25.03.2015 Views

Notes on Boussinesq Equation

Notes on Boussinesq Equation

Notes on Boussinesq Equation

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

32 3. NONLINEAR PROBLEM. LOCAL THEORY<br />

Moreover, for any T 0 < T there exists a neighborhood W of (f, ∂ x h) ∈ H 1 (R) × L 2 (R),<br />

where the map<br />

(f, h ′ ) ↦→ u<br />

is Lipschitz from W to<br />

{<br />

u ∈ C([0, T0 ] : H 1 ) ∩ L 4 ([0, T 0 ] : L ∞ 1 ) / (−∆) −1/2 ∂ t u ∈ C([0, T 0 ] : L 2 ) } .<br />

Proof. Following the ideas in the proof of the L 2 ×Ḣ−1 case, we will use a c<strong>on</strong>tracti<strong>on</strong><br />

mapping argument and the estimates in secti<strong>on</strong> 2 to prove the first part of this theorem.<br />

The propositi<strong>on</strong> 3.6 assures that Φ(u)(t) : YT a → Y T a , so we <strong>on</strong>ly need to show that Φ is a<br />

c<strong>on</strong>tracti<strong>on</strong>.<br />

Let u and v in YT a, with data f and g = ∂ xh, by the definiti<strong>on</strong> of Φ it follows that<br />

∫t<br />

( )<br />

Φ(u) − Φ(v) (t) = −<br />

Using a similar argument as in (3.8), and (3.13) we obtain<br />

‖Φ(u) − Φ(v)‖ L 4<br />

T L ∞ x<br />

≤ CT sup<br />

[0,T ]<br />

0<br />

V 2 (t − τ) ( |u| α u − |v| α v ) (τ) dτ. (3.21)<br />

xx<br />

(<br />

‖(u − v)(t)‖ 1,2 sup ‖u‖ α 1,2 + sup ‖v‖ α )<br />

1,2<br />

[0,T ]<br />

[0,T ]<br />

To estimate ∂ x Φ(u) − ∂ x Φ(v) in L 4 T L∞ x -norm we will use the following inequality<br />

(3.22)<br />

||u| α u x − |v| α v x | ≤ c {( |u| α−1 + |v| α−1) |u − v||u x | + |v| α |u x − v x | } . (3.23)<br />

Then combining the estimate (2.38), the inequality (3.23), Sobolev embedding and<br />

Young’s inequality we obtain<br />

‖∂ x Φ(u) − ∂ x Φ(v)‖ L 4<br />

T L ∞ x<br />

∫ T<br />

≤ c<br />

0<br />

≤ c T ( sup<br />

[0,T ]<br />

∫T<br />

≤ c<br />

0<br />

‖|u| α u x − |v| α v x ‖ 2 dτ<br />

‖|u| α−1 + |v| α−1 ‖ ∞ ‖u − v‖ ∞ ‖u x ‖ 2 dτ + c<br />

‖u(t)‖ α 1,2 + sup<br />

[0,T ]<br />

‖v(t)‖ α 1,2)<br />

sup<br />

[0,T ]<br />

Combining (3.22) and (3.24) we have<br />

||Φ(u) − Φ(v)||| 1<br />

≤ c T sup<br />

[0,T ]<br />

‖(u − v)(t)‖ 1,2<br />

{<br />

2 sup<br />

[0,T ]<br />

≤ c T (4a α ) sup ‖(u − v)(t)‖ 1,2 .<br />

[0,T ]<br />

∫ T<br />

0<br />

‖(u − v)(t)‖ 1,2 .<br />

‖|v| α ‖ ∞ ‖u x − v x ‖ 2 dτ<br />

‖u(t)‖ α 1,2 + 2 sup ‖v(t)‖ α }<br />

1,2<br />

[0,T ]<br />

Following the arguments in (3.13) and (3.18) it is obtained<br />

sup<br />

[0,T ]<br />

‖(u − v)(t)‖ 2 ≤ c T sup<br />

[0,T ]<br />

‖(u − v)(t)‖ 1,2<br />

{<br />

sup<br />

[0,T ]<br />

‖u(t)‖ α 1,2 + sup ‖v(t)‖ α 1,2<br />

[0,T ]<br />

(3.24)<br />

(3.25)<br />

}<br />

.<br />

(3.26)<br />

The estimate (2.37), inequality (3.23), Sobolev embedding and Young’s inequality give

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!