<br />

□<br />

Propositi<strong>on</strong> 2.11. Let V 1 (t) and V 2 (t) be defined as in the statements of Lemmas<br />

2.4 and 2.5, then:<br />

For f ∈ L 2<br />

( ∫ T<br />

sup<br />

x<br />

0<br />

|D 1/2<br />

x V 1 (t)f(x)| 2 dt) 1/2<br />

≤ c (1 + T 1/2 )‖f‖ 2 . (2.44)<br />

If h ′ ∈ Ḣ−1<br />

( ∫ T<br />

sup<br />

x<br />

0<br />

|D 1/2<br />

x V 2 (t)h ′ (x)| 2 dt) 1/2<br />

≤ c (1 + T 1/2 )‖h‖ −1,2 . (2.45)<br />

And for p ∈ L 2 ( ∫ T<br />

sup<br />

x<br />

0<br />

|D 1/2<br />

x V 2 (t)p ′′ (x)| 2 dt) 1/2<br />

≤ c (1 + T 1/2 )‖p‖ 2 . (2.46)<br />

Proof. To prove (2.44), (2.45) and (2.46) we shall use the same argument, so we <strong>on</strong>ly<br />

will sketch the proof of (2.44).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!