25.03.2015 Views

Notes on Boussinesq Equation

Notes on Boussinesq Equation

Notes on Boussinesq Equation

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>Notes</str<strong>on</strong>g> <strong>on</strong> <strong>Boussinesq</strong> Equati<strong>on</strong><br />

Felipe Linares<br />

IMPA<br />

Estrada D<strong>on</strong>a Castorina 110<br />

Rio de Janeiro, 22460-320<br />

Brasil


C<strong>on</strong>tents<br />

Preface<br />

v<br />

Chapter 1. Introducti<strong>on</strong> 1<br />

Chapter 2. Linear Problem 11<br />

2.1. L p –L q estimates 11<br />

2.2. Local Smoothing Effects 19<br />

2.3. Further Linear Estimates 21<br />

Chapter 3. N<strong>on</strong>linear Problem. Local Theory 25<br />

3.1. Local Existence Theory in L 2 25<br />

3.2. Local Existence Theory in H 1 29<br />

3.3. Critical case in L 2 35<br />

Chapter 4. Global Theory. Persistence 39<br />

4.1. Global Theory in H 1 39<br />

4.2. Persistence 40<br />

Chapter 5. Asymptotic Behavior of Soluti<strong>on</strong>s 43<br />

5.1. Decay 43<br />

5.2. N<strong>on</strong>linear Scattering 45<br />

5.3. Blow-up 50<br />

Appendix A. 57<br />

A.1. Fourier Transform 57<br />

A.2. Interpolati<strong>on</strong> of Operators 59<br />

A.3. Fracti<strong>on</strong>al Integral Theorem 60<br />

A.4. Sobolev Spaces 61<br />

Bibliography 63<br />

iii


Preface<br />

The purpose of these notes is to give a brief introducti<strong>on</strong> to n<strong>on</strong>linear dispersive equati<strong>on</strong>s<br />

and the issues regarding soluti<strong>on</strong>s of these equati<strong>on</strong>s.<br />

We have chosen the well know <strong>Boussinesq</strong> equati<strong>on</strong><br />

and <strong>on</strong>e of its generalizati<strong>on</strong>s<br />

u tt − u xx + u xxxx + (u 2 ) xx = 0 (0.1)<br />

u tt − u xx + u xxxx + (ψ(u)) xx = 0 (0.2)<br />

as models to present the theory.<br />

We will present techniques to deal with problems regarding properties of soluti<strong>on</strong>s<br />

to the associated initial value problem (IVP). We will discuss the so-called smoothing<br />

effect properties of soluti<strong>on</strong>s of the linear IVP. Then we will use them to obtain local<br />

and global results for soluti<strong>on</strong>s of the n<strong>on</strong>linear IVP. We next will study the regularity of<br />

these soluti<strong>on</strong>s. We will also comment <strong>on</strong> results regarding decay and n<strong>on</strong>linear scattering.<br />

Finally we will discuss some blow-up results. The material presented here is an amplified<br />

versi<strong>on</strong> of the c<strong>on</strong>tents of the articles [31], [32] and [2].<br />

We have included an appendix c<strong>on</strong>taining basic facts from Fourier Analysis, such as,<br />

Fourier transform, interpolati<strong>on</strong>, Sobolev spaces and the fracti<strong>on</strong>al integral theorem. Most<br />

of the c<strong>on</strong>tent of the appendix was taken from the notes by F. Linares and G. P<strong>on</strong>ce [33].<br />

These notes were prepared to give an introductory minicourse <strong>on</strong> topics related to<br />

n<strong>on</strong>linear dispersive equati<strong>on</strong>s in the P<strong>on</strong>tificia Universidad Catolica (PUC) de Lima,<br />

Peru <strong>on</strong> June 2005.<br />

I would like to thank Juan M<strong>on</strong>tealegre Scott (PUC) for the invitati<strong>on</strong> to teach this<br />

course and Cesar Camacho (IMPA) to make possible this project. I am also grateful to<br />

Jaime Angulo (UNICAMP) and Marcia Scialom (UNICAMP) to allow me to use the tex<br />

file of their article [2].<br />

v


CHAPTER 1<br />

Introducti<strong>on</strong><br />

We c<strong>on</strong>sider the initial value problem (IVP) for a <strong>Boussinesq</strong>-type equati<strong>on</strong><br />

⎧<br />

⎪⎨ u tt − u xx + u xxxx + (ψ(u)) xx = 0 x ∈ R, t > 0<br />

u(x, 0) = f(x)<br />

⎪⎩<br />

u t (x, 0) = g(x).<br />

(1.1)<br />

This equati<strong>on</strong> arises in the modeling of n<strong>on</strong>linear strings which is a generalizati<strong>on</strong> of<br />

the classical <strong>Boussinesq</strong> equati<strong>on</strong>. <strong>Boussinesq</strong> ([7]) reduced into a n<strong>on</strong>linear model the<br />

equati<strong>on</strong>s governing a two-dimensi<strong>on</strong>al irrotati<strong>on</strong>al flows of an inviscid liquid in a uniform<br />

rectangular channel. Note that the equati<strong>on</strong> in (1.1) is a perturbati<strong>on</strong> of the classical<br />

linear wave equati<strong>on</strong> which incorporates the basic idea of n<strong>on</strong>linearity and dispersi<strong>on</strong>.<br />

The case ψ(u) = u 2 in (1.1) is known as the “good” <strong>Boussinesq</strong> in comparis<strong>on</strong> with<br />

the “bad” <strong>Boussinesq</strong> equati<strong>on</strong> defined as<br />

u tt = u xx + c 1 u xxxx + c 2 (u 2 ) xx , c 1 , c 2 > 0. (1.2)<br />

This “bad” versi<strong>on</strong> arises in the study of water waves. Specifically, it is used to describe<br />

a two-dimensi<strong>on</strong>al flow of a body of water over a flat bottom with air above the water,<br />

assuming that the water waves have small amplitudes and the water is shallow. It also<br />

appeared in a posterior study of Fermi-Pasta-Ulam (FPU) problem, which was performed<br />

to show that the finiteness of thermal c<strong>on</strong>ductivity of an anharm<strong>on</strong>ic lattice was related to<br />

n<strong>on</strong>linear forces in the springs but it was not the case. This result motivated N. Zabusky<br />

and M. Kruskal [55] to approach the FPU problem from the c<strong>on</strong>tinuum point of view.<br />

They found that the equati<strong>on</strong>s governing the dynamics of the lattice in FPU problem are<br />

given by equati<strong>on</strong>s of type (1.2).<br />

For the “good” <strong>Boussinesq</strong> and its generalized form in (1.1) it is possible to study local<br />

well-posedness for the initial value problem, which is not the case for the “bad” versi<strong>on</strong><br />

(1.2). For the model in (1.2) <strong>on</strong>ly soluti<strong>on</strong>s of solit<strong>on</strong> type are known. Furthermore, in<br />

the side of the Fourier transform we can see that the soluti<strong>on</strong> of the linearized equati<strong>on</strong> û<br />

grows as exp(±ξ 2 t) with time. The same occurs for the n<strong>on</strong>linear problem so in order to<br />

study well-posedness the comp<strong>on</strong>ent proporti<strong>on</strong>al to exp(ξ 2 t) has to be vanished.<br />

From the inverse scattering approach the following results have been obtained: V.<br />

Zakharov in [56] showed that the scattering theory could be applied to solve the equati<strong>on</strong><br />

(1.2). He found a Lax pair for it, namely<br />

dL<br />

dt<br />

= i[Q, L] = i(QL − LQ)<br />

1


2 1. INTRODUCTION<br />

where<br />

(<br />

L = i d3<br />

dx 3 + i u d<br />

dx − d )<br />

dx u + i d<br />

dx − av x<br />

(<br />

Q = b d )<br />

dx 2 + au , a, b c<strong>on</strong>stants<br />

which is associated with the equivalent system form of (1.2).<br />

At this point the problem was to c<strong>on</strong>struct the theory of the inverse scattering problem<br />

for the operator L. This was made successfully by P. Deift, C. Tomei, and E. Trubowitz<br />

in [15]. Having developed the theory for L they could c<strong>on</strong>struct soluti<strong>on</strong>s for the equati<strong>on</strong><br />

(1.2), some global in time, others, blow-up in a finite time. They also showed, using the<br />

fact that the equati<strong>on</strong> in (1.1) with ψ(u) = u 2 has Lax pair iL t = [Q, L], were L and Q<br />

are essentially as above, that there exists a family of global soluti<strong>on</strong>s for that equati<strong>on</strong>.<br />

However, these soluti<strong>on</strong>s are not real. The difficulties in applying the inverse method to<br />

the “good” <strong>Boussinesq</strong> equati<strong>on</strong> seem to be related to the fact that the “vanishing lemma”<br />

fails in this case (see [3]). Hence, from the inverse scattering method point of view, this<br />

“bad-good” notati<strong>on</strong> seems to reverse.<br />

In spite of the equati<strong>on</strong> in (1.1) to have Lax pair and be linear stable, V. Kalantarov<br />

and O. Ladyzhenskaya proved in [21], that in the periodical case soluti<strong>on</strong>s may blow-up in<br />

a finite time. They suggested that the same blow-up result holds for the Cauchy problem.<br />

But an additi<strong>on</strong>al hypothesis was necessary to c<strong>on</strong>clude that claim. This gap was filled by<br />

R. Sachs [42]. He showed that under appropriate assumpti<strong>on</strong>s <strong>on</strong> the data the techniques<br />

given by Levine in [29] were enough to prove the blow-up in the Cauchy problem case.<br />

This latter result deserves a few comments. R. Sachs established that for some finite<br />

T ∗ > 0<br />

lim<br />

∫∞<br />

t→T ∗<br />

−∞<br />

|û(ξ, t)| 2<br />

|ξ| 2 dξ = ∞. (1.3)<br />

where u is a soluti<strong>on</strong> of the equati<strong>on</strong> (1.1) with ψ(u) = u 2 . In the periodical case it is<br />

clear how the soluti<strong>on</strong> blows-up, since in this case we have (see [21])<br />

∑ |û(k, t)|<br />

2<br />

lim<br />

t→T ∗ |k| 2 dξ = ∞<br />

implies lim t→T ∗ ‖u(·, t)‖ 2 = ∞, i.e. a loss of L 2 regularity of u. C<strong>on</strong>sequently, the soluti<strong>on</strong><br />

cannot be extended bey<strong>on</strong>d the time T ∗ in the appropriate class.<br />

But in case (1.3) it is not clear how the blow-up occurs. The integral in (1.3) could<br />

diverge for |ξ| < 1 or for |ξ| ≥ 1. In the sec<strong>on</strong>d case, we have lim t→T ∗ ‖u(·, t)‖ 2 = ∞, i.e.<br />

the soluti<strong>on</strong> blows-up and cannot be c<strong>on</strong>tinued in the appropriate class bey<strong>on</strong>d this time.<br />

On the other hand, if the integral for |ξ| < 1 diverges, we cannot c<strong>on</strong>clude a priori that<br />

in a finite time the soluti<strong>on</strong> u loses regularity in L 2 . Observe that for appropriate data<br />

û(0, t) = 0, then it may occur that û does not have finite derivative in zero, i.e. around<br />

zero û behaves like c|ξ| θ where 0 < θ < 1/2. Thus although (1.3) occurs the soluti<strong>on</strong> may<br />

be extended bey<strong>on</strong>d the time T ∗ with the same H s -regularity. In fact, the blow up in this<br />

case would affect the decay of the soluti<strong>on</strong> instead of its regularity.


1. INTRODUCTION 3<br />

We shall notice that the equati<strong>on</strong> in (1.1) admits solitary-wave soluti<strong>on</strong>s. As it is known<br />

the existence of solitary-wave soluti<strong>on</strong>s shows the perfect balance between the dispersi<strong>on</strong><br />

and the n<strong>on</strong>linearity of the equati<strong>on</strong> in (1.1). In particular, for α integer, these soluti<strong>on</strong>s<br />

are given explicitly by<br />

U c (ξ) = A sech 2/α−1 (Bξ), (1.4)<br />

where<br />

{ (α + 1)(1 − c 2 }<br />

) 1/α−1<br />

A =A(c, α)=<br />

, B =B(c, α)= (1 − c2 ) 1/2 (α − 1)<br />

,<br />

2<br />

2<br />

ξ = x − ct, and c is the wave speed satisfying c 2 < 1 (see [6]).<br />

The IVP (1.1) can be written in the equivalent system form<br />

{<br />

u t = v x x ∈ R, t > 0,<br />

v t = (u − u xx − ψ(u)) x ,<br />

with {<br />

u(x, 0) = u 0 (x)<br />

v(x, 0) = v 0 (x)<br />

(1.5)<br />

(1.6)<br />

where ψ ∈ C ∞ (R), ψ(0) = 0.<br />

Associated to the system (1.5)-(1.6) we have the Hamilt<strong>on</strong>ian<br />

E(u, v) = 1 ∫ ∞ {<br />

v 2 (x, t) + u 2 (x, t) + u 2<br />

2<br />

x(x, t) − 2Ψ(u(x, t)) } dx (1.7)<br />

−∞<br />

where Ψ ′ = ψ and Ψ(0) = 0. Notice that E is finite at initial time if the velocity is<br />

a x-derivative of a L 2 -functi<strong>on</strong>. This is the same restricti<strong>on</strong> <strong>on</strong> the velocity that appears<br />

when the IVP (1.1) is written in the system form (1.5)–(1.6).<br />

In these notes, we will present the local existence theory for the IVP (1.1) for data<br />

(f, g) = (f, h ′ ) ∈ L 2 (R) × Ḣ−1 (R) and (f, g) = (f, h ′ ) ∈ H 1 (R) × L 2 (R), where Ḣ−1 =<br />

(−∆) −1/2 L 2 . Here h ′ denotes the derivative of h with respect to the variable x. We<br />

will also discuss the global theory established for data f ∈ H 1 (R) and g = h ′ ∈ L 2 (R)<br />

sufficiently small. In additi<strong>on</strong>, we will c<strong>on</strong>sider some aspect regarding the asymptotic<br />

behavior of soluti<strong>on</strong>s to IVP (1.1).<br />

To prove the local results we follow the ideas developed in the study of the semilinear<br />

Schrödinger equati<strong>on</strong>. More precisely, c<strong>on</strong>sider the initial-value problem for the n<strong>on</strong>linear<br />

Schrödinger equati<strong>on</strong><br />

{<br />

u t = i∆u + λ|u| α−1 u x ∈ R n , t ∈ R<br />

(1.8)<br />

u(x, 0) = u 0 (x)<br />

α > 1, λ ∈ R. This equati<strong>on</strong> appears in different problems related to physics (see [17],<br />

[57]). In [52], Y. Tsutsumi proved that the initial-value problem (1.8) is locally well posed<br />

in L 2 (R n ) for any λ ∈ R and α satisfying 1 < α < 1+4/n, and due to the c<strong>on</strong>servati<strong>on</strong> law<br />

(see below) these soluti<strong>on</strong>s can be extended globally. The critical case, i.e. α = 1 + 4/n<br />

was studied by T. Cazenave and F. Weissler. In [11] they dem<strong>on</strong>strated the local wellposedness<br />

for the IVP (1.8). It is known that for this case α = 1 + 4/n, the soluti<strong>on</strong> in L 2<br />

cannot be in general extended globally (see [38]).


4 1. INTRODUCTION<br />

The theory in H 1 has been studied and developed by several authors, (see for example<br />

[23], [17], [12], [20] and for a complete set of references [9]). They showed that the initialvalue<br />

problem (1.8) in this space is locally well posed for λ ∈ R, and when α satisfies<br />

{<br />

1 < α < (n + 2)/(n − 2) n > 2<br />

1 < α < ∞ n = 1, 2.<br />

Combining these results with the following “c<strong>on</strong>servati<strong>on</strong> laws”<br />

∫ (<br />

|∇u(x, t)| 2 +<br />

‖u(·, t)‖ 2 = ‖u 0 ‖ 2<br />

2λ<br />

α + 1 |u(x, t)|α+1) dx = ‖∇u 0 ‖ 2 2 +<br />

2λ<br />

α + 1 ‖u 0‖ α+1<br />

α+1<br />

and suitable c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> λ , α and the size of the data, they were able to extend the<br />

local soluti<strong>on</strong>s in H 1 to global <strong>on</strong>es.<br />

The main tool in the proofs of the local results above, is the so called L p −L q smoothing<br />

effect of Strichartz type [48] present in the Schrödinger equati<strong>on</strong>.<br />

It is known that for the linear Schrödinger equati<strong>on</strong><br />

{<br />

u t = i∆u x ∈ R n , t ∈ R<br />

u(x, 0) = u 0 (x)<br />

the soluti<strong>on</strong>s are given by the unitary group { e it∆} ∞<br />

−∞ , i.e.<br />

e it∆ u 0 (x) = ( e −4π2 it|ξ| 2 û 0 (ξ) ) ∨<br />

where ∧ and ∨ denote Fourier and inverse Fourier transforms, respectively. In [48], R.<br />

Strichartz showed that<br />

(∫ ∞ ∫<br />

) n/2(n+2)<br />

|e it∆ u 0 (x)| 2(n+2)/n dx dt ≤ C‖u 0 ‖ 2 . (1.9)<br />

−∞ R n<br />

In particular, this implies that if u 0 ∈ L 2 (R n ) the soluti<strong>on</strong> u(x, t) = e it∆ u 0 (x) bel<strong>on</strong>gs to<br />

L 2+4/n for a.e. t. The proof of (1.9) was based <strong>on</strong> previous works of P. Thomas [50] and<br />

E. M. Stein [44] about restricti<strong>on</strong>s of the Fourier transform.<br />

This result has been generalized and its proof simplified in the works of B. Marshall<br />

[37], H. Pecher [40] and J. Ginibre and G. Velo [18]. In fact, for the <strong>on</strong>e-dimensi<strong>on</strong>al<br />

Schrödinger equati<strong>on</strong> <strong>on</strong>e has that (see [18])<br />

(∫ ∞<br />

1/4<br />

‖e it∆ u 0 ‖ 4 ∞ dt)<br />

≤ C‖u 0 ‖ 2 .<br />

−∞<br />

In [26], C. E. Kenig, G. P<strong>on</strong>ce and L. Vega c<strong>on</strong>sidered the extensi<strong>on</strong> of this result to<br />

higher order dispersive equati<strong>on</strong>. In the particular case<br />

{<br />

∂ t u = iD α u x ∈ R, t ∈ R and α > 0,<br />

u(x, 0) = u 0 (x)<br />

(1.10)


1. INTRODUCTION 5<br />

where D = (−∂ x ) 1/2 , they showed that the soluti<strong>on</strong>s u(t) satisfy<br />

(∫ ∞<br />

1/4<br />

‖D x (α−2)/4 u(·, t)‖ 4 ∞ dxdt)<br />

≤ C‖u 0 ‖ 2 . (1.11)<br />

−∞<br />

Note that for this case the “curvature” of the symbol P (ξ) = |ξ| α (for |ξ| > 1) is grows<br />

for large α, which is reflected in the gain of derivatives. We will see that a similar result<br />

can be obtained for the linearized equati<strong>on</strong> associated to (1.1).<br />

Returning to the IVP (1.1), we shall c<strong>on</strong>sider its integral formulati<strong>on</strong> which for str<strong>on</strong>g<br />

soluti<strong>on</strong>s are basically equivalent. Our method of proof is based <strong>on</strong> linear estimates and a<br />

c<strong>on</strong>tracti<strong>on</strong> mapping argument.<br />

We begin by stating the IVP<br />

⎧<br />

⎪⎨ u tt − u xx + u xxxx = 0 x ∈ R, t > 0<br />

u(x, 0) = 0<br />

(1.12)<br />

⎪⎩<br />

u t (x, 0) = h ′ (x)<br />

the velocity is a x-derivative functi<strong>on</strong>. Then, the formal soluti<strong>on</strong> of (1.12) is given by<br />

u(x, t) = V (t)h ′ (x) = ( A(ξ)e −it|ξ|(1+ξ2 ) 1/2 + B(ξ)e it|ξ|(1+ξ2 ) 1/2 ) ∨(x) (1.13)<br />

with<br />

sgn(ξ) ĥ(ξ)<br />

sgn(ξ) ĥ(ξ)<br />

A(ξ) =<br />

2i(1 + ξ 2 ) 1/2 and B(ξ) = −<br />

2i(1 + ξ 2 . (1.14)<br />

) 1/2<br />

Using Duhamel’s principle, the soluti<strong>on</strong> of the IVP (1.1) with corresp<strong>on</strong>ding data<br />

(f, g) = (0, ∂ x h) formally satisfies the integral equati<strong>on</strong><br />

∫ t<br />

u(x, t) = V (t) h ′ (x) −<br />

0<br />

V (t − τ)(ψ(u)) xx dτ. (1.15)<br />

As was commented above to apply the c<strong>on</strong>tracti<strong>on</strong> mapping argument we use the<br />

estimates L p ([0, T ]; L q (R)) for the inhomogeneous linear equati<strong>on</strong>. More precisely, it will<br />

be proved that (see Theorem 2.5)<br />

( ∫ ∞<br />

−∞<br />

∫ ∞<br />

1/4<br />

‖ e i(tφ(ξ)+xξ) |φ ′′ (ξ)| 1/2 ŵ(ξ) dξ‖ 4 ∞ dt)<br />

≤ C‖w‖2 (1.16)<br />

−∞<br />

where φ(ξ) = |ξ|(1 + ξ 2 ) 1/2 . This estimate is similar to that for general φ(·) obtained in<br />

[26] (secti<strong>on</strong> 2).<br />

The result above allows us to prove that<br />

( ∫ T<br />

0<br />

‖V (t)h ′ ‖ 4 ∞ dt) 1/4<br />

≤ c (1 + T 1/4 )‖h‖ −1,2<br />

(see Lemma 2.8). In this estimate, the time dependence reflects the hyperbolic character<br />

of the linear equati<strong>on</strong> associated to that in (1.1). This appears in the side of the Fourier<br />

transform when |ξ| ≤ 1. Notice that the <strong>on</strong>e-dimensi<strong>on</strong>al wave equati<strong>on</strong> does not satisfy


6 1. INTRODUCTION<br />

L p -L q estimates of the type above described. When ĥ is supported away from zero we can<br />

obtain the following estimate<br />

( ∫ ∞<br />

1/4<br />

‖V (t)h ′ ‖ 4 ∞ dt)<br />

≤ c ‖h‖ −1,2<br />

−∞<br />

where the smoothing effect produces the gain of two derivatives.<br />

In additi<strong>on</strong> to the smoothing effects of Strichartz type (L p –L q estimates), it is possible<br />

to show that soluti<strong>on</strong>s of the linear problem associated to (1.1) satisfy a smoothing effect<br />

of Kato type. This smoothing effect was proved by T. Kato in [24] for the Korteweg–de<br />

Vries (KdV) equati<strong>on</strong><br />

{<br />

∂ t u + ∂xu 3 + u∂ x u = 0 x, t ∈ R,<br />

(1.17)<br />

u(x, 0) = u 0 (x).<br />

He showed that the soluti<strong>on</strong> u of (1.17) satisfies<br />

∫ T<br />

−T<br />

∫ R<br />

−R<br />

|∂ x u(x, t)| 2 dx dt ≤ C(T, R, ‖u 0 ‖). (1.18)<br />

This result was extended by P. C<strong>on</strong>stantin and J. Saut [13], P. Sjolin [43] and L. Vega<br />

[53] to linear general dispersive equati<strong>on</strong>s in R n . In [26] C. Kenig, G. P<strong>on</strong>ce and L. Vega<br />

obtained an improvement of this result in the <strong>on</strong>e-dimensi<strong>on</strong>al case (see Theorem 4.1).<br />

More precisely, for the IVP<br />

{<br />

∂ t u − iP (D)u = 0 x, t ∈ R<br />

(1.19)<br />

u(x, 0) = u 0 (x)<br />

a soluti<strong>on</strong> u satisfies<br />

sup<br />

x<br />

∫ ∞<br />

−∞<br />

∫<br />

|u(x, t)| 2 dt ≤ c<br />

Ω<br />

|û 0 (ξ)| 2<br />

|φ ′ (ξ)|<br />

dξ (1.20)<br />

with φ(ξ) the real symbol of P c<strong>on</strong>sidered in a general class.<br />

It is clear that from the group properties and the finite propagati<strong>on</strong> speed a smoothing<br />

effect as the <strong>on</strong>e described above cannot be satisfied for soluti<strong>on</strong>s of hyperbolic equati<strong>on</strong>s.<br />

We will see that soluti<strong>on</strong>s of the n<strong>on</strong>linear IVP (1.1) also satisfy (locally in time) an<br />

estimate similar to that in (1.20).<br />

As was menti<strong>on</strong>ed before, we shall use the c<strong>on</strong>tracti<strong>on</strong> principle in the proofs of local<br />

well-posedness. One of the advantages of this approach is that it does not require any<br />

other theory (for example, Kato’s abstract theory of quasilinear evoluti<strong>on</strong> equati<strong>on</strong> [22]).<br />

In additi<strong>on</strong>, in some cases it provides str<strong>on</strong>ger results, for instance, it can be shown that<br />

the dependence of the soluti<strong>on</strong>s u <strong>on</strong> the data (f, g) i.e. the applicati<strong>on</strong> (f, g) ↦→ u is<br />

Lipschitz, instead of just c<strong>on</strong>tinuous.<br />

The plan of these notes is as follows. In Chapter 2, we will establish all the estimates<br />

involving soluti<strong>on</strong>s of the linear problem. First, we prove the global smoothing effect<br />

present in the <strong>Boussinesq</strong> equati<strong>on</strong> which allows us to find some estimates for the linear<br />

equati<strong>on</strong>


1. INTRODUCTION 7<br />

⎧<br />

⎪⎨ u tt − u xx + u xxxx = 0 x ∈ R, t > 0<br />

u(x, 0) = f(x)<br />

⎪⎩<br />

u t (x, 0) = h ′ (x)<br />

(1.21)<br />

where h is a L 2 -functi<strong>on</strong>. As we can see in (1.14) this c<strong>on</strong>diti<strong>on</strong> allows us to define A(ξ)<br />

and B(ξ) in L 2 (R). These estimates are the main ingredients to prove the results in the<br />

following secti<strong>on</strong>s. Here, we will also show that the soluti<strong>on</strong>s of the linear equati<strong>on</strong> above<br />

satisfy a smoothing effect of Kato type.<br />

Chapter 3 will be dedicated to study the local well-posedness for the initial-value<br />

problem (1.1). In the first secti<strong>on</strong> we will treat the IVP (1.1) with data (f, g) = (f, h ′ ) ∈<br />

L 2 (R) × Ḣ−1 (R). For simplicity in the expositi<strong>on</strong> we shall restrict ourselves to ψ(u) =<br />

|u| α u, α ∈ R. It is clear that for α integer ψ(u) = u k , k = α + 1 the same method<br />

applies. The argument of proof used a c<strong>on</strong>tracti<strong>on</strong> mapping argument combined with the<br />

estimates established in secti<strong>on</strong> 2. This allows us to c<strong>on</strong>clude the local well-posedness<br />

when 0 < α < 4 similar to the <strong>on</strong>e-dimensi<strong>on</strong>al n<strong>on</strong>linear Schrödinger equati<strong>on</strong>. In<br />

additi<strong>on</strong>, further regularity of the soluti<strong>on</strong> of the IVP (1.1) will be established by using<br />

the smoothing effect of Kato type commented above.<br />

Then the local well-posedness for the initial-value problem (1.1) with data (f, g) =<br />

(f, h ′ ) ∈ H 1 (R) × L 2 (R) will be established in the next secti<strong>on</strong>. Again the estimates in<br />

secti<strong>on</strong> 2 combined with a c<strong>on</strong>tracti<strong>on</strong> mapping argument permit us to achieve this result.<br />

In this case we can prove local well-posedness for α > 0 this is the same result as for the<br />

<strong>on</strong>e-dimensi<strong>on</strong>al NLS. Also, we show that the smoothing effect of Kato type is satisfied by<br />

the str<strong>on</strong>g soluti<strong>on</strong>s c<strong>on</strong>structed here.<br />

We will finish this chapter showing the local well-posedness of the IVP (1.1) in L 2<br />

when α = 4. Here we will follow the ideas of T. Cazenave and F. Weissler [11].<br />

In Chapter 4, a global existence result is established for small data (f, g) = (f, h ′ ) ∈<br />

H 1 (R) × L 2 (R). The main tool used to prove this theorem is the c<strong>on</strong>servati<strong>on</strong> law<br />

‖(−∆) −1/2 u t ‖ 2 2 + ‖u‖ 2 2 + ‖u x ‖ 2 2 − 2<br />

α + 1 ‖u‖α+1<br />

α+1 = K 0.<br />

We also present some results related to persistence properties and decay of soluti<strong>on</strong>s<br />

of the IVP (1.1).<br />

The asymptotic behavior of soluti<strong>on</strong>s of the IVP (1.1) will be studied in Chapter 5.<br />

We first show a result regarding the decay in time of soluti<strong>on</strong>s of (1.1). We c<strong>on</strong>sider the<br />

operator<br />

and prove that<br />

W γ (t)f(x) =<br />

∫ ∞<br />

−∞<br />

e i(tφ(ξ)+xξ) |φ ′′ (ξ)| γ/2 ˆf(ξ) dξ. (1.22)<br />

‖W γ (t)f‖ p ≤ c |t| −γ/2 ‖f‖ p ′ (1.23)<br />

where γ ∈ [0, 1] with γ = 1 p<br />

− 1 ′ p , p = 2<br />

1−γ and p′ = 2<br />

1+γ . Here φ(ξ) = |ξ|√ 1 + ξ 2 . This<br />

estimate allows us to obtain similar estimates for soluti<strong>on</strong>s of the linear problem (1.21)<br />

under some additi<strong>on</strong>al hypotheses <strong>on</strong> the data. Using these estimates we deduce that


8 1. INTRODUCTION<br />

soluti<strong>on</strong>s of the n<strong>on</strong>linear problem (1.1) satisfy<br />

‖u(t)‖ p ≤ C (1 + t) −γ/2 , t > 0. (1.24)<br />

Next we establish a n<strong>on</strong>linear scattering result, that is, small soluti<strong>on</strong>s of the IVP (1.1)<br />

behaves asymptotically like soluti<strong>on</strong>s of the associated linear problem.<br />

The result establishes that under some suitable c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> the data (f, g) and the<br />

n<strong>on</strong>linearity α, there exist unique soluti<strong>on</strong>s u ± of the linear problem associated to (1.1)<br />

such that<br />

‖u(t) − u ± (t)‖ 1,2 → 0 as t → ±∞. (1.25)<br />

where u is the soluti<strong>on</strong> of the IVP (1.1) with data (f, g).<br />

Similar results have been established for soluti<strong>on</strong>s of the n<strong>on</strong>linear Schrödinger equati<strong>on</strong>,<br />

n<strong>on</strong>linear wave equati<strong>on</strong>, Klein-Gord<strong>on</strong> equati<strong>on</strong> and Korteweg-de Vries equati<strong>on</strong> by<br />

Strauss [47], Pecher [40] and P<strong>on</strong>ce and Vega [41], respectively.<br />

The main ingredients to obtain this result are the decay estimates for soluti<strong>on</strong>s of the<br />

linear problem and L p –L q estimates.<br />

Affirmative results <strong>on</strong> scattering for small soluti<strong>on</strong>s are interpreted as the n<strong>on</strong>existence<br />

of solitary-wave soluti<strong>on</strong>s of arbitrary small amplitude. In this case, we notice that a simple<br />

calculati<strong>on</strong> shows that the solitary-wave soluti<strong>on</strong>s U c (ξ) in (1.4) satisfy ‖U c (·)‖ 2 > ɛ > 0<br />

for α > 5. The result presented here is optimal in this sense.<br />

Finally, we will describe a blow-up result regarding soluti<strong>on</strong>s to the IVP (1.1). As we<br />

commented above some soluti<strong>on</strong>s of the IVP (1.1) might blow-up in finite time [21], [42].<br />

The result we discuss in detail is due to Angulo and Scialom [2] were general c<strong>on</strong>diti<strong>on</strong>s<br />

are given to show blow-up in finite time for soluti<strong>on</strong>s to the IVP (1.1) (see also [35]). The<br />

proof uses a result due to Levine [29] to deduce the blow-up. To prepare the setting to<br />

apply this theorem <strong>on</strong>e has to study the relati<strong>on</strong>ship between the solitary waves soluti<strong>on</strong>s<br />

and the blow-up phenomena.<br />

We c<strong>on</strong>sider the n<strong>on</strong>linearity ϕ(u) = |u| α−1 u and write the equati<strong>on</strong> in (1.1) in its<br />

equivalent system form (1.5). As we commented above, the flow of (1.5) leaves invariant<br />

the “energy”,<br />

E(u, v) = 1 2 ‖u‖2 1,2 + 1 2 ‖v‖2 − 1<br />

α + 1 ‖u‖α+1<br />

(1.26)<br />

and it is also true for the quantity<br />

∫<br />

Q(u, v) = uv dx. (1.27)<br />

These two quantities are essential for the analysis below.<br />

The first step to put forward the blow-up theory is to determine the best c<strong>on</strong>stant B c α<br />

for the Sobolev inequality<br />

‖u‖ L α+1 ≤ B c α‖u‖ 1,c (1.28)<br />

where ‖ · ‖ 1,c = (1 − c 2 )‖ · ‖ H 1. This c<strong>on</strong>stant is obtained as the minimum of a c<strong>on</strong>strained<br />

variati<strong>on</strong>al problem and it is given in terms of the corresp<strong>on</strong>ding solitary wave soluti<strong>on</strong>. To<br />

find this minimum <strong>on</strong>e can uses the c<strong>on</strong>centrati<strong>on</strong>-compactness method (see Li<strong>on</strong>s [34]).<br />

We will apply a simplified versi<strong>on</strong> of this method due to Lopes [36]. Then we use that the<br />

regi<strong>on</strong><br />

K c 2 = {u ∈ H 1 (R) : L c (u, −cu) < d(c), R c (u) < 0} (1.29)<br />

R


1. INTRODUCTION 9<br />

is invariant for the flow (1.5) (see [35] and [39]), where R c (u) = ‖u‖ 2 1,c −‖u‖α+1<br />

α+1 , L c(u, v) =<br />

E(u, v) + cQ(u, v) and d(c) = L c (φ c , −cφ c ). These are the main ingredients to establish<br />

the blow-up result given in Theorem 5.6.


CHAPTER 2<br />

Linear Problem<br />

The first part of this chapter is c<strong>on</strong>cerned with the smoothing effects called L p –L q<br />

estimates or Strichartz estimates of soluti<strong>on</strong>s of the linear equati<strong>on</strong> associated to that in<br />

(1.1). That is,<br />

⎧<br />

⎪⎨ u tt − u xx + u xxxx = 0 x ∈ R, t > 0<br />

u(x, 0) = f(x)<br />

(2.1)<br />

⎪⎩<br />

u t (x, 0) = g(x).<br />

These estimates will be the main ingredient in the proof of local well-posedness of the IVP<br />

(1.1).<br />

In the sec<strong>on</strong>d secti<strong>on</strong>, we will prove a smoothing effect (locally in time) of Kato type<br />

for soluti<strong>on</strong>s the linear problem (2.1). This property for soluti<strong>on</strong>s of the linear equati<strong>on</strong><br />

will be used to show the local existence of a str<strong>on</strong>ger soluti<strong>on</strong> for the IVP (1.1).<br />

Finally, in the last secti<strong>on</strong> we will establish a series of estimates for soluti<strong>on</strong>s of the<br />

linear problem (2.1) that will allow us to obtain some decay properties and some str<strong>on</strong>ger<br />

soluti<strong>on</strong>s of the n<strong>on</strong>linear problem.<br />

2.1. L p –L q estimates<br />

Let φ(ξ) = |ξ|(1 + ξ 2 ) 1 2 , then φ(ξ) is an even C ∞ functi<strong>on</strong> in R − {0} with<br />

φ ′ 1 + 2ξ 2<br />

(ξ) = sgn(ξ)<br />

(1 + ξ 2 ) 1/2 and φ ′′ (ξ) = sgn(ξ) ξ(3 + 2ξ2 )<br />

(1 + ξ 2 . (2.2)<br />

) 3/2<br />

The functi<strong>on</strong> φ ′′ (ξ) has the following properties:<br />

(i) for ξ ≠ 0, φ ′′ (ξ) ≠ 0.<br />

(ii) for |ξ| < ɛ, 0 < ɛ ≪ 1,<br />

(iii) for |ξ| > 1 ɛ<br />

(iv) φ ′′ (ξ) has <strong>on</strong>ly <strong>on</strong>e change of m<strong>on</strong>ot<strong>on</strong>ocity.<br />

For φ(ξ), define<br />

I(x, t) =<br />

∫ ∞<br />

−∞<br />

|ξ| ≤ |φ ′′ (ξ)| ≤ 3|ξ|, (2.3)<br />

1 ≤ |φ ′′ (ξ)| ≤ 2, (2.4)<br />

e i(tφ(ξ)+xξ) |φ ′′ (ξ)| 1/2+iβ dξ, x, t ∈ R.<br />

The following lemma is essential in the proof of the next theorems.<br />

11


12 2. LINEAR PROBLEM<br />

Lemma 2.1. There exists C > 0 such that for any x, t ∈ R we have<br />

|I(x, t)| ≤ C(1 + β)|t| −1/2 , x, t ∈ R. (2.5)<br />

Remark 2.2. The result for a general class of functi<strong>on</strong>s φ was proved by Kenig, P<strong>on</strong>ce<br />

and Vega in [26] (see Lemma 2.7 in [26]).<br />

To prove Lemma 2.1 we will use of the following result.<br />

Lemma 2.3 (Van der Corput). Let ψ ∈ C0 ∞(R) and ϕ ∈ C2 (R) satisfy that ϕ ′′ (ξ) ><br />

λ > 0 <strong>on</strong> the support of ψ. Then<br />

∫<br />

∣ e iϕ(ξ) ψ(ξ) dξ∣ ≤ 10λ −1/2 {‖ψ‖ L ∞ + ‖ψ ′ ‖ L 1}. (2.6)<br />

Proof. See [44].<br />

□<br />

Proof of Lemma 2.1.<br />

Case 1. We first c<strong>on</strong>sider the following situati<strong>on</strong>:<br />

0 < m ≤ |φ ′′ (ξ)| ≤ M and Ω bounded and<br />

∫<br />

I(x, t) = e i(tφ(ξ)+xξ) |φ ′′ (ξ)| 1/2+iβ dξ.<br />

Lemma 2.3 implies then that<br />

|I(x, t)| ≤ c (m|t|) −1/2{ ∫<br />

M +<br />

Ω<br />

≤ c φ (1 + |β|)|t| −1/2 .<br />

Case 2: 1 ≤ |φ ′′ (ξ)| ≤ 2, Ω = {ξ ∈ R : |ξ| > 1/ɛ}.<br />

∫<br />

∣<br />

|ξ|>1/ɛ<br />

e itφ(ξ)+ixξ |φ ′′ (ξ)| 1/2+iβ dξ∣<br />

Ω<br />

| 1 }<br />

2 + iβ||φ′′ (ξ)| −1/2 |φ ′′′ (ξ)| dξ<br />

1<br />

∣<br />

≤ ∣<br />

i(tφ ′ (ξ) + x) eitφ(ξ)+ixξ |φ ′′ (ξ)| 1/2+iβ ∣∣|ξ|>1/ɛ<br />

∫<br />

+ ∣ e itφ(ξ)+ixξ d ( |φ ′′ (ξ)| 1/2+iβ )<br />

|ξ|>1/ɛ dξ i(tφ ′ dξ∣<br />

(ξ) + x)<br />

∫<br />

≤ c |φ ′′ (ξ)| −1/2 |φ ′′′ (ξ)|<br />

|ξ|>1/ɛ<br />

|tφ ′ (ξ) + x| + t|φ′′ (ξ)| 3/2<br />

|tφ ′ (ξ) + x| 2 dξ<br />

∫<br />

{<br />

≤ c |ξ| −6 + |ξ| −2} dξ < ∞.<br />

|ξ|>1/ɛ<br />

(2.7)<br />

(2.8)<br />

Here we have used that |φ ′ (ξ)| = ∞ as |ξ| → ∞. This shows that the integral<br />

is c<strong>on</strong>vergent. Therefore we can write the set Ω as the uni<strong>on</strong> of bounded intervals<br />

and apply the argument in Case 1.<br />

Case 3: 0 ≤ |φ ′′ (ξ)| ≤ 2, Ω = {ξ ∈ R : |ξ| ≤ ɛ}.


2.1. L p –L q ESTIMATES 13<br />

We c<strong>on</strong>sider<br />

˜φ(ξ) =<br />

{<br />

φ(ξ) − ξ, ξ ≥ 0,<br />

φ(ξ) + ξ, ξ < 0.<br />

Thus ˜φ(0) = 0 and ˜φ ′′ (0) = φ ′′ (0) = 0.<br />

c 1 , C 1 , c 2 , C 2 such that<br />

Then we have that there exist c<strong>on</strong>stants<br />

c 1 |ξ| 2 ≤ | ˜φ ′ (ξ)| ≤ C 1 |ξ| 2<br />

c 2 |ξ| ≤ | ˜φ ′′ (ξ)| ≤ C 2 |ξ|<br />

(2.9)<br />

for |ξ| < ɛ.<br />

To simplify we use again φ instead of ˜φ and c<strong>on</strong>sider<br />

∫<br />

|ξ|≤ɛ<br />

e itφ(ξ)+ixξ |φ ′′ (ξ)| 1/2+iβ dξ (2.10)<br />

Define<br />

Ω 1 = {ξ ∈ Ω : |ξ| ≤ min(ɛ, |t| −1/3 }<br />

Ω 2 = {ξ ∈ Ω : |ξ| ≤ ɛ and |φ ′ (ξ) − x t | ≤ 1 ∣ x ∣<br />

∣}<br />

2 t<br />

Ω 3 = {ξ ∈ Ω − Ω 1 ∩ Ω 2 : |ξ| ≤ ɛ}<br />

In Ω 1 we have that<br />

∫<br />

Ω 1<br />

|φ ′′ (ξ)| 1/2 dξ ≤ c |t| −1/2 (2.11)<br />

If ξ ∈ Ω 2 , |ξ| 2 ∼ |φ ′ (ξ)| ∼ |x/t|. Hence |ξ| ∼ |x/t| 1/2 . By Lemma (2.3) we obtain the<br />

following chain of inequalities<br />

∫<br />

∣<br />

e i(tφ(ξ)+xξ) |φ ′′ (ξ)| 1/2+iβ dξ∣<br />

Ω 2<br />

≤ c (min<br />

ξ∈Ω 2<br />

|φ ′′ (ξ)||t|) −1/2<br />

× { max<br />

ξ∈Ω 2<br />

|φ ′′ (ξ)| 1/2 + (1 + |β|)<br />

∫<br />

Ω 2<br />

|φ ′′ (ξ)| −1/2 |φ ′′′ (ξ)| dξ }<br />

≤ c (1 + |β|) min |φ ′′ (ξ)| −1/2 max |φ ′′ (ξ)| 1/2 |t| −1/2 .<br />

(2.12)


14 2. LINEAR PROBLEM<br />

If ξ ∈ Ω 3 then |φ ′ (ξ) − x/t| ≤ c|φ ′ (ξ)| ≥ c|ξ| 2 and |ξ| > |t| −1/3 . Integrati<strong>on</strong> by parts<br />

yields the results. In fact,<br />

∫<br />

∣ e i(tφ(ξ)+xξ) |φ ′′ (ξ)| 1/2+iβ dξ∣<br />

Ω 3<br />

≤ c ∫<br />

|t|<br />

Ω 3<br />

{<br />

≤ c<br />

∫<br />

(1 + |β|)<br />

|t|<br />

( 1 2 + (ξ)| −1/2 |φ ′′′ (ξ)|<br />

|β|)|φ′′ |φ ′ (ξ) − x/t|<br />

|ξ|>|t| −1/3<br />

≤ c(1 + |β|)|t| −1/2 .<br />

|φ ′′′ (ξ)|<br />

|ξ| 3/2<br />

This completes the proof of the lemma.<br />

dξ + c<br />

|t|<br />

+ |φ′′ (ξ)| 3/2<br />

|φ ′ (ξ) − x/t| 2 }<br />

dξ<br />

∫<br />

|ξ|>|t| −1/3<br />

|ξ| −5/2 dξ<br />

(2.13)<br />

□<br />

For φ define<br />

W γ (t)f(x) =<br />

∫ ∞<br />

−∞<br />

Theorem 2.4. Let φ and W γ be defined as before, we have<br />

where γ ∈ [0, 1] with γ = 1 p ′ − 1 p , p = 2<br />

1−γ and p′ = 2<br />

1+γ .<br />

Proof. C<strong>on</strong>sider the operator<br />

W γ+iβ (t)f(x) =<br />

e i(tφ(ξ)+xξ) |φ ′′ (ξ)| γ/2 ˆf(ξ) dξ. (2.14)<br />

‖W γ (t)f‖ p ≤ c |t| −γ/2 ‖f‖ p ′ (2.15)<br />

∫ ∞<br />

−∞<br />

Observe that W 1+iβ (t)f(x) = I(·, t) ∗ f(x) and<br />

e i(tφ(ξ)+xξ) |φ ′′ (ξ)| γ/2+iβ ˆf(ξ) dξ.<br />

T 0+iβ (t)f(x) = (e itφ(ξ) |φ ′′ (ξ)| iβ ̂f(ξ)) ∨ .<br />

Therefore the Young inequality and Lemma 2.1 imply that<br />

‖W 1+iβ (t)f‖ L ∞ ≤ c|t| −1/2 ‖f‖ L 1.<br />

On the other hand, Plancharel’s theorem (A.9) gives<br />

‖W iβ (t)f‖ L 2 = ‖f‖ L 2.<br />

Therefore the Stein interpolati<strong>on</strong> theorem (see Appendix Theorem A.14) yields the result.<br />

□<br />

Theorem 2.5. If W γ (t) is defined as in (2.14) and γ ∈ [0, 1] then<br />

( ∫ ∞<br />

−∞<br />

‖W γ/2 (t)f‖ q p dt) 1/q<br />

≤ c ‖f‖2 , (2.16)


and<br />

∫ t<br />

∥<br />

0<br />

2.1. L p –L q ESTIMATES 15<br />

W γ (t − τ)g(·, τ) dτ ∥ ∥<br />

L<br />

q<br />

t (R; Lp ) ≤ c ‖g‖ L q′<br />

t (R; Lp′ ) , (2.17)<br />

∫ ∞<br />

∥<br />

−∞<br />

where q = 4/γ, p = 2/(1 − γ),<br />

1<br />

p + 1 p ′ = 1 q + 1 q ′ = 1.<br />

W γ/2 (−τ)g(·, τ) dτ ∥ ∥<br />

L 2 x<br />

≤ c ‖g‖ L<br />

q ′<br />

t (R; Lp′ ) , (2.18)<br />

Proof. We first show that the inequalities (2.16), (2.17) and (2.18) are equivalent.<br />

We will use a duality argument. We recall that<br />

( ∫ ∞<br />

−∞<br />

‖h(·, t)‖ q L p x dt ) 1/q<br />

= sup{<br />

∫<br />

h(x, t)w(x, t) dxdt : ‖w‖ L<br />

q ′<br />

t (R; Lp′ x )<br />

R 2<br />

= 1} (2.19)<br />

Using the definiti<strong>on</strong> (2.14), Parseval’s identity and Fubini’s theorem we obtain<br />

∫ ∞<br />

∫ ∞<br />

−∞ −∞<br />

W γ/2 (t)f(x)g(x, t) dxdt =<br />

∫ ∞<br />

−∞<br />

( ∫ ∞<br />

f(x)<br />

From (2.19), (2.20) and the Cauchy-Schwarz inequality we obtain<br />

( ∫ ∞<br />

−∞<br />

−∞<br />

) 1/q<br />

∫∞<br />

‖W γ/2 (t)f‖ q ∥<br />

p dt ≤ c ‖f‖2 −∞<br />

)<br />

W γ/2 (t)g(x, t) dt dx (2.20)<br />

W γ/2 (t)g(·, t) dt ∥ ∥<br />

2<br />

. (2.21)<br />

On the other hand, the argument of Stein-Tomas ([50]) and Hölder’s inequality give<br />

∫ ∞<br />

∥<br />

−∞<br />

∫ ∞<br />

=<br />

=<br />

≤<br />

−∞<br />

∫ ∞<br />

W γ/2 (t)g(x, t) dt ∥ 2 =<br />

2<br />

( ∫ ∞<br />

−∞ −∞<br />

∫ ∞<br />

∥<br />

−∞<br />

−∞<br />

∫ ∞ ( ∫ ∞<br />

)( ∫ ∞<br />

W γ/2 (t)g(x, t) dt<br />

−∞<br />

W γ/2 (t ′ )g(x, t ′ ) dt ′ )<br />

dx<br />

(2.22)<br />

W γ (t − t ′ )g(x, t ′ ) dt ′) g(x, t) dxdt<br />

−∞<br />

∥<br />

W γ (· − t ′ )g(·, t ′ ) dt ′ ∥∥L ‖g‖ . q<br />

t (R; Lp ) L q′<br />

t (R; Lp′ )<br />

The equivalence of the inequalities now follows from (2.21) and (2.22).<br />

enough to prove inequality (2.17) to prove the theorem.<br />

Thus it is


16 2. LINEAR PROBLEM<br />

The Minkowskii inequality and Theorem 2.4 yield<br />

∥<br />

∫ ∞<br />

−∞<br />

W γ (t − t ′ )g(·, t ′ ) dt ′ ∥ ∥∥L<br />

p<br />

x<br />

≤<br />

∫ ∞<br />

−∞<br />

∫ ∞<br />

≤ c<br />

−∞<br />

‖W γ (t − t ′ )g(·, t ′ )‖ L<br />

p<br />

x<br />

dt ′<br />

1<br />

|t − t ′ | γ/2 ‖g(·, t′ )‖ L<br />

p ′ dt ′ .<br />

x<br />

The Hardy-Littlewood Sobolev theorem (see Appendix Theorem A.16) implies that<br />

∫ ∞<br />

∥<br />

−∞<br />

∥<br />

W γ (· − t ′ )g(·, t ′ ) dt ′ ∥∥L ≤ c ‖g‖ q<br />

t (R; Lp x) L q′<br />

t<br />

Hence the proof of the theorem now is complete.<br />

(2.23)<br />

(R; Lp′ x ) . (2.24)<br />

Remark 2.6. A more general result was established by Kenig, P<strong>on</strong>ce and Vega in [26].<br />

See Theorem 2.1.<br />

The following estimates are c<strong>on</strong>cerned with the linear equati<strong>on</strong> associated with that<br />

in (1.1). Here we shall deduce regularity results as a c<strong>on</strong>sequence of Theorem 2.5.<br />

If<br />

Lemma 2.7. C<strong>on</strong>sider the following IVP<br />

⎧<br />

⎪⎨ u tt − u xx + u xxxx = 0 x ∈ R, t > 0<br />

u(x, 0) = f(x)<br />

⎪⎩<br />

u t (x, 0) = 0.<br />

with φ(ξ) = |ξ|(1 + ξ 2 ) 1/2 , then<br />

and<br />

( ∫ T<br />

0<br />

V 1 (t)f(x) ≡<br />

∫ ∞<br />

−∞<br />

□<br />

(2.25)<br />

e i(tφ(ξ)+xξ) ˆf(ξ) dξ (2.26)<br />

‖V 1 (t)f‖ 2 ≤ C‖f‖ 2 (2.27)<br />

‖V 1 (t)f‖ 4 ∞ dt) 1/4<br />

≤ c (1 + T 1/4 ) ‖f‖ 2 . (2.28)<br />

Proof. The proof of (2.27) is immediate.<br />

To show (2.28) we proceed in the following way:<br />

Let χ ∈ C0 ∞ (R), χ ≡ 1 <strong>on</strong> [−1, 1] and support of χ ⊂ [−2, 2]<br />

V 1 (t)f(x) =<br />

∫ ∞<br />

−∞<br />

∫∞<br />

e i(tφ(ξ)+xξ) ˆf(ξ)χ(ξ) dξ +<br />

= V 1<br />

1 (t)f(x) + V 2<br />

1 (t)f(x).<br />

−∞<br />

e i(tφ(ξ)+xξ) ˆf(ξ)(1 − χ(ξ)) dξ<br />

(2.29)


We can write V1 2 (t)f(x) as<br />

∫ ∞<br />

−∞<br />

2.1. L p –L q ESTIMATES 17<br />

e i(tφ(ξ)+xξ) |φ ′′ (ξ)| 1/2 ˆf(ξ)(1 − χ(ξ))<br />

|φ ′′ (ξ)| 1/2 dξ.<br />

Now using (2.16) in Theorem 2.5 and (2.4) we have<br />

( ∫ ∞<br />

−∞<br />

For V1 1 (t)f(x) we have that<br />

) 1/4 ∥<br />

‖V1 2 (t)f‖ 4 ∥∥ ˆf(ξ)(1 − χ(ξ))<br />

∥ ∥∥2<br />

∞ dt ≤ c<br />

|φ ′′ (ξ)| 1/2 ≤ c ‖f‖ 2 . (2.30)<br />

∫ ∞<br />

∥<br />

‖V1 1<br />

(t)f‖ ∞ = ∥ e i(tφ(ξ)+xξ) ∥∥∞<br />

ˆf(ξ)χ(ξ) dξ<br />

≤ c ∥<br />

−∞<br />

∫ ∞<br />

−∞<br />

e i(tφ(ξ)+xξ) ˆf(ξ)χ(ξ) dξ<br />

∥<br />

∥∥1,2<br />

≤ c ‖ ˆfχ‖ 1,2 ≤ c ( ‖f ∗ ˇχ‖ 2 + ‖∂ x (f ∗ ˇχ)‖ 2<br />

)<br />

≤ c χ ‖f‖ 2<br />

integrating from 0 to T it follows that<br />

( ∫ T<br />

0<br />

A combinati<strong>on</strong> of (2.30) and (2.31) yields the result.<br />

Lemma 2.8. C<strong>on</strong>sider the IVP (2.25) with data<br />

‖V 1<br />

1 (t)f‖ 4 ∞ dt) 1/4<br />

≤ cχ T 1/4 ‖f‖ 2 . (2.31)<br />

□<br />

If<br />

then<br />

and<br />

u(x, 0) = 0,<br />

V 2 (t)h ′ (x) ≡<br />

( ∫ T<br />

0<br />

∫ ∞<br />

−∞<br />

u t (x, 0) = h ′ (x).<br />

i(tφ(ξ)+xξ) sgn(ξ) ĥ(ξ)<br />

e<br />

(1 + ξ 2 dξ (2.32)<br />

) 1/2<br />

‖V 2 (t)h ′ ‖ 2 ≤ c ‖h‖ −1,2 (2.33)<br />

‖V 2 (t)h ′ ‖ 4 ∞ dt) 1/4<br />

≤ c (1 + T 1/4 )‖h‖ −1,2 . (2.34)


18 2. LINEAR PROBLEM<br />

Proof. The proof of (2.33) is immediate.<br />

To prove (2.34), we follow a similar argument as in the previous lemma.<br />

Let χ ∈ C0 ∞ (R), χ ≡ 1 <strong>on</strong> [−1, 1] and support of χ ⊂ [−2, 2]<br />

∫<br />

V 2 (t)h ′ (x) = e i(tφ(ξ)+xξ) sgn(ξ) ĥ(ξ)<br />

χ(ξ)<br />

(1 + ξ 2 dξ<br />

) 1/2<br />

R<br />

∫<br />

+<br />

Now we can write V 2<br />

2 (t)h′ (x) as<br />

∫ ∞<br />

−∞<br />

R<br />

e i(tφ(ξ)+xξ) (1 − χ(ξ)) sgn(ξ)ĥ(ξ)<br />

(1 + ξ 2 dξ<br />

) 1/2<br />

= V 1<br />

2 (t)h ′ (x) + V 2<br />

2 (t)h ′ (x).<br />

e i(tφ(ξ)+xξ) |φ ′′ 1/2 sgn(ξ)ĥ(ξ)(1 − χ(ξ))<br />

(ξ)|<br />

|φ ′′ (ξ)| 1/2 (1 + ξ 2 )<br />

making use of (2.16) in Theorem 2.5 and (2.4), it follows<br />

( ∫ ∞<br />

−∞<br />

1/2<br />

dξ<br />

) 1/4 ∥<br />

‖V2 2 (t)∂ x h‖ 4 ∥∥ ĥ(ξ)(1 − χ(ξ))<br />

∥ ∥∥2<br />

∞ dt ≤ c<br />

|φ ′′ (ξ)| 1/2 (1 + ξ 2 ) 1/2 ≤ c ‖h‖ −1,2 . (2.35)<br />

For V 1<br />

2 (t)h′ (x) we have that<br />

‖V 1<br />

2 (t)h ′ ‖ ∞ =<br />

∫ ∞<br />

∥<br />

≤ c ∥<br />

−∞<br />

∫ ∞<br />

−∞<br />

e i(tφ(ξ)+xξ) χ(ξ) sgn(ξ)ĥ(ξ)<br />

(1 + ξ 2 ) 1/2 dξ ∥ ∥∥∞<br />

e i(tφ(ξ)+xξ) ĥ(ξ)<br />

∥<br />

χ(ξ)<br />

(1 + ξ 2 ) 1/2 dξ ∥∥1,2<br />

(∥( ∥∥ ĥ(ξ)<br />

) ∨ ∥ ∨ ∥∥2 ( ≤ c<br />

∗ χ<br />

(1 + ξ 2 ) 1/2 + ∥<br />

ĥ(ξ) ) ∨ ∥ )<br />

∨ ∥∥2 ∗ ∂xχ (1 + ξ 2 ) 1/2<br />

∥(<br />

∥∥ ĥ(ξ)<br />

) ∨ ∥ ∥∥2<br />

≤ c χ<br />

(1 + ξ 2 ) 1/2 = c χ ‖h‖ −1,2 .<br />

Now integrating from 0 to T it follows that<br />

( ∫ T<br />

which combined with (2.35) yields the result.<br />

0<br />

‖V 1<br />

2 (t)h ′ ‖ 4 ∞ dt) 1/4<br />

≤ Cχ T 1/4 ‖h‖ −1,2 (2.36)<br />

Lemma 2.9. C<strong>on</strong>sider the IVP (2.25) now with data<br />

u(x, 0) = 0,<br />

u t (x, 0) = p ′′ (x).<br />


If<br />

then<br />

and<br />

2.2. LOCAL SMOOTHING EFFECTS 19<br />

V 2 (t)p ′′ (x) ≡<br />

( ∫ ∞<br />

−∞<br />

∫ ∞<br />

−∞<br />

i(tφ(ξ)+xξ) sgn(ξ) ξ ̂p(ξ)<br />

e<br />

(1 + ξ 2 )<br />

1/2<br />

dξ<br />

‖V 2 (t)p ′′ ‖ 2 ≤ C‖p‖ 2 (2.37)<br />

‖V 2 (t)p ′′ ‖ 4 ∞ dt) 1/4<br />

≤ c ‖p‖2 . (2.38)<br />

Proof. The estimate (2.37) follows directly. To obtain (2.38), we write V 2 (t) p ′′ (x) as<br />

∫ ∞<br />

−∞<br />

e i(tφ(ξ)+xξ) |φ ′′ (ξ)| 1/2<br />

The estimate (2.16) in Theorem 2.5 and (2.4) give<br />

( ∫ ∞<br />

−∞<br />

sgn(ξ)ξ ̂p(ξ)<br />

|φ ′′ (ξ)| 1/2 (1 + ξ 2 dξ.<br />

) 1/2<br />

) 1/4 ∥<br />

‖V 2 (t)p ′′ ‖ 4 ∥∥ sgn(ξ)ξ ˆp(ξ)<br />

∥ ∥∥2<br />

∞ dt ≤ c<br />

|φ ′′ (ξ)| 1/2 (1 + ξ 2 ) 1/2 ≤ c ‖p‖ 2 .<br />

2.2. Local Smoothing Effects<br />

The following result will allow us to obtain smoothing effects of Kato type present in<br />

soluti<strong>on</strong>s of the linear problem (A.12). This result is a particular case of the sharp smoothing<br />

effect of Kato type proved in [26] for soluti<strong>on</strong>s to <strong>on</strong>e–dimensi<strong>on</strong>al linear dispersive<br />

equati<strong>on</strong>s (see Theorem 4.1 in [26]).<br />

Then<br />

Theorem 2.10. Let φ(ξ) = |ξ| √ 1 + ξ 2 and f ∈ S(R n ) define<br />

∫<br />

W (t)f(x) = e i(tφ(ξ)+xξ) ˆf(ξ) dξ. (2.39)<br />

sup<br />

x<br />

∫<br />

R<br />

R<br />

∫<br />

|W (t)f(x)| 2 dt ≤ C<br />

R<br />

□<br />

| ̂f(ξ)| 2<br />

|φ ′ dξ. (2.40)<br />

(ξ)|<br />

Proof. From (2.2) we have that φ ′ (ξ) ≠ 0, for every x ∈ R. Then we write<br />

∫<br />

∫<br />

∫<br />

e i(tφ(ξ)+xξ) ˆf(ξ) dξ = e i(tφ(ξ)+xξ) ˆf(ξ) dξ + e i(tφ(ξ)+xξ) ˆf(ξ) dξ<br />

R<br />

ξ


20 2. LINEAR PROBLEM<br />

Since φ ′ (ξ) ≠ 0, there exists ψ such that φ(ψ(ξ)) = ξ, ξ ≥ 0. Then making the change<br />

of variables η = φ(ξ) we have that<br />

∫<br />

I 1 =<br />

e itη ixψ(η) dη<br />

e<br />

ˆ˜f(ψ(η))<br />

φ ′ (ψ(η)) . (2.42)<br />

where ˜f(x) = f(x), for x < 0 and equals 0 otherwise.<br />

Taking the L 2 –norm of I 1 in t, using Plancherel’s identity and returning to the previous<br />

variables we have that<br />

‖I 1 ‖ 2 L 2 t<br />

= c<br />

∫ ∞<br />

−∞<br />

∫ ∞<br />

|e ixψ(η) ˆ˜f(ψ(η))|<br />

2<br />

|φ ′ (ψ(η))| 2 dη<br />

| ˆ˜f(ψ(η))| 2<br />

= c<br />

|φ ′ (ψ(η))| 2 dη<br />

(2.43)<br />

−∞<br />

∫ | ˆ˜f(ξ)|<br />

2<br />

= c<br />

|φ ′ (ξ)| dξ.<br />

A similar argument can be used to estimate I 2 . Hence the result follows.<br />

□<br />

Propositi<strong>on</strong> 2.11. Let V 1 (t) and V 2 (t) be defined as in the statements of Lemmas<br />

2.4 and 2.5, then:<br />

For f ∈ L 2<br />

( ∫ T<br />

sup<br />

x<br />

0<br />

|D 1/2<br />

x V 1 (t)f(x)| 2 dt) 1/2<br />

≤ c (1 + T 1/2 )‖f‖ 2 . (2.44)<br />

If h ′ ∈ Ḣ−1<br />

( ∫ T<br />

sup<br />

x<br />

0<br />

|D 1/2<br />

x V 2 (t)h ′ (x)| 2 dt) 1/2<br />

≤ c (1 + T 1/2 )‖h‖ −1,2 . (2.45)<br />

And for p ∈ L 2 ( ∫ T<br />

sup<br />

x<br />

0<br />

|D 1/2<br />

x V 2 (t)p ′′ (x)| 2 dt) 1/2<br />

≤ c (1 + T 1/2 )‖p‖ 2 . (2.46)<br />

Proof. To prove (2.44), (2.45) and (2.46) we shall use the same argument, so we <strong>on</strong>ly<br />

will sketch the proof of (2.44).


2.3. FURTHER LINEAR ESTIMATES 21<br />

Let χ ∈ C0 ∞ (R), χ ≡ 1 <strong>on</strong> [−1, 1] and support of χ ⊂ [−2, 2] then<br />

( ∫ T<br />

) 1/2<br />

sup |Dx<br />

1/2 V 1 (t)f(x)| 2 dt<br />

x<br />

0<br />

( ∫ T ∫ ∞<br />

≤ c sup ∣ e i(tφ(ξ)+xξ) |ξ| 1/2 ∣ )<br />

ˆf(ξ)χ(ξ) dξ 2 1/2<br />

dt (2.47)<br />

x<br />

0 −∞<br />

( ∫ T ∫ ∞<br />

+ c sup ∣ e i(tφ(ξ)+xξ) |ξ| 1/2 ∣ )<br />

ˆf(ξ)(1 − χ(ξ)) dξ 2 1/2.<br />

dt<br />

x<br />

0<br />

−∞<br />

Therefore a direct applicati<strong>on</strong> of the Theorem 2.8 gives the estimate for the sec<strong>on</strong>d<br />

expressi<strong>on</strong> <strong>on</strong> the right hand side. For the first expressi<strong>on</strong> <strong>on</strong> the right hand side of the<br />

inequality above, we use the smoothness of χ and f to make a crude estimate which we<br />

have to pay with the dependence <strong>on</strong> T.<br />

□<br />

2.3. Further Linear Estimates<br />

We begin this secti<strong>on</strong> by establishing the needed estimates for the operator (−∆) −1/2 ∂ t .<br />

These estimates will be used to prove str<strong>on</strong>ger soluti<strong>on</strong>s of the n<strong>on</strong>linear problem (1.1)<br />

and the global results in Chapter 5.<br />

and<br />

Then<br />

and<br />

Propositi<strong>on</strong> 2.12. If<br />

(−∆) −1/2 ∂ t V 1 (t)f(x) =<br />

(−∆) −1/2 ∂ t V 2 (t)h ′ (x) =<br />

(−∆) −1/2 ∂ t V 2 (t)p ′′ (x) =<br />

∫ ∞<br />

−∞<br />

∫ ∞<br />

−∞<br />

∫ ∞<br />

−∞<br />

i|ξ| −1 φ(ξ)e i(tφ(ξ)+xξ) ̂f(ξ) dξ,<br />

i|ξ| −1 i(tφ(ξ)+xξ) sgn(ξ) ĥ(ξ)<br />

φ(ξ)e<br />

(1 + ξ 2 )<br />

i|ξ| −1 φ(ξ)e i(tφ(ξ)+xξ) ξ ̂p(ξ)<br />

(1 + ξ 2 )<br />

1/2<br />

dξ<br />

1/2<br />

dξ.<br />

‖(−∆) −1/2 ∂ t V 1 (t)f‖ 2 ≤ C‖f‖ 1,2 , (2.48)<br />

‖(−∆) −1/2 ∂ t V 2 (t)h ′ ‖ 2 ≤ C‖h‖ 2 (2.49)<br />

‖(−∆) −1/2 ∂ t V 2 (t)p ′′ ‖ 2 ≤ C‖p‖ 1,2 . (2.50)<br />

Proof. Reminding that φ(ξ) = |ξ|(1 + ξ 2 ) 1/2 , Plancherel’s theorem gives<br />

‖(−∆) −1/2 ∂ t V 1 (t)f‖ 2 ≤ c ‖|ξ| −1 φ(ξ) ˆf(ξ)‖ 2<br />

≤ c ‖(1 + ξ 2 ) 1/2 ̂f‖2 = c ‖f‖ 1,2<br />

(2.51)


22 2. LINEAR PROBLEM<br />

which is (2.48).<br />

To prove (2.49), we use the same argument as before to obtain<br />

‖(−∆) −1/2 ∂ t V 2 (t)h ′ ∥<br />

‖ 2 ≤ c ∥|ξ| −1 φ(ξ) sgn(ξ)ĥ(ξ) ∥ ∥∥2<br />

(1 + ξ 2 ) 1/2 ≤ c ‖h‖ 2 . (2.52)<br />

In the same way we can show (2.50)<br />

‖(−∆) −1/2 ∂ t V 2 (t)p ′′ ∥<br />

‖ 2 ≤ c ∥|ξ| −1 φ(ξ)<br />

sgn(ξ)ξ ̂p(ξ)<br />

(1 + ξ 2 ) 1/2 ∥ ∥∥2<br />

= C‖p‖ 1,2 . (2.53)<br />

Next we will prove linear estimates useful in the proofs of Theorems 5.1 and 5.4<br />

regarding decay and n<strong>on</strong>linear scattering for soluti<strong>on</strong>s of (1.1).<br />

Propositi<strong>on</strong> 2.13.<br />

(i) Let g = h ′ ∈ L 2 (R) ∩ L q (R). Then<br />

‖V 2 (t)g‖ p ≤ c(1 + t) −γ/2 (‖h‖ 2 + ‖h‖ q ),<br />

where p = 2<br />

1−γ , q = 2<br />

1+2γ<br />

and γ ∈ (0, 1/2).<br />

(ii) Let f ∈ H 1 (R) ∩ L q γ (R).<br />

2<br />

Then<br />

‖V 1 (t)f‖ p ≤ c(1 + t) −γ/2 (‖f‖ 1,2<br />

+ ‖f‖γ<br />

where p = 2<br />

1−γ , q = 2<br />

1+2γ<br />

and γ ∈ (0, 1/2).<br />

Proof. To show (i) we use the Sobolev embedding theorem for t small to obtain<br />

where p is as above.<br />

For t > ɛ > 0, we write<br />

V 2 (t)g(x) = 1<br />

2π<br />

2 ,q ),<br />

‖V 2 (t)g‖ p ≤ ‖V 2 (t)g‖ 1,2<br />

≤ ‖h‖ 2 , (2.54)<br />

∫ ∞<br />

−∞<br />

e i(tφ(ξ)+xξ) |φ ′′ (ξ)| γ/2<br />

ĥ(ξ)<br />

|φ ′′ (ξ)| γ/2 (1 + ξ 2 dξ,<br />

) 1/2<br />

where φ ′′ (ξ) = |ξ|(2ξ2 +3)<br />

(1+ξ 2 ) 3/2 .<br />

Since φ(ξ) satisfies the c<strong>on</strong>diti<strong>on</strong>s in Theorem 2.4 (see [31], [26]), we have that<br />

‖V 2 (t)g‖ p ≤ ct −γ/2 ‖G‖ 2 ,<br />

1+γ<br />

here G(x) = ( ĥ(ξ) ˇ)(x).<br />

|ξ| γ/2<br />

Applying Hardy-Littlewood-Sobolev theorem (see appendix Theorem A.16) we find<br />

that<br />

for q = 2<br />

1+2γ<br />

and γ ∈ (0, 1/2). Thus<br />

‖G‖ 2<br />

1+γ<br />

≤ c‖h‖ q ,<br />

‖V 2 (t)g‖ p ≤ c t −γ/2 ‖h‖ q . (2.55)<br />

Therefore combining (2.3) and (2.4) we obtain the desired result.<br />


2.3. FURTHER LINEAR ESTIMATES 23<br />

To prove (ii) we can use a similar argument, hence it will be omitted.<br />

□<br />

Corollary 2.14. Under the assumpti<strong>on</strong>s <strong>on</strong> f and g in Propositi<strong>on</strong> 2.13. The soluti<strong>on</strong><br />

u of the linear problem (2.1) satisfies<br />

where p = 2<br />

1−γ , q = 2<br />

1+2γ<br />

‖u‖ p ≤ c(1 + t) −γ/2 (‖f‖ 1,2 + ‖f‖γ<br />

2 ,q + ‖h‖ 2 + ‖h‖ q ),<br />

and γ ∈ (0, 1/2).<br />

Proof. A combinati<strong>on</strong> of (i) and (ii) gives the result.<br />

□<br />

Lemma 2.15. Let f ≡ 0 and g(x) = h ′′ (x), h ∈ L 2 (R) ∩ L 2<br />

1+γ (R). Then the soluti<strong>on</strong> u<br />

of the linear problem (2.1) satisfies<br />

‖u‖ p = ‖V 2 (t)g‖ p ≤ c t −γ/2 ‖h‖ p ′ for t > 0,<br />

where p = 2<br />

1−γ , p′ = 2<br />

1+γ<br />

and γ ∈ [0, 1].<br />

Proof. We write V 2 (t)g(x) as<br />

V 2 (t)g(x) = 1<br />

2π<br />

∫ ∞<br />

−∞<br />

e i(tφ(ξ)+xξ) |φ ′′ (ξ)| γ/2<br />

then applying Theorem 2.4 the result follows.<br />

|ξ| ĥ(ξ)<br />

|φ ′′ (ξ)| γ/2 (1 + ξ 2 dξ<br />

) 1/2<br />

□<br />

Propositi<strong>on</strong> 2.16.<br />

(i) Let g = D 1+γ/4 h ∈ L 2 (R). Then<br />

(ii) Let f = D γ/4 f 1<br />

∈ H 1 (R). Then<br />

where p = 2<br />

1−γ , q = 4 γ<br />

‖V 2 (t)g‖ L q (R :L p (R)) ≤ c‖h‖ −1+<br />

γ<br />

4 ,2 .<br />

‖V 1 (t)f‖ L q (R :L p (R)) ≤ c ‖f 1<br />

‖ γ<br />

4 ,2 ,<br />

and γ ∈ [0, 1].<br />

Proof. To prove (i) we write V 2 (t)g(x) as<br />

V 2 (t)g(x) = 1<br />

2π<br />

∫ ∞<br />

−∞<br />

Thus from Theorem 2.5 it follows that<br />

e i(tφ(ξ)+xξ) |φ ′′ (ξ)| γ/4<br />

|ξ| γ/4 ĥ(ξ)<br />

|φ ′′ (ξ)| γ/4 (1 + ξ 2 dξ<br />

) 1/2<br />

‖V 2 (t)g‖ L q (R :L p (R)) ≤ c‖ ( |ξ| γ/4 ĥ(ξ) ˇ)‖<br />

|φ ′′ (ξ)| γ/4 (1 + ξ 2 ) 1/2 2<br />

≤ c‖h‖ −1+<br />

γ<br />

4 ,2 .<br />

This shows (i). The proof of (ii) is similar, hence it will be omitted.<br />

(2.56)<br />


24 2. LINEAR PROBLEM<br />

Corollary 2.17. Under the assumpti<strong>on</strong>s <strong>on</strong> f and g in Propositi<strong>on</strong> 2.16. The soluti<strong>on</strong><br />

u of the linear problem (2.1) satisfies<br />

where p = 2<br />

1−γ , q = 4 γ<br />

‖u‖ L q (R :L p 1 (R)) ≤ c(‖f 1 ‖ 1+ γ 4 ,2 + ‖h‖ γ<br />

4 ,2 ),<br />

and γ ∈ [0, 1].<br />

Proof. The result follows as a c<strong>on</strong>sequence of (i) and (ii) in Propositi<strong>on</strong> 2.16.<br />

From (2.27), (2.28) and Corollary 2.17 we can c<strong>on</strong>clude that a soluti<strong>on</strong> u of the linear<br />

problem (2.1) satisfies<br />

u ∈ L ∞ (R : H 1 (R)) ∩ L q (R : L p 1 (R)),<br />

where p, q and the initial data satisfy the c<strong>on</strong>diti<strong>on</strong>s in those results.<br />


CHAPTER 3<br />

N<strong>on</strong>linear Problem. Local Theory<br />

In this chapter we establish the local theory for the IVP in the spaces L 2 (R) and<br />

H 1 (R).<br />

3.1. Local Existence Theory in L 2<br />

This secti<strong>on</strong> is devoted to prove local well-posedness of the IVP (1.1) for data (f, g) =<br />

(f, h ′ ) ∈ L 2 (R)×Ḣ−1 (R). We remind that Ḣ−1 (R) denotes the space of functi<strong>on</strong>s which are<br />

x-derivative of L 2 -functi<strong>on</strong>s. As we menti<strong>on</strong>ed in the introducti<strong>on</strong> this restricti<strong>on</strong> allows<br />

to settle the problem in L 2 . Here, we succeed showing that the IVP (1.1) is locally well<br />

posed when 0 < α < 4. Note that this is the same result obtained for the <strong>on</strong>e-dimensi<strong>on</strong>al<br />

n<strong>on</strong>linear Schrödinger equati<strong>on</strong> (1.8) in the L 2 case. To accomplish this result we c<strong>on</strong>sider<br />

the integral equati<strong>on</strong><br />

∫ t<br />

u(t) = V 1 (t)f(x) + V 2 (t)h ′ (x) −<br />

0<br />

V 2 (t − τ)(|u| α u) xx (τ) dτ (3.1)<br />

where V 1 (t)f(·) and V 2 (t)h ′ (·) are defined as in Lemma 2.7 and Lemma 2.8 respectively.<br />

Then combining the estimates established in the previous chapter (smoothing effects) with<br />

a c<strong>on</strong>tracti<strong>on</strong> mapping argument we c<strong>on</strong>clude that the integral equati<strong>on</strong> (3.1) has a unique<br />

soluti<strong>on</strong>. This soluti<strong>on</strong> is a str<strong>on</strong>g soluti<strong>on</strong> of the IVP (1.1).<br />

Also we will see below that the same techniques used to show that Φ (see (3.3) below)<br />

is a c<strong>on</strong>tracti<strong>on</strong> allows us c<strong>on</strong>clude that the soluti<strong>on</strong> not <strong>on</strong>ly depends <strong>on</strong> the data<br />

c<strong>on</strong>tinuously, but also that this applicati<strong>on</strong> is Lipschitz. Finally, we will show that these<br />

soluti<strong>on</strong>s satisfy the smoothing effect of Kato type previously discussed.<br />

Now c<strong>on</strong>sider the following complete metric space:<br />

X a T = { u ∈ C([0, T ] : L 2 (R)) ∩ L 4 ([0, T ] : L ∞ (R) ) :<br />

sup ‖u(t)‖ 2 ≤ a , ‖u‖ L 4<br />

T L ∞ x<br />

[0,T ]<br />

:= ( ∫ T<br />

If 0 < α < 4 define for f ∈ L 2 (R) and g = h ′ ∈ Ḣ−1 (R)<br />

∫ t<br />

Φ (f,g) (u)(t)=Φ(u)(t)=V 1 (t)f(x)+V 2 (t)h ′ (x)−<br />

where V 1 (t)f(·) and V 2 (t)h ′ (·) are as above.<br />

25<br />

0<br />

0<br />

‖u(t)‖ 4 L ∞ x dt) 1/4 ≤ a<br />

}<br />

.<br />

(3.2)<br />

V 2 (t − τ)(|u| α u) xx (τ)dτ (3.3)


26 3. NONLINEAR PROBLEM. LOCAL THEORY<br />

Propositi<strong>on</strong> 3.1.<br />

Φ(u(t)) : XT a ↦→ XT<br />

a<br />

for some T and a depending <strong>on</strong> δ and α, where δ = max(δ 1 , δ 2 ), and ‖f‖ 2 ≤ δ 1 , ‖h‖ −1,2 ≤<br />

δ 2 .<br />

Proof. Using the estimates (2.27), (2.33), (2.37) and Holder’s inequality we have the<br />

following chain of inequalities<br />

sup ‖Φ(u)(t)‖ 2 ≤ C ( )<br />

‖f‖ 2 + ‖h‖ −1,2 + c<br />

[0,T ]<br />

∫T<br />

≤ c ( )<br />

‖f‖ 2 + ‖h‖ −1,2 + C sup ‖u(t)‖ 2<br />

[0,T ]<br />

0<br />

‖u(τ)‖ 2 ‖|u| α ‖ ∞ dτ<br />

(3.4)<br />

0<br />

≤ c ( )<br />

‖f‖ 2 + ‖h‖ −1,2 + C sup ‖u(t)‖ 2 T (4−α)/4 ‖u‖ α L 4 T<br />

[0,T ] L∞ x<br />

≤ 2c δ + c a α+1 T (4−α)/4<br />

choosing a = 4c δ the last term above is bounded by the expressi<strong>on</strong><br />

Now fixing T such that<br />

2c δ ( 1 + 2 2α+1 c α δ α T (4−α)/4) .<br />

∫T<br />

‖|u| α ‖ ∞ dτ<br />

2 2α+1 c α δ α T (4−α)/4 < 1 (3.5)<br />

then<br />

sup ‖Φ(u)(t)‖ 2 ≤ 4c δ.<br />

[0,T ]<br />

Denote by T 1 the T chosen in (3.5).<br />

On the other hand, the estimates (2.28), (2.34), (2.38) and Holder’s inequality give<br />

‖Φ(u)(t)‖ L 4<br />

T L ∞ x<br />

≤ c (1 + T 1/4 ) ( ∫T<br />

)<br />

‖f‖ 2 + ‖h‖ −1,2 + c<br />

0<br />

‖u‖ 2 ‖|u| α ‖ ∞ dτ<br />

≤ c (1 + T 1/4 ) ( )<br />

‖f‖ 2 + ‖h‖ −1,2 + c sup ‖u(t)‖ 2 T (4−α)/4 ‖u‖ α (3.6)<br />

L 4 T<br />

[0,T ] L∞ x<br />

≤ c (1 + T 1/4 ) ( )<br />

‖f‖ 2 + ‖h‖ −1,2 + c a α+1 T (4−α)/4<br />

choosing a as before, we find that the above term is bounded by<br />

Now fixing T such that<br />

we have<br />

Denote by T 2 the T in (3.7).<br />

2c δ(1 + T 1/4 + T (4−α)/4 2 2α+1 c α+1 δ α ).<br />

T 1/4 + 2 2α+1 c α+1 δ α T (4−α)/4 < 1 (3.7)<br />

‖Φ(u)‖ L 4<br />

T L ∞ x<br />

≤ 4c δ.


3.1. LOCAL EXISTENCE THEORY IN L 2 27<br />

Thus if we take T = min(T 1 , T 2 ) the proof is completed.<br />

□<br />

Theorem 3.2. If 0 < α < 4 then for all f ∈ L 2 (R) and g = h ′ ∈ Ḣ−1 (R) there exist<br />

T = T (δ, α) > 0 and a unique soluti<strong>on</strong> u of the integral equati<strong>on</strong> (3.1) in [0, T ] with<br />

u ∈ C ( [0, T ] : L 2 (R) ) ∩ L 4( [0, T ] : L ∞ (R) ) .<br />

Moreover, for any T 0 < T there exists a neighborhood Y of (f, g) ∈ L 2 (R) × Ḣ−1 (R),<br />

where the map (f, h ′ ) → u is Lipschitz from Y to C ( [0, T 0 ] : L 2 (R) ) ∩ L 4( [0, T 0 ] : L ∞ (R) ) .<br />

Proof. To prove the first part of this theorem we are going to use a c<strong>on</strong>tracti<strong>on</strong><br />

mapping argument. According with Propositi<strong>on</strong> 3.1 we <strong>on</strong>ly need to prove that Φ(u)(t) is<br />

a c<strong>on</strong>tracti<strong>on</strong> map. Let u and v be in X a T , with data f and h′ . By the definiti<strong>on</strong> of Φ(u)(t)<br />

∫t<br />

( )<br />

Φ(u) − Φ(v) (t) = −<br />

0<br />

V 2 (t − τ) ( |u| α u − |v| α v ) (τ) dτ<br />

xx<br />

Thus using the the estimate (2.37) and Holder’s inequality we get<br />

sup ∥ ( Φ(u)−Φ(v) ) (t) ∥ ≤ c<br />

2<br />

[0,T ]<br />

∫ T<br />

≤ c<br />

0<br />

∫ T<br />

0<br />

‖|u| α u − |v| α v‖ 2 dτ<br />

‖ ( |u| α + |v| α) (u − v)‖ 2 dτ<br />

≤ c sup ‖(u − v)(t)‖ 2 (<br />

[0,T ]<br />

∫ T<br />

0<br />

∫ T<br />

‖u‖ α ∞ dτ +<br />

≤ c T (4−α)/4 (<br />

sup ‖(u − v)(t)‖ 2 ‖u‖<br />

α<br />

L 4 T<br />

[0,T ]<br />

L∞ x<br />

≤ 2(4cδ) α T (4−α)/4 sup ‖(u − v)(t)‖ 2 .<br />

[0,T ]<br />

0<br />

‖v‖ α ∞ dτ)<br />

+ ‖v‖α L 4 T L∞ x<br />

Now, the use of the estimate (2.38) and Holder’s inequality as in (3.5) give<br />

‖ ( Φ(u) − Φ(v) ) ∫T<br />

‖ L 4<br />

T L ∞ ≤ c x<br />

0<br />

‖|u| α u − |v| α v‖ 2 dτ<br />

≤ 2(4cδ) α T (4−α)/4 sup ‖(u − v)(t)‖ 2 .<br />

[0,T ]<br />

From (3.8), (3.9), and the choice of T and a in (3.7) we have that,<br />

2(4c δ) α T (4−α)/4 < 1.<br />

)<br />

(3.8)<br />

(3.9)<br />

Thus Φ is a c<strong>on</strong>tracti<strong>on</strong> map. Hence using the c<strong>on</strong>tracti<strong>on</strong> mapping principle we establish<br />

existence and uniqueness of soluti<strong>on</strong>s to (3.1) in XT a . However, the uniqueness holds in a


28 3. NONLINEAR PROBLEM. LOCAL THEORY<br />

large class<br />

X = C ( [0, T ] : L 2 (R) ) ∩ L 4( [0, T ] : L ∞ (R) ) .<br />

In fact, suppose ũ ∈ X satisfying the initial data, then it is easy to see that for T ′ < T<br />

sufficiently small ũ ∈ X a T ′ . Therefore u = ũ in R × [0, T ′ ]. Reapplying this argument we<br />

obtain the desired result.<br />

To prove that for any T 0 < T the map from Y ↦→ C ( [0, T 0 ] : L 2 (R) ) ∩ L 4( [0, T 0 ] :<br />

L ∞ (R) ) is c<strong>on</strong>tinuous, let us take u and v soluti<strong>on</strong>s of (3.1) with data (f 0 , h ′ 0 ) and (f 1, h ′ 1 ),<br />

respectively then<br />

u(t) − v(t) = V 1 (t)(f 0 − f 1 ) + V 2 (t)(h ′ 0 − h ′ 1)<br />

∫ T 0<br />

−<br />

0<br />

V 2 (t − τ)∂ 2 x(<br />

|u| α u − |v| α v ) (τ) dτ.<br />

Using the same argument as in (3.4) and (3.8) we have<br />

sup ‖(u − v)(t)‖ 2 ≤ c ( )<br />

‖f 0 − f 1 ‖ 2 + ‖h 0 − h 1 ‖ −1,2<br />

[0,T ]<br />

+ c T (4−α)/4<br />

0 (‖u‖ α L + 4 T L∞ ‖v‖α x L ) sup ‖(u − v)(t)‖ 4 2<br />

T L∞ x<br />

≤ c ( ‖f 0 − f 1 ‖ 2 + ‖h 0 − h 1 ‖ −1,2<br />

)<br />

[0,T ]<br />

+ 2c T (4−α)/4<br />

0 (4cδ) α sup ‖(u − v)(t)‖ 2 .<br />

[0,T ]<br />

On the other hand, the arguments used (3.6) and (3.9) imply that<br />

1/4<br />

‖u − v‖ L 4<br />

T0 L ∞ ≤ c (1 + T<br />

x 0 ) ( )<br />

‖f 0 − f 1 ‖ 2 + ‖h 0 − h 1 ‖ −1,2<br />

+ T (4−α)/4<br />

0 (‖u‖ α L + 4 T L∞ ‖v‖α x L ) sup ‖(u − v)(t)‖ 4 2<br />

T L∞ x<br />

[0,T ]<br />

≤ c (1 + T 1/4<br />

0 ) ( )<br />

‖f 0 − f 1 ‖ 2 + ‖h 0 − h 1 ‖ −1,2<br />

+ 2T (4−α)/4<br />

0 (4cδ) α sup ‖(u − v)(t)‖ 2 .<br />

[0,T 0 ]<br />

Now using (3.7) we obtain<br />

sup { }<br />

sup ‖(u − v)(t)‖ 2 , ‖u − v‖ L 4<br />

T0 L ∞ x<br />

[0,T 0 ]<br />

≤ c α (T 0 ) ( )<br />

‖f 0 − f 1 ‖ 2 + ‖h 0 − h 1 ‖ −1,2<br />

(3.10)<br />

(3.11)<br />

(3.12)<br />

which yields the result.<br />

□<br />

Corollary 3.3. If 0 < α < 4 then for all f ∈ L 2 (R) and g = h ′ ∈ Ḣ−1 (R) there<br />

exist T = T (δ, α) > 0 and a unique soluti<strong>on</strong> u of the integral equati<strong>on</strong> (3.1) in [0, T ] with<br />

and<br />

u ∈ C([0, T ] : L 2 (R)) ∩ L 4 ([0, T ] : L ∞ (R))<br />

D 1/2<br />

x u ∈ L ∞ (R : L 2 ([0, T ])).


3.2. LOCAL EXISTENCE THEORY IN H 1 29<br />

Moreover, for any T 0 < T there exists a neighborhood U of (f, h ′ ) ∈ L 2 (R) × Ḣ−1 (R),<br />

where the map<br />

(f, h ′ ) ↦→ u<br />

is Lipschitz from U to<br />

X T = { u ∈C([0, T 0 ] : L 2 (R)) ∩ L 4 ([0, T 0 ] : L ∞ (R)) /<br />

D 1/2<br />

x u ∈ L ∞ (R : L 2 ([0, T 0 ]))<br />

Proof. We will <strong>on</strong>ly show that Φ(u)(t) ∈ X T , the remaining part of the proof follows<br />

from the arguments in the proof of Theorem 3.2 and the estimates in Propositi<strong>on</strong> 2.11.<br />

By Propositi<strong>on</strong> 3.1, we <strong>on</strong>ly need to prove that<br />

( ∫T<br />

1/2<br />

sup |Dx 1/2 Φ(u)(t)| dt) 2 ≤ a, with a = 4cδ.<br />

x<br />

0<br />

So using Propositi<strong>on</strong> 2.11 and Holder’s inequality we obtain<br />

( ∫T<br />

sup<br />

x<br />

0<br />

Taking a = 4cδ and T such that<br />

the result follows.<br />

) 1/2<br />

|Dx<br />

1/2 Φ(u)(t)| 2 dt ≤ c(1 + T 1/2 ) { }<br />

‖f‖ 2 + ‖h‖ −1,2<br />

∫ T<br />

+ c(1 + T 1/2 )<br />

0<br />

‖|u| α u‖ 2 dτ<br />

≤ c(1 + T 1/2 ) { ‖f‖ 2 + ‖h‖ −1,2<br />

}<br />

+ c(1 + T 1/2 )T (4−α)/4 sup ‖u(t)‖ 2 ‖u‖ α L . 4 T<br />

[0,T ]<br />

L∞ x<br />

T 1/2 + (1 + T 1/2 )T (4−α)/4 2 2α+1 δ α c α < 1<br />

Remark 3.4. It is easy to see that u t ∈ C([0, T ] : H −2 (R)).<br />

Remark 3.5. Note that when α = 4 we cannot c<strong>on</strong>trol the sizes of the terms involving<br />

the ||·|||-norm and sup‖·‖ 2 -norm, therefore the c<strong>on</strong>tracti<strong>on</strong> principle is not applicable with<br />

[0,T ]<br />

the same arguments used in Theorem 3.2. However, we will see in secti<strong>on</strong> 3.3 that with<br />

an additi<strong>on</strong>al hypothesis, the local well-posedness can be proved when α = 4.<br />

3.2. Local Existence Theory in H 1<br />

Here we study the local well-posedness of the IVP (1.1) with data (f, g) = (f, h ′ ) ∈<br />

H 1 (R) × L 2 (R). To do this, we follow the ideas used in [11], [23], and [18] to develop<br />

the theory in H 1 for the n<strong>on</strong>linear Schrödinger equati<strong>on</strong> (1.8). We want to point out that<br />

our result in this case is similar to the <strong>on</strong>e-dimensi<strong>on</strong>al case for the NLS. More precisely,<br />

we show that the IVP (1.1) is locally well posed when α > 0. As we noticed in the<br />

introducti<strong>on</strong> H 1 × L 2 is the appropriate space to solve the IVP (1.1).<br />

}<br />

.<br />


30 3. NONLINEAR PROBLEM. LOCAL THEORY<br />

To prove the local existence we will make use of the estimates obtained in Chapter 2<br />

and a c<strong>on</strong>tracti<strong>on</strong> mapping argument.<br />

In this secti<strong>on</strong> it will be used the following notati<strong>on</strong>.<br />

||u|| 1 =<br />

( ∫ T<br />

0<br />

) 1/4 ( ∫ T<br />

‖u(t)‖ 4 ∞ dt +<br />

C<strong>on</strong>sider the following complete metric space<br />

Y a T = { u ∈C([0, T ] : H 1 (R)) ∩ L 4 ([0, T ] : L ∞ 1 (R) ) /<br />

sup<br />

[0,T ]<br />

0<br />

‖u x (t)‖ 4 ∞ dt) 1/4.<br />

(−∆) −1/2 ∂ t u ∈ C([0, T ] : L 2 (R)),<br />

‖u(t)‖ 1,2 ≤ a, ||u(t)|| 1 ≤ a, sup ‖(−∆) −1/2 ∂ t u(t)‖ 2 ≤ a }<br />

[0,T ]<br />

Propositi<strong>on</strong> 3.6. For 0 < α, f ∈ H 1 (R) and g = h ′ ∈ L 2 (R) define Φ(u)(t) as in<br />

(3.3). Then<br />

Φ(u)(t) : Y a T → Y a T<br />

for some T and a depending <strong>on</strong> δ and α, where δ = max(δ 1 , δ 2 ), and ‖f‖ 1,2 ≤ δ 1 , ‖h‖ 2 ≤ δ 2<br />

.<br />

Proof. Using (2.28), (2.34), (2.38) in c<strong>on</strong>juncti<strong>on</strong> with Sobolev’s embedding theorem<br />

we obtain<br />

‖Φ(u)‖ L 4<br />

T L ∞ x<br />

. ≤ c(1 + T 1/4 )‖f‖ 2 + ‖h‖ −1,2 + c ‖u‖ α ∞‖u‖ 2 dτ<br />

≤ c (1 + T 1/4 )‖f‖ 1,2 + ‖h‖ 2 + c T sup ‖u(t)‖ α+1<br />

1,2<br />

0<br />

(3.13)<br />

[0,T ]<br />

∫ T<br />

The same argument as in (3.13) gives us the following<br />

‖∂ x Φ(u)‖ L 4<br />

T L ∞ x<br />

≤ c (1 + T 1/4 )(‖f‖ 1,2 + ‖h‖ 2 ) + c T sup ‖u(t)‖ α+1<br />

1,2 . (3.14)<br />

[0,T ]<br />

Then from (3.13) and (3.14) it follows that<br />

||Φ(u)|| 1 ≤ 2c (1 + T 1/4 ) ( )<br />

‖f‖ 1,2 + ‖h‖ 2 + 2c T sup ‖u(t)‖ α+1<br />

1,2<br />

[0,T ]<br />

(3.15)<br />

≤ 2c (1 + T 1/4 )(2δ) + 2cT a α+1<br />

choosing a = 8cδ and T such that<br />

(T 1/4 + T 2 3α+2 c α+1 δ α ) < 1 (3.16)<br />

it follows that<br />

||Φ(u)|| 1 ≤ 8cδ.


3.2. LOCAL EXISTENCE THEORY IN H 1 31<br />

Now, if we use (2.27), (2.33), (2.37) and the Sobolev embedding we get<br />

Similarly, we obtain<br />

∫ T<br />

sup ‖Φ(u)(t)‖ 2 ≤ c (‖f‖ 2 + ‖h‖ −1,2 ) + c ‖u‖ α ∞‖u‖ 2 dτ<br />

[0,T ]<br />

0<br />

(3.17)<br />

≤ c (‖f‖ 1,2 + ‖h‖ 2 ) + c T sup ‖u(t)‖ α+1<br />

1,2 .<br />

[0,T ]<br />

sup<br />

[0,T ]<br />

‖∂ x Φ(u)(t)‖ 2 ≤ c (‖f‖ 1,2 + ‖h‖ 2 ) + c T sup ‖u(t)‖ α+1<br />

1,2 . (3.18)<br />

[0,T ]<br />

From (3.17) and (3.18) it follows that<br />

sup<br />

[0,T ]<br />

‖Φ(u)(t)‖ 1,2 ≤ sup<br />

[0,T ]<br />

Choosing a = 8cδ and T such that<br />

we have that<br />

‖Φ(u)(t)‖ 2 + sup ‖∂ x Φ(u)(t)‖ 2<br />

[0,T ]<br />

≤ 2 c ( )<br />

‖f‖ 1,2 + ‖h‖ 2 + 2c T sup ‖u(t)‖ α+1<br />

1,2<br />

[0,T ]<br />

≤ 2c (2δ) + 2c T a α+1 .<br />

(2 3α+2 c α+1 δ α T ) < 1 (3.19)<br />

sup ‖u(t)‖ 1,2 ≤ 8cδ.<br />

[0,T ]<br />

Finally, to estimate ‖(−∆) −1/2 ∂ t Φ(u)‖ 2 we use the Propositi<strong>on</strong> 2.12, that combined<br />

with the Sobolev embedding yield<br />

∫ T<br />

sup ‖(−∆) −1/2 ∂ t Φu(t)‖ 2 ≤ c (‖f‖ 1,2 + ‖h‖ 2 ) + c |||u| α u|| 1,2 dτ<br />

[0,T ]<br />

0<br />

(3.20)<br />

≤ c (‖f‖ 1,2 + ‖h‖ 2 ) + c T sup ‖u‖ α+1<br />

1,2 .<br />

[0,T ]<br />

Therefore,<br />

sup ‖(−∆) −1/2 ∂ t Φ(u)‖ 2 ≤ 2cδ + cT a α+1 .<br />

[0,T ]<br />

So, taking a and T as in (3.19) it follows that<br />

sup ‖(−∆) −1/2 ∂ t Φ(u)‖ 2 ≤ 4cδ<br />

[0,T ]<br />

Hence, we have proved that Φ(u) ∈ Y a T . □ □<br />

Theorem 3.7. If 0 < α then for all f ∈ H 1 (R) and g = h ′ ∈ L 2 (R) there exist<br />

T = T (δ, α) > 0 and a unique soluti<strong>on</strong> u of the integral equati<strong>on</strong> (3.1) in [0, T ] with<br />

and<br />

u ∈ C([0, T ] : H 1 ) ∩ L 4 ([0, T ] : L ∞ 1 )<br />

(−∆) −1/2 ∂ t u ∈ C([0, T ] : L 2 ).


32 3. NONLINEAR PROBLEM. LOCAL THEORY<br />

Moreover, for any T 0 < T there exists a neighborhood W of (f, ∂ x h) ∈ H 1 (R) × L 2 (R),<br />

where the map<br />

(f, h ′ ) ↦→ u<br />

is Lipschitz from W to<br />

{<br />

u ∈ C([0, T0 ] : H 1 ) ∩ L 4 ([0, T 0 ] : L ∞ 1 ) / (−∆) −1/2 ∂ t u ∈ C([0, T 0 ] : L 2 ) } .<br />

Proof. Following the ideas in the proof of the L 2 ×Ḣ−1 case, we will use a c<strong>on</strong>tracti<strong>on</strong><br />

mapping argument and the estimates in secti<strong>on</strong> 2 to prove the first part of this theorem.<br />

The propositi<strong>on</strong> 3.6 assures that Φ(u)(t) : YT a → Y T a , so we <strong>on</strong>ly need to show that Φ is a<br />

c<strong>on</strong>tracti<strong>on</strong>.<br />

Let u and v in YT a, with data f and g = ∂ xh, by the definiti<strong>on</strong> of Φ it follows that<br />

∫t<br />

( )<br />

Φ(u) − Φ(v) (t) = −<br />

Using a similar argument as in (3.8), and (3.13) we obtain<br />

‖Φ(u) − Φ(v)‖ L 4<br />

T L ∞ x<br />

≤ CT sup<br />

[0,T ]<br />

0<br />

V 2 (t − τ) ( |u| α u − |v| α v ) (τ) dτ. (3.21)<br />

xx<br />

(<br />

‖(u − v)(t)‖ 1,2 sup ‖u‖ α 1,2 + sup ‖v‖ α )<br />

1,2<br />

[0,T ]<br />

[0,T ]<br />

To estimate ∂ x Φ(u) − ∂ x Φ(v) in L 4 T L∞ x -norm we will use the following inequality<br />

(3.22)<br />

||u| α u x − |v| α v x | ≤ c {( |u| α−1 + |v| α−1) |u − v||u x | + |v| α |u x − v x | } . (3.23)<br />

Then combining the estimate (2.38), the inequality (3.23), Sobolev embedding and<br />

Young’s inequality we obtain<br />

‖∂ x Φ(u) − ∂ x Φ(v)‖ L 4<br />

T L ∞ x<br />

∫ T<br />

≤ c<br />

0<br />

≤ c T ( sup<br />

[0,T ]<br />

∫T<br />

≤ c<br />

0<br />

‖|u| α u x − |v| α v x ‖ 2 dτ<br />

‖|u| α−1 + |v| α−1 ‖ ∞ ‖u − v‖ ∞ ‖u x ‖ 2 dτ + c<br />

‖u(t)‖ α 1,2 + sup<br />

[0,T ]<br />

‖v(t)‖ α 1,2)<br />

sup<br />

[0,T ]<br />

Combining (3.22) and (3.24) we have<br />

||Φ(u) − Φ(v)||| 1<br />

≤ c T sup<br />

[0,T ]<br />

‖(u − v)(t)‖ 1,2<br />

{<br />

2 sup<br />

[0,T ]<br />

≤ c T (4a α ) sup ‖(u − v)(t)‖ 1,2 .<br />

[0,T ]<br />

∫ T<br />

0<br />

‖(u − v)(t)‖ 1,2 .<br />

‖|v| α ‖ ∞ ‖u x − v x ‖ 2 dτ<br />

‖u(t)‖ α 1,2 + 2 sup ‖v(t)‖ α }<br />

1,2<br />

[0,T ]<br />

Following the arguments in (3.13) and (3.18) it is obtained<br />

sup<br />

[0,T ]<br />

‖(u − v)(t)‖ 2 ≤ c T sup<br />

[0,T ]<br />

‖(u − v)(t)‖ 1,2<br />

{<br />

sup<br />

[0,T ]<br />

‖u(t)‖ α 1,2 + sup ‖v(t)‖ α 1,2<br />

[0,T ]<br />

(3.24)<br />

(3.25)<br />

}<br />

.<br />

(3.26)<br />

The estimate (2.37), inequality (3.23), Sobolev embedding and Young’s inequality give


3.2. LOCAL EXISTENCE THEORY IN H 1 33<br />

sup ‖ ( ∂ x Φ(u) − ∂ x Φ(v) ) (t)‖ 2<br />

[0,T ]<br />

≤ cT sup<br />

[0,T ]<br />

Combining (3.26) and (3.27)<br />

‖(u − v)(t)‖ 1,2<br />

{<br />

sup<br />

[0,T ]<br />

‖u(t)‖ α 1,2 + sup ‖v(t)‖ α } (3.27)<br />

1,2 .<br />

[0,T ]<br />

sup ‖ ( Φ(u) − Φ(v) ) (t)‖ 1,2<br />

[0,T ]<br />

≤ 2c T sup<br />

[0,T ]<br />

‖(u − v)(t)‖ 1,2<br />

{<br />

sup<br />

[0,T ]<br />

≤ cT (4a α ) sup ‖(u − v)(t)‖ 1,2 .<br />

[0,T ]<br />

‖u(t)‖ α 1,2 + sup ‖v(t)‖ α }<br />

1,2<br />

[0,T ]<br />

(3.28)<br />

Finally, using the same arguments as in (3.20) and (3.24) we obtain<br />

sup ‖(−∆) −1/2 ∂ t Φ(u) − (−∆) −1/2 ∂ t Φ(v)‖ 2<br />

[0,T ]<br />

≤ c<br />

≤ c<br />

∫ T<br />

0<br />

∫ T<br />

0<br />

≤ c T sup<br />

[0,T ]<br />

‖ ( |u| α + |v| α) |u − v|‖ 1,2 dτ<br />

‖ ( |u| α + |v| α) ∫ T<br />

‖ ∞ ‖u − v|| 2 dτ + c<br />

‖(u − v)(t)‖ 1,2<br />

{<br />

2 sup<br />

[0,T ]<br />

≤ cT (4a α ) sup ‖(u − v)(t)‖ 1,2 .<br />

[0,T ]<br />

0<br />

‖u(t)‖ α 1,2 + 2 sup<br />

[0,T ]<br />

‖ ( |u| α u x − |v| α v x<br />

)<br />

‖2 dτ<br />

‖v(t)‖ α }<br />

1,2<br />

(3.29)<br />

Combining (3.25), (3.28), (3.29) and the choice of T and a in (3.19) it follows that<br />

4cT a α < 1, therefore Φ is a c<strong>on</strong>tracti<strong>on</strong> mapping. The proof of the first part of the theorem<br />

can be completed by using the argument given in the previous secti<strong>on</strong>.<br />

To show that for any T 0 < T , the map (f, h ′ ) ↦→ u is Lipschitz from W to<br />

{<br />

u ∈ C([0, T0 ] : H 1 ) ∩ L 4 ([0, T 0 ] : L ∞ 1 ) / (−∆) −1/2 ∂ t u ∈ C([0, T 0 ] : L 2 ) }<br />

let us take u and v soluti<strong>on</strong>s of (3.1) with data (f 0 , h ′ 0 ) and (f 1, h ′ 1 ) in W respectively, then<br />

u(t) − v(t) = V 1 (t)(f 0 − f 1 ) + V 2 (t)(h ′ 0 − h ′ 1)<br />

∫ T 0<br />

−<br />

0<br />

V 2 (t − τ) ( |u| α u − |v| α v ) (τ) dτ.<br />

xx


34 3. NONLINEAR PROBLEM. LOCAL THEORY<br />

From (3.17) and (3.25)<br />

sup ‖(u − v)(t)‖ 1,2 ≤ c (‖f 0 − f 1 ‖ 1,2 + ‖h 0 − h 1 ‖ 2 )<br />

[0,T ]<br />

+ 2c T 0 sup<br />

[0,T ]<br />

‖(u − v)(t)‖ 1,2<br />

{<br />

sup<br />

[0,T ]<br />

‖u(t)‖ α 1,2 + sup ‖v(t)‖ α }<br />

1,2<br />

[0,T ]<br />

≤ c (‖f 0 − f 1 ‖ 1,2 + ‖h 0 − h 1 ‖ 2 ) + 4c T 0 a α sup ‖(u − v)(t)‖ 1,2 .<br />

[0,T ]<br />

Similarly, from (3.13) and (3.24) it follows that<br />

||u − v||| 1 ≤ c (1 + T 1/4<br />

0 )(‖f 0 − f 1 ‖ 1,2 + ‖h 0 − h 1 ‖ 2 )<br />

+ 4c T 0 a α sup ‖(u − v)(t)‖ 1,2 .<br />

[0,T ]<br />

Finally, making use of (3.20) and (3.28) we get<br />

sup ‖(−∆) −1/2 ∂ t u(t) − (−∆) −1/2 ∂ t v(t)‖ 2<br />

[0,T ]<br />

≤ c (‖f 0 − f 1 ‖ 1,2 + ‖h 0 − h 1 ‖ 2 ) + c T 0 (4a α ) sup ‖(u − v)(t)‖ 1,2 .<br />

[0,T ]<br />

Now, by (3.19) it has that 4cT a α < 1, therefore<br />

sup { sup ‖(u − v)(t)‖ 1,2 , ||u − v|| 1 , sup ‖(−∆) −1/2 ∂ t u − (−∆) −1/2 }<br />

∂ t v‖ 2<br />

[0,T ]<br />

[0,T ]<br />

≤ c T (‖f 0 − f 1 ‖ 1,2 + ‖h 0 − h 1 ‖ 2 )<br />

Thus, if ‖f 0 − f 1 ‖ 1,2 and ‖h 0 − h 1 ‖ 2 are sufficiently small, the result follows.<br />

(3.30)<br />

(3.31)<br />

(3.32)<br />

□<br />

The following result shows that the above soluti<strong>on</strong> satisfies the Kato smoothing effect<br />

commented in the introducti<strong>on</strong>.<br />

Corollary 3.8. If 0 < α then for all f ∈ H 1 (R) and g = h ′ ∈ L 2 (R) there exist<br />

T = T (δ, α) > 0 and a unique soluti<strong>on</strong> u of the integral equati<strong>on</strong> (3.1) in [0, T ] with<br />

and<br />

u ∈ C([0, T ] : H 1 ) ∩ L 4 ([0, T ] : L ∞ 1 )<br />

D 3/2<br />

x u ∈ L ∞ (R : L 2 ([0, T ]))<br />

Moreover, for any T 0 < T there exists a neighborhood W of (f, h ′ ) ∈ H 1 (R) × L 2 (R),<br />

where the map<br />

(f, h ′ ) ↦→ u<br />

is Lipschitz from W to<br />

{<br />

u ∈ C([0, T0 ] : H 1 (R))∩ L 4 ([0, T 0 ]: L ∞ 1 (R)) / D 3/2<br />

x u ∈ L ∞ (R : L 2 ([0, T 0 ])) } .<br />

Proof. Using similar arguments as in Propositi<strong>on</strong> 3.6, Theorem 3.7, and Propositi<strong>on</strong><br />

2.11 the result follows. □


3.3. CRITICAL CASE IN L 2 35<br />

3.3. Critical case in L 2<br />

In this secti<strong>on</strong> we prove a theorem that assures the local existence, uniqueness, and<br />

c<strong>on</strong>tinuous dependence for IVP (1.1) in L 2 (R) × Ḣ−1 (R) when α = 4. Here, we follow the<br />

ideas in [11]. Note that the proof of well-posedness in this case is basically the same as<br />

in the 0 < α < 4 case. More precisely, a c<strong>on</strong>tracti<strong>on</strong> mapping argument combined with<br />

estimates of type L p ([0, T ]; L q ) will be used in the proof.<br />

To solve the problem we c<strong>on</strong>sider the following complete metric space<br />

Z a T = { u ∈ C([0, T ] : L 2 ) ∩ L 4 ([0, T ] : L ∞ ) /<br />

‖u‖ L 4<br />

T L ∞ x<br />

≤ a, sup ‖(u − u 0 )(t)‖ 2 ≤ a } ,<br />

[0,T ]<br />

where u 0 (t) = V 1 (t)f(x) + V 2 (t)h ′ (x), and the data satisfy<br />

‖V 1 (t)f‖ L 4<br />

T L ∞ x , ‖V 2(t)h ′ ‖ L 4<br />

T L ∞ x<br />

≤ δ<br />

for some a and δ to be chosen below and (f, g) = (f, h ′ ) ∈ L 2 (R) × Ḣ−1 (R).<br />

Observe that for fixed data (f, h ′ ) ∈ L 2 × Ḣ−1 given δ > 0 there exists t 0 > 0 such<br />

that<br />

‖V 1 (t 0 )f‖ L 4<br />

T L ∞ x<br />

‖V 2 (t 0 )h ′ ‖ L 4<br />

T L ∞ x<br />

and that the same estimates hold in a neighborhood of (f, h ′ ) ∈ L 2 × Ḣ−1 .<br />

Define for f ∈ L 2 (R) and g = h ′ ∈ Ḣ−1 (R)<br />

≤ δ<br />

≤ δ<br />

∫ t<br />

Φ (f,g) (u)(t) = Φ(u)(t) = V 1 (t)f(x) + V 2 (t)h ′ (x) −<br />

Our main result in this secti<strong>on</strong> is the following<br />

0<br />

V 2 (t − τ)∂ 2 x(u 5 )(τ) dτ. (3.33)<br />

Theorem 3.9. For α = 4, f ∈ L 2 (R) and g = h ′ ∈ Ḣ−1 (R) as above, there exist<br />

T > 0 and a unique soluti<strong>on</strong> u in ZT a of the integral equati<strong>on</strong> (3.1).<br />

Moreover, for T 0 < T there exists a neighborhood Y of (f, g) = (f, h ′ ) ∈ L 2 (R) ×<br />

Ḣ −1 (R) where the map (f, h ′ ) ↦→ u is Lipschitz from Y to<br />

{<br />

u ∈ C([0, T ] : L 2 (R)) ∩ L 4 ([0, T ] : L ∞ (R)) } .<br />

Before proving the theorem, we shall show the following.<br />

Propositi<strong>on</strong> 3.10. For a f ∈ L 2 (R) and g = h ′ ∈ Ḣ−1 (R) as above<br />

Φ(u(t)) : ZT a ↦→ ZT<br />

a<br />

where a depends <strong>on</strong> δ.


36 3. NONLINEAR PROBLEM. LOCAL THEORY<br />

Proof. From the definiti<strong>on</strong> of Φ and estimate (2.38)<br />

‖Φ(u)‖ L 4<br />

T L ∞ ≤ ‖V 1(t)f‖<br />

x L 4<br />

T L ∞ + ‖V 2(t)h ′ ‖<br />

x L 4<br />

T L ∞ x<br />

+ c(sup ‖(u − u 0 )(t)‖ 2 + sup ‖u 0 (t)‖ 2 )‖u‖ 4 L 4 T<br />

[0,T ]<br />

[0,T ] L∞ x<br />

≤ 2δ + c sup‖(u − u 0 )(t)‖ 2 ‖u‖ 4 L 4 T<br />

[0,T ]<br />

L∞ x<br />

≤ 2δ + ca 4 (a + M)<br />

where M = sup ‖u 0 (t)‖ 2 .<br />

[0,T ]<br />

Choosing a = 4δ and then δ such that<br />

we have that<br />

+ c sup<br />

[0,T ]<br />

‖u 0 (t)‖ 2 ‖u‖ 4 L 4 T L∞ x<br />

(3.34)<br />

2 7 δ 3 c(4δ + M) < 1 (3.35)<br />

‖Φ(u)‖ L 4<br />

T L ∞ x ≤ 4δ.<br />

On the other hand, the estimate (2.37) gives<br />

sup ‖(Φ(u) − u 0 )(t)‖ 2 ≤ c sup ‖u(t)‖ 2 ‖u‖ 4 L 4 T<br />

[0,T ]<br />

[0,T ] L∞ x<br />

≤ c sup ‖(u − u 0 )(t)‖ 2 ‖u‖ 4 L 4 T<br />

[0,T ]<br />

L∞ x<br />

≤ a 4 c (a + M).<br />

Taking a = 4δ with δ such that<br />

it follows that<br />

This shows that Φ(u(t)) : Z a T ↦→ Za T .<br />

Now we will prove the theorem<br />

+ c sup<br />

[0,T ]<br />

‖u 0 (t)‖ 2 ‖u‖ 4 L 4 T L∞ x<br />

(3.36)<br />

2 6 δ 3 c (4δ + M) < 1 (3.37)<br />

sup ‖(Φ(u) − u 0 )(t)‖ 2 ≤ 4δ<br />

[0,T ]<br />

Proof of Theorem 3.9. Applying estimate (2.38), mean value theorem, we obtain<br />

the following chain of inequalities.<br />

‖Φ(u) − Φ(v)‖ L 4<br />

T L ∞ x<br />

∫T<br />

≤<br />

≤ c<br />

0<br />

∫ T<br />

0<br />

‖u 5 − v 5 ‖ 2 dτ<br />

‖u 4 + v 4 ‖ ∞ ‖u − v‖ 2 dτ<br />

(<br />

≤ c sup ‖(u − v)(t)‖ 2 ‖u‖<br />

4<br />

L 4 T<br />

[0,T ]<br />

L∞ x<br />

≤ 2a 4 c sup ‖(u − v)(t)‖ 2 .<br />

[0,T ]<br />

+ ‖v‖4 L 4 T L∞ x<br />

)<br />

□<br />

(3.38)


3.3. CRITICAL CASE IN L 2 37<br />

On the other hand, the estimate (2.37) applied to Φ(u) − Φ(v) and the same argument<br />

above exposed give<br />

(<br />

sup ‖Φ(u) − Φ(v)‖ 2 ≤ c sup ‖u − v‖ 2 ‖u‖<br />

4<br />

L + )<br />

4<br />

T<br />

[0,T ]<br />

[0,T ]<br />

L∞ ‖v‖4 x L 4 T L∞ x<br />

≤ 2a 4 (3.39)<br />

c sup ‖u − v‖ 2 .<br />

[0,T ]<br />

Noticing that by (3.35), 2a 4 c < 1 we can c<strong>on</strong>clude that Φ is a c<strong>on</strong>tracti<strong>on</strong>.<br />

The remaining part of the proof uses a previous argument. Therefore it will be omitted.<br />


CHAPTER 4<br />

Global Theory. Persistence<br />

4.1. Global Theory in H 1<br />

In this secti<strong>on</strong> our aim is to prove that for small data the soluti<strong>on</strong> of the IVP (1.1)<br />

in H 1 × L 2 can be extended globally (t > 0). To show this, we combine the c<strong>on</strong>servati<strong>on</strong><br />

law (4.2) (see below) and <strong>on</strong>e of the results obtained by J. B<strong>on</strong>a and R. Sachs in [6]. As<br />

we pointed out in the introducti<strong>on</strong>, Kato’s theory [22] allowed them to show the local<br />

well-posedness of the system (1.5)-(1.6) for smooth data, as we will see below.<br />

We begin by stating the following result of B<strong>on</strong>a and Sachs in [6].<br />

Denote by<br />

Y s (T ) = C ( [0, T ] : H s+2 (R) ) ∩ C 1( [0, T ] : H s (R) ) ∩ C 2 ([0, T ] : H s−2 (R)).<br />

Theorem 4.1. Let u 0 ∈ H s+2 (R) and v 0 ∈ H s+1 (R) for some s > 1/2. Then there<br />

exists a T > 0, depending <strong>on</strong>ly up<strong>on</strong> of (u 0 , v 0 ) ∈ H s+2 (R) × H s+1 (R), and a unique<br />

functi<strong>on</strong> u ∈ Y s (T ) which is soluti<strong>on</strong> of the equati<strong>on</strong> in (1.1) in the distributi<strong>on</strong>al sense <strong>on</strong><br />

R × [0, T ], and for which u(·, 0) = u 0 and u t (·, 0) = v 0 ′ . The soluti<strong>on</strong> depends c<strong>on</strong>tinuously<br />

up<strong>on</strong> the data (u 0 , v 0 ) in the sense that the mapping that associates to (u 0 , v 0 ) the soluti<strong>on</strong><br />

u is c<strong>on</strong>tinuous from H s+2 (R) × H s+1 (R) into Y s (T ). If s > 5/2 the soluti<strong>on</strong> is classical.<br />

Proof. See Corollary 2 in [6].<br />

□<br />

Now, c<strong>on</strong>sider the equati<strong>on</strong><br />

u tt − u xx + u xxxx + (|u| α−1 u) xx = 0. (4.1)<br />

Suppose that u is a soluti<strong>on</strong> of the initial-value problem (1.1) given by Theorem 4.1<br />

for s sufficiently large, thus we can proceed as follows.<br />

Apply the operarator (−∆) −1 to the equati<strong>on</strong> (4.1) and multiply by u t , then integrating<br />

respect to x, we obtain the following<br />

or<br />

1 d {<br />

‖(−∆) −1/2 u t ‖ 2 2 + ‖u‖ 2 2 + ‖u x ‖ 2 2 − 2<br />

2 dt<br />

α + 1<br />

α+1} ‖u‖α+1 = 0<br />

‖(−∆) −1/2 u t ‖ 2 2 + ‖u‖ 2 2 + ‖u x ‖ 2 2 − 2<br />

α + 1 ‖u‖α+1<br />

= K 0 (4.2)<br />

where K 0 = K 0 (f 0 , g 0 ).<br />

The relati<strong>on</strong> (4.2) is the main tool to show that ‖u(t)‖ 1,2 remains bounded <strong>on</strong> the interval<br />

[0, T ′ ) for small data, and so ‖(−∆) −1/2 u t ‖ 2 does. Hence we can apply the Theorem<br />

4.2 again to c<strong>on</strong>tinue the soluti<strong>on</strong>. So we have the following<br />

39


40 4. GLOBAL THEORY. PERSISTENCE<br />

Theorem 4.2. Suppose that ‖f‖ 1,2 and ‖g‖ 2 = ‖∂ x h‖ 2 are sufficiently small, then for<br />

0 < α, the soluti<strong>on</strong> of the integral equati<strong>on</strong> (3.1) given in Theorem 4.2 extends to any time<br />

interval in the same class.<br />

Proof. From (4.2) we have<br />

‖u‖ 2 1,2 − c ‖u‖ α+1<br />

α+1 ≤ K 0.<br />

Sobolev embedding gives<br />

‖u‖ 2 1,2 − c ‖u‖ α+1<br />

1,2 ≤ K 0 .<br />

Set X(t) = ‖u(t)‖ 2 1,2 , then let f 0, g 0 be initial data with ‖f 0 ‖ 1,2 , ‖g‖ 2 ≪ 1 such that<br />

K 0 satisfies<br />

0 < X(0) − c X(0) (α+1)/2 ≤ K 0 . (4.3)<br />

The inequality<br />

X(t) ≤ K 0 + c X(t) 1+ɛ , ɛ > 0<br />

is satisfied if X(t) ∈ [0, β 1 ] ∪ [β 2 , ∞) with 0 < β 1 < β 2 < ∞, since K 0 is small.<br />

Now, c<strong>on</strong>diti<strong>on</strong> (4.3) ensures that X(0)(= ‖u(·, 0)‖ 2 1,2 ) ∈ [0, β 1] then the c<strong>on</strong>tinuity of<br />

X(t) allows to c<strong>on</strong>clude that X(t) remains in that interval for t < T ′ which means that<br />

sup ‖u(t)‖ 1,2 will be bounded.<br />

[0,T ′ ]<br />

To complete the proof we need to see that ‖(−∆) −1/2 u t ‖ 2 is bounded, but this follows<br />

from the identity (4.2) and the fact that sup ‖u(t)‖ 1,2 is bounded.<br />

[0,T ′ ]<br />

Applying Theorem 3.7 we can c<strong>on</strong>tinue the soluti<strong>on</strong>, thus the result follows. □<br />

In the proof of the theorem we made use of the identity (4.2), so we shall justify this<br />

to complete the vality of Theorem 4.2. To do that we shall use Kato’s techniques in [24].<br />

Let u be the soluti<strong>on</strong> of (3.1) given in Theorem 3.7 with data φ = (f, g) = (f, h ′ ) ∈<br />

H 1 (R)×L 2 (R), then we approximate φ by a sequence φ j = (f j , g j ) = (f j , h ′ j ) ∈ Hs+1 (R)×<br />

H s (R), such that<br />

‖φ j − φ‖ = ‖f j − f‖ 1,2 + ‖h ′ j − h ′ ‖ 2 → 0.<br />

Now, let u j be the soluti<strong>on</strong> to (1.1) with data<br />

u j (·, 0) = f j (·),<br />

∂ t u j (·, 0) = h ′ j(·).<br />

By Theorem 4.1 u j exists <strong>on</strong> [0, T ] for sufficiently large j and u j → u in C([0, T ] :<br />

H 1 (R)). The identity (4.2) is formally justified for u j (t) ∈ H s (R) if s is sufficiently large,<br />

letting j → ∞ and noting that u j (t) → u(t) in H 1 and (−∆) −1/2 ∂ t u j → (−∆) −1/2 ∂ t u in<br />

L 2 , we obtain (4.2) for u.<br />

4.2. Persistence<br />

In this secti<strong>on</strong> we present some results c<strong>on</strong>cerning the persistence properties in H s<br />

and the decay for soluti<strong>on</strong>s of the IVP (1.1). Since the case of interest for the scattering<br />

theory is when ψ(u) = u 2 in (1.1) we will restrict to c<strong>on</strong>sider the problem<br />

⎧<br />

⎪⎨ u tt − u xx + u xxxx + (u 2 ) xx = 0 x ∈ R, t > 0<br />

u(x, 0) = f(x)<br />

(4.4)<br />

⎪⎩<br />

u t (x, 0) = h ′ (x).


4.2. PERSISTENCE 41<br />

We begin by stating the following theorem that deals with the persistence properties<br />

in H s for soluti<strong>on</strong>s of the IVP (4.4). In this secti<strong>on</strong> we use g to denote g = h ′ .<br />

Theorem 4.3. Let (f, g) ∈ H s+1 (R) × H s (R), s ≥ 1, with ‖f‖ 1,2 and ‖g‖ 2 small, then<br />

there exists a unique soluti<strong>on</strong> u ∈ C(R + : H 1 (R)) of the IVP (4.4) such that<br />

u ∈ C b (R + : H 1 (R)) ∩ C(R + : H s+1 (R)).<br />

Proof. Applying ∂x<br />

α to the equati<strong>on</strong> in (4.4), multiplying by ∂x α u t , and integrating<br />

with respect to x, and then integrating by parts we have<br />

∫<br />

1 d {<br />

|∂x α u t | 2 + |∂x α u x | 2 + |∂x α u xx | 2} ∫<br />

dx = ∂x α (u 2 ) xx ∂x α u t dx.<br />

2 dt<br />

Now, using the Cauchy-Schwarz and Gagliardo-Nirenberg inequalities we have<br />

{<br />

}<br />

d<br />

‖∂x α u t ‖ 2 2 + ‖∂x α u x ‖ 2 2 + ‖∂x α u xx ‖ 2 2 ≤ c ‖u‖ ∞ ‖∂x α u xx ‖ 2 ‖∂x α u t ‖ 2 .<br />

dt<br />

Gr<strong>on</strong>wall’s inequality gives<br />

(<br />

‖∂<br />

α<br />

x u t ‖ 2 + ‖∂x α u x ‖ 2 + ‖∂x α )<br />

u xx ‖ 2<br />

sup<br />

[0,T ]<br />

≤<br />

} ( ∫ {‖∂ T<br />

x α g‖ 2 + ‖∂x α f x ‖ 2 + ‖∂x α f xx ‖ 2 exp C<br />

0<br />

)<br />

‖u(t)‖ ∞ dt .<br />

As usual the above formal computati<strong>on</strong> can be justified by using the c<strong>on</strong>tinuous dependence<br />

<strong>on</strong> the data.<br />

Now, using Theorem 4.2 the result follows.<br />

□<br />

Theorem 4.4. C<strong>on</strong>sider the IVP (4.4) with f ∈ H 3 (R), g ∈ H 2 (R). If xf xx , xf x and<br />

xg ∈ L 2 (R), then there exists T > 0 such that<br />

xu ∈ C([0, T ] : H 2 (R)).<br />

Moreover, if ‖f‖ 1,2 , ‖g‖ 2 ≪ 1, the result is global, i.e.<br />

Proof. From (4.4) we have<br />

xu ∈ C(R + : H 2 (R)).<br />

(xu) tt = (xu) xx − (xu) xxxx − 2(xu) x u x − 2(xu) xx u − 2u x + 4u xxx + 6uu x<br />

multiplying by (xu) t and integrating with respect to x, we find<br />

1 d<br />

{ ∫ ∫<br />

∫<br />

}<br />

[(xu) t ] 2 dx + [(xu) x ] 2 dx + [(xu) xx ] 2 dx<br />

2 dt<br />

∫<br />

∫<br />

= −2 u x (xu) x (xu) t dx − 2 u(xu) xx (xu) t dx.<br />

∫<br />

∫<br />

∫<br />

+ 4 u xxx (xu) t dx − 2 u x (xu) t dx + 6 uu x (xu) t


42 4. GLOBAL THEORY. PERSISTENCE<br />

The Cauchy-Schwarz and Young inequalities yield<br />

d {<br />

‖(xu)t ‖ 2 2 + ‖(xu) x ‖ 2 2 + ‖(xu) xx ‖ 2<br />

dt<br />

2}<br />

≤ c ( ‖u xxx ‖ 2 2 + ‖u x ‖ 2 2 + ‖u‖ 2 L ∞‖u x‖ 2 )<br />

2<br />

+ c ( 1 + ‖u‖ L ∞ + ‖u x ‖ L ∞){<br />

‖(xu)xx ‖ 2 2 + ‖(xu) x ‖ 2 2 + ‖(xu) t ‖ 2 }<br />

2<br />

≤ c ( ‖u‖ 2 3,2 + ‖u‖ 4 (<br />

1,2)<br />

+ c 1 + ‖u‖2,2 ) { ‖(xu) xx ‖ 2 2 + ‖(xu) x ‖ 2 2 + ‖(xu) t ‖ 2 }<br />

2<br />

Gr<strong>on</strong>wall’s inequality and Theorem 4.3 give the desire result.<br />

Corollary 4.5. C<strong>on</strong>sider the IVP (4.4), with f ∈ H 4 (R), g ∈ H 3 (R). If xf xxx , xf xx ,<br />

and xg x ∈ L 2 (R) then<br />

(xu x ) xx ∈ C([0, T ] : L 2 (R)).<br />

Moreover, if ‖f‖ 1,2 , ‖g‖ 2 ≪ 1, the result is global.<br />

Proof. It is an immediate applicati<strong>on</strong> of Theorem 4.4.<br />

Corollary 4.6. Same hypotheses of Corollary 4.5 and x 2 f xx , x 2 f x , x 2 g ∈ L 2 (R),<br />

then<br />

x 2 u ∈ C([0, T ] : H 2 (R)).<br />

Moreover, if ‖f‖ 1,2 , ‖g‖ 2 ≪ 1 the result is global i.e.<br />

x 2 u ∈ C(R + : H 2 (R)).<br />

Proof. The proof is similar to the proof of Theorem 4.4.<br />

As a c<strong>on</strong>sequence of the Theorem 4.3 and Theorem 4.4, we have the following result<br />

for functi<strong>on</strong>s in the Schwartz class S. i.e.<br />

{<br />

S(R) = h ∈ C ∞ (R) / sup |x γ D β h(x)| < ∞, γ, β ∈ Z +}<br />

x∈R<br />

with the topology defined by the family of seminorms ρ γβ<br />

ρ γβ (h) = sup |x γ D β h(x)|.<br />

x∈R<br />

Corollary 4.7. Let (f, g) ∈ S(R) × S(R) with ‖f‖ 1,2 , ‖g‖ 2 ≪ 1, then there exists a<br />

unique soluti<strong>on</strong> u ∈ C(R : H 1 (R)) of the IVP (4.4) such that<br />

u ∈ C(R + : H 1 (R)) ∩ C(R : S(R)).<br />

□<br />

□<br />


CHAPTER 5<br />

Asymptotic Behavior of Soluti<strong>on</strong>s<br />

In this chapter we study some aspects related to the asymptotic behavior of soluti<strong>on</strong>s<br />

to the IVP (1.1). In particular, we study the decay of soluti<strong>on</strong>s with time. We will show<br />

that the decay of soluti<strong>on</strong>s of the n<strong>on</strong>linear problem is the same inherited from the linear<br />

problem. The decay result will allow us to show the existence of soluti<strong>on</strong>s to the linear<br />

problem that approximate to soluti<strong>on</strong>s of the n<strong>on</strong>linear problem. This is called n<strong>on</strong>linear<br />

scattering. In the last secti<strong>on</strong> of this chapter we present a blow-up result for soluti<strong>on</strong>s of<br />

the IVP (1.1)<br />

5.1. Decay<br />

One interesting questi<strong>on</strong> c<strong>on</strong>cerning soluti<strong>on</strong>s of evoluti<strong>on</strong> equati<strong>on</strong>s is the behavior of<br />

these regarding the time. In this directi<strong>on</strong> we have the following result.<br />

Theorem 5.1. Let f ∈ H 1 (R) ∩ L q γ (R), g = h ′ , h ∈ L 2 (R) ∩ L q (R), and α > 4−3γ−γ2<br />

γ<br />

.<br />

2<br />

If ||f||| + ||g|| ≡ ‖f‖ 1,2 + ‖f‖γ<br />

2 ,q + ‖h‖ 2 + ‖h‖ q < δ small. Then there exists c > 0 such that<br />

the soluti<strong>on</strong> u of the IVP (1.1) satisfies<br />

where p = 2<br />

1−γ , q = 2<br />

1+2γ<br />

‖u‖ p ≤ c (1 + t) −γ/2 , t > 0,<br />

and γ ∈ (0, 1/2).<br />

Proof. The soluti<strong>on</strong> of the IVP (1.1) is written as<br />

∫ t<br />

u(t) = V 1 (t)f(x) + V 2 (t)g(x) −<br />

V 1 (t)· and V 2 (t)· are defined as in (2.26) and (2.32), respectively.<br />

From (5.1) it follows that<br />

∫ t<br />

‖u(t)‖ p ≤ ‖V 1 (t)f‖ p + ‖V 2 (t)g‖ p +<br />

then use of Propositi<strong>on</strong> 2.13 and Lemma 2.15 leads to<br />

∫ t<br />

‖u(t)‖ p ≤ c(1 + t) −γ/2 (||f|| + ||g||) + c<br />

0<br />

43<br />

0<br />

0<br />

V 2 (t − τ)(|u| α−1 u) xx (τ) dτ, (5.1)<br />

‖V 2 (t − τ)(|u| α−1 u) xx (τ)‖ p dτ,<br />

(t − τ) −γ/2 ‖|u| α−1 u(τ)‖ 2 dτ. (5.2)<br />

1+γ


44 5. ASYMPTOTIC BEHAVIOR<br />

On the other hand, Gagliardo-Nirenberg interpolati<strong>on</strong> (see appendix inequality (A.19))<br />

yields the inequality<br />

‖u‖ α α(1−γ)−(1+γ) α+1+γ<br />

2−γ<br />

2−γ<br />

2α ≤ c‖u x ‖ 2 ‖u‖ p .<br />

1+γ<br />

Hence the integral in (5.2) can be bounded as follows<br />

∫ t<br />

0<br />

(t − τ) −γ/2 ‖|u| α−1 u(τ)‖ 2<br />

1+γ<br />

∫ t<br />

×<br />

where a = α(1−γ)−(1+γ)<br />

2−γ<br />

.<br />

Next we define<br />

0<br />

(t − τ) −γ/2 ‖u(τ)‖ α+1+γ<br />

2−γ<br />

p<br />

dτ ≤ c (sup ‖u(t)‖ 1,2 ) a<br />

[0,T ]<br />

dτ<br />

M(T ) = sup(1 + t) γ/2 ‖u(t)‖ p .<br />

[0,T ]<br />

Therefore combining (5.2) and (5.3), and the definiti<strong>on</strong> of M(T ) we obtain<br />

or<br />

M(T ) ≤ c(‖f‖ + ‖g‖)<br />

+c(sup ‖u(t)‖ 1,2 ) a (1 + t) γ/2 M(T ) α+1+γ<br />

2−γ<br />

[0,T ]<br />

Now using the hypothesis α > 4−3γ−γ2<br />

γ<br />

∫ t<br />

0<br />

we have that<br />

(t − τ) −γ/2 (1 + τ) − γ 2 ( α+1+γ<br />

2−γ ) dτ<br />

M(T ) ≤ c(‖f‖ + ‖g‖) + c ′ (sup ‖u(t)‖ 1,2 ) a M(T ) α+(1+γ)<br />

2−γ<br />

[0,T ]<br />

M(T ) ≤ cδ + c ′ δ a M(T ) α+(1+γ)<br />

2−γ .<br />

Therefore for δ sufficiently small we will have<br />

M(T ) ≤ c<br />

for any T > 0, where c is the smallest positive zero of the functi<strong>on</strong> f(x) = cδ+c ′ δx α+1+γ<br />

2−γ<br />

Thus we obtain the desired result.<br />

L q γ<br />

2<br />

Some remarks are listed.<br />

(5.3)<br />

−x.<br />

□<br />

Remark 5.2. If we assume in Theorem 5.1 f = D γ/2 f 1 ∈ H 1 (R), f 1 ∈ H 1+γ/2 (R) ∩<br />

(R), and g = D 1+γ/2 h ∈ L 2 (R), h ∈ H γ/2 (R) ∩ L q (R), we obtain<br />

where p = 2<br />

1−γ , q = 2<br />

results.<br />

1+γ<br />

‖u(t)‖ p ≤ c(1 + t) −γ/2 , t > 0,<br />

, and α > max {<br />

1+γ<br />

1−γ , 4−3γ−γ2<br />

γ<br />

}, for γ ∈ (0, 1). See [51] for related


5.2. NONLINEAR SCATTERING 45<br />

Remark 5.3. Moreover, if we assume f = D 1/2 f 1 ∈ H 1 (R) and g = D 3/2 h ∈ L 2 (R),<br />

where f 1 ∈ H 3/2 (R) ∩ L 1 1 (R) and h ∈ H 1/2 (R) ∩ L 1 (R), it can be proven that the soluti<strong>on</strong>s<br />

2<br />

of the IVP (1.1) satisfy for any x ∈ R, t > 0 and α > 4<br />

|u(x, t)| ≤ c(1 + t) −1/2 .<br />

The proof of this follows an argument similar to the proof of Theorem 5.1 but easier.<br />

5.2. N<strong>on</strong>linear Scattering<br />

In this secti<strong>on</strong> we establish a result c<strong>on</strong>cerning n<strong>on</strong>linear scattering for small data for<br />

soluti<strong>on</strong>s of the initial value problem (1.1). More precisely, under some suitable c<strong>on</strong>diti<strong>on</strong>s<br />

<strong>on</strong> the initial data and the n<strong>on</strong>linearity we obtain a result which ensures that small<br />

soluti<strong>on</strong>s of the IVP (1.1) behave asymptotically like soluti<strong>on</strong>s of the associated linear<br />

problem.<br />

Theorem 5.4. Let (f, g) = (D γ/4 f 1 , D 1+γ/4 h) ∈ H 1 (R)×L 2 (R) with ‖f‖ 1,2 +‖g‖ 2 < δ<br />

small, α = 4 γ<br />

, γ ∈ (0, 4/5) and u be the soluti<strong>on</strong> of the IVP (1.1). Then there exist unique<br />

soluti<strong>on</strong>s u ± of the linear problem associated to (1.1) such that<br />

‖u(t) − u ± (t)‖ 1,2 → 0 as t → ±∞. (5.4)<br />

In the proof of this theorem we follow ideas used by Strauss [47], Pecher [40] and P<strong>on</strong>ce<br />

and Vega [41] to establish similar results for the n<strong>on</strong>linear Schrödinger equati<strong>on</strong>, n<strong>on</strong>linear<br />

wave equati<strong>on</strong>, Klein-Gord<strong>on</strong> equati<strong>on</strong> and Korteweg-de Vries equati<strong>on</strong>, respectively.<br />

Affirmative results <strong>on</strong> scattering for small soluti<strong>on</strong>s are interpreted as the n<strong>on</strong>existence<br />

of solitary-wave soluti<strong>on</strong>s of arbitrary small amplitude. In this case, we notice that a simple<br />

calculati<strong>on</strong> shows that the solitary-wave soluti<strong>on</strong>s U c (ξ) in (1.4) satisfy ‖U c (·)‖ 2 > ɛ > 0<br />

for α > 5. So according to the statement above we should expect to have scattering as<br />

in (5.4) when the n<strong>on</strong>linearity power α satisfies the previous c<strong>on</strong>strain. The results in<br />

Theorem 5.4 show that scattering for small soluti<strong>on</strong>s of (1.1) occurs when the restricti<strong>on</strong><br />

<strong>on</strong> α above menti<strong>on</strong>ed is satisfied. In this sense we could say that the scattering results<br />

presented here are optimal.<br />

To prove Theorem 5.4 we first need to establish an existence result for the IVP (1.1)<br />

under some additi<strong>on</strong>al c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> the initial data. In the proof of this result we will<br />

use the integral equati<strong>on</strong> form of the IVP (1.1) (see (5.5) below).<br />

Theorem 5.5. Let (f, g) = (D γ/4 f 1 , D 1+γ/4 h) ∈ H 1 (R)×L 2 (R) with ‖f‖ 1,2 +‖g‖ 2 < δ<br />

sufficiently small and α = 4 γ , γ ∈ (0, 4/5). Let ψ denote the soluti<strong>on</strong> in H1 (R) of the linear<br />

problem (2.1). Then the integral equati<strong>on</strong><br />

∫ t<br />

u(t) = ψ(t) −<br />

0<br />

V 2 (t − τ)(|u| α−1 u) xx (τ) dτ (5.5)<br />

has a unique soluti<strong>on</strong> in X = L α (R : L p 1 (R)) ∩ L∞ (R : H 1 (R)), where p = 2<br />

1−γ .<br />

Proof. To establish this result we will use the c<strong>on</strong>tracti<strong>on</strong> mapping principle.


46 5. ASYMPTOTIC BEHAVIOR<br />

and<br />

Define<br />

∫ t<br />

Φ (f,g) (u)(t) = Φ(u)(t) = ψ(t) −<br />

0<br />

V 2 (t − τ)(|u| α−1 u) xx (τ), dτ (5.6)<br />

Y a = {v ∈ L α (R : L p 1 (R)) ∩ L∞ (R : H 1 (R)) : Λ(v) ≤ a}<br />

where Λ(v) = max{sup‖v(t)‖ 1,2 , ‖v‖ L q (R :L p 1 (R)) }.<br />

t<br />

We first shall show that Φ : Y a → Y a and next that Φ is a c<strong>on</strong>tracti<strong>on</strong> in Y a .<br />

Φ : Y a ↦→ Y a .<br />

Notice that the hypothesis α = 4 1<br />

γ<br />

with γ ∈ (0, 4/5) implies α ><br />

1−γ . With this<br />

observati<strong>on</strong> we can begin the proof of the previous statement.<br />

Use of the definiti<strong>on</strong> (5.6), (2.27), (2.33), Hölder’s inequality in the x-variable and the<br />

fact that L p 2(α−1)<br />

1 (R) ⊈ L γ (R) for α > 1<br />

1−γ<br />

, γ ∈ (0, 4/5), lead to<br />

‖Φ(u)(t)‖ 1,2 ≤ ‖ψ(t)‖ 1,2 + c<br />

≤ ‖ψ(t)‖ 1,2 + c<br />

≤ ‖ψ(t)‖ 1,2 + c<br />

∫ t<br />

0<br />

∫ ∞<br />

−∞<br />

∫ t<br />

0<br />

(‖ u(τ)‖ α−1<br />

2(α−1)<br />

γ<br />

‖ u(τ)‖ α 1,p dt.<br />

(‖ |u| α−1 u(τ)‖ 2 + ‖u|u| α−2 u x (τ)‖ 2 ) dτ<br />

‖ u(τ)‖ p + ‖ u(τ)‖ α−1<br />

2(α−1)<br />

γ<br />

‖ u x (τ)‖ p ) dτ<br />

(5.7)<br />

On the other hand, definiti<strong>on</strong> (5.6), Lemma 2.15, Hölder’s inequality in the x-variable<br />

and the embedding L p 2(α−1)<br />

1 (R) ⊂ L γ (R) for α > 1<br />

1−γ<br />

, γ ∈ (0, 4/5), yield<br />

‖Φ(u)(t)‖ p ≤ c‖ψ(t)‖ p + c<br />

≤ c‖ψ(t)‖ p + c<br />

≤ c‖ψ(t)‖ p + c<br />

∫ t<br />

0<br />

∫ t<br />

0<br />

∫ t<br />

0<br />

(t − τ) −γ/2 ‖ |u| α−1 u(τ)‖ q dτ<br />

(t − τ) −γ/2 ‖ u(τ)‖ α−1<br />

2(α−1)<br />

γ<br />

‖ u(τ)‖ 2 dτ<br />

(t − τ) −γ/2 ‖ u(τ)‖ α−1<br />

1,p ‖ u(τ)‖ 2 dτ<br />

setting γ 2 = 2 α<br />

and applying Hardy-Littlewood-Sobolev theorem (see Theorem A.16 in the<br />

Appendix) we obtain<br />

‖Φ(u)‖ L α (R :L p (R)) ≤ c‖ψ(t)‖ L α (R :L p (R)) + c sup‖u(t)‖ 1,2 ‖u‖ α−1<br />

L<br />

t<br />

α (R :L p 1 (R)).<br />

(5.8)


A similar argument leads to<br />

5.2. NONLINEAR SCATTERING 47<br />

‖(Φ(u)) x ‖ L α (R :L p (R)) ≤ c‖ψ x (t)‖ L α (R :L p (R)) + c sup‖u(t)‖ 1,2 ‖u‖ α−1<br />

L<br />

t<br />

α (R :L p 1 (R)).<br />

(5.9)<br />

Therefore a combinati<strong>on</strong> of (5.7), (5.8) and (5.9) gives<br />

Λ(Φ(u)) ≤ cΛ(ψ) + 2c(Λ(u)) α .<br />

So if ‖f‖ 1,2 + ‖g‖ 2 is sufficiently small such that cΛ(ψ) ≤ a 2 with 2caα−1 < 1 4<br />

, we obtain<br />

that<br />

Λ(Φ(u)) ≤ a,<br />

this shows that Φ : Y a → Y a .<br />

Next step is to prove that Φ is in fact a c<strong>on</strong>tracti<strong>on</strong>. We c<strong>on</strong>sider u and v in Y a , thus<br />

∫ t<br />

(Φ(u) − Φ(v))(t) = −<br />

0<br />

V 2 (t − τ)(|u| α−1 u − |v| α−1 v) xx (τ) dτ.<br />

To estimate sup‖(Φ(u) − Φ(v))(t)‖ 1,2 we use (2.27), (2.33) to have<br />

t<br />

∫ t<br />

‖(Φ(u) − Φ(v))(t)‖ 1,2 ≤ c<br />

0<br />

+<br />

‖(|u| α−1 + |v| α−1 )(u − v)(τ)‖ 2 dτ<br />

∫ t<br />

0<br />

‖(|u| α−1 u − |v| α−1 v) x (τ)‖ 2 dτ<br />

= I 1 + I 2 .<br />

Using a similar argument as in (5.7) it follows that<br />

∫ t<br />

I 1 ≤ c (‖u(τ)‖ α−1<br />

1,p + ‖v(τ)‖α−1 1,p )‖(u − v)(τ)‖ p dτ<br />

(5.10)<br />

0<br />

≤ c(‖u‖ α−1<br />

L α (R :L p + ‖v‖α−1<br />

1 (R)) L α (R :L p (R)))‖u − v‖ L α (R :L p (R)). 1 1<br />

The last inequality follows from Hölder’s inequality in t.<br />

On the other hand, we have that<br />

∫ t<br />

I 2 ≤ c<br />

0<br />

+ c<br />

‖(|u| α−2 + |v| α−2 )(u − v)u x (τ)‖ 2 dτ<br />

∫ t<br />

0<br />

= I 1 2 + I 2 2.<br />

The argument in (5.7) leads to<br />

‖v|v| α−2 (u x − v x )(τ)‖ 2 dτ<br />

I 2 2 ≤ c‖v‖ α−1<br />

L α (R :L p 1 (R)) ‖u − v‖ L α (R :L p 1 (R)) . (5.11)


48 5. ASYMPTOTIC BEHAVIOR<br />

To bound I2 1 , we first apply the generalized Hölder’s inequality to obtain<br />

‖(|u| α−2 + |v| α−2 )(u − v)u x (τ)‖ 2 ≤ (‖u‖ α−2<br />

p ′<br />

+ ‖v‖ α−2<br />

p ′ )‖u − v‖ p ′‖u x ‖ p (5.12)<br />

where p ′ = 2p(α−1)<br />

p−2<br />

, p = 2<br />

1−γ . Then using the fact that Lp 1 ⊂ Lp′ for α > 1<br />

and Hölder’s inequality in t it follows that<br />

∫ t<br />

1−γ<br />

, γ ∈ (0, 4/5),<br />

I2 1 ≤ c (‖u(τ)‖ α−1<br />

1,p + ‖v(τ)‖α−2 1,p ‖u(τ)‖ 1,p)‖(u − v)(τ)‖ 1,p dτ<br />

(5.13)<br />

0<br />

≤ c(‖u‖ α−1<br />

L α (R :L p + ‖v‖α−2<br />

1 (R)) L α (R :L p (R))‖u‖ L α (R :L p (R)))‖u − v‖ 1 1 L α (R :L p (R)). 1<br />

Gathering (5.10), (5.11) and (5.13) up, we find that<br />

sup‖(Φ(u) − Φ(v))(t)‖ 1,2 ≤ c (2‖u‖ α−1<br />

L<br />

t<br />

α (R :L p + 2‖v‖α−1<br />

1 (R)) L α (R :L p 1 (R))<br />

+ ‖v‖ α−2<br />

L α (R :L p (R))‖u‖ L α (R :L p (R)))‖u − v‖ (5.14)<br />

1 1 L α (R :L p (R)). 1<br />

Next we shall estimate ‖Φ(u) − Φ(v)‖ L α (R :L p 1 (R)) , so we begin by estimating<br />

‖Φ(u) − Φ(v)‖ L α (R :L p (R)), it can be d<strong>on</strong>e using a similar argument as in (5.8), thus we<br />

obtain<br />

‖Φ(u) − Φ(v)‖ L α (R :L p (R)) ≤ c(‖u‖ α−1<br />

L α (R :L p + ‖v‖α−1<br />

1 (R)) L α (R :L p (R))) 1<br />

× sup‖(u − v)(t)‖ 1,2 .<br />

t<br />

It remains to estimate ‖(Φ(u) − Φ(v)) x ‖ L α (R :L p (R)). Lemma 2.15 leads to<br />

‖(Φ(u) − Φ(v)) x (t)‖ p ≤ c<br />

∫ t<br />

0<br />

+ c<br />

(t − τ) −γ/2 ‖(|u| α−2 +|v| α−2 )(u − v)u x (τ)‖ q dτ<br />

∫ t<br />

0<br />

(t − τ) −γ/2 ‖|v|v| α−2 (u x − v x )(τ)‖ q dτ<br />

= I 1 + I 2 here q = 2<br />

1 + γ .<br />

To bound I 2 we use a similar argument as in (5.8) to obtain<br />

I 2 ≤ c<br />

∫ t<br />

0<br />

(5.15)<br />

(t − τ) −γ/2 ‖v(τ)‖ α−1<br />

1,p ‖(u − v)(τ)‖ 1,2 dτ. (5.16)<br />

Now to estimate I 1 we follow the argument in (5.12) to have<br />

I 1 ≤ c<br />

∫ t<br />

0<br />

(t − τ) −γ/2 (‖u(τ)‖ α−2<br />

1,p + ‖v(τ)‖α−2 1,p )‖(u − v)(τ)‖ 1,p‖u x (τ)‖ 1,2 dτ.


5.2. NONLINEAR SCATTERING 49<br />

Setting γ 2 = 2 α<br />

and using Hardy-Littlewood-Sobolev theorem it follows that<br />

‖(Φ(u) − Φ(v)) x ‖ L α (R :L p (R)) ≤ c‖v‖ α−1<br />

L α (R :L p (R))sup<br />

1 t<br />

‖(u − v)(t)‖ 1,2<br />

+ (‖u‖ α−2<br />

L α (R :L p + ‖v‖α−2<br />

1 (R)) L α (R :L p 1 (R)))<br />

sup‖u(t)‖ 1,2 ‖u − v‖ L α (R :L p 1<br />

t<br />

(R)) .<br />

Therefore a combinati<strong>on</strong> of (5.15), (5.16) and (5.17) leads to<br />

(5.17)<br />

‖Φ(u) − Φ(v)‖ L α (R :L p 1 (R))<br />

≤ c(‖u‖ α−1<br />

L α (R :L p + 2‖v‖α−1<br />

1 (R)) L α (R :L p 1 (R)))<br />

sup‖(u − v)(t)‖ 1,2<br />

t<br />

+ (‖u‖ α−2<br />

L α (R :L p + ‖v‖α−2<br />

1 (R)) L α (R :L p 1 (R)))<br />

sup‖u(t)‖ 1,2 ‖u − v‖ L α (R :L p 1<br />

t<br />

(R)) .<br />

Thus from (5.14) and (5.18) it follows that<br />

Λ(Φ(u) − Φ(v)) ≤ c{2(Λ(u)) α−1 + 2(Λ(v)) α−1 + (Λ(v)) α−2 Λ(u)}Λ(u − v)<br />

≤ Λ(u − v), by the choice of a.<br />

(5.18)<br />

This shows that Φ is a c<strong>on</strong>tracti<strong>on</strong>. Therefore the c<strong>on</strong>tracti<strong>on</strong> mapping principle gives<br />

the existence and uniqueness in Y a . It is not difficult to prove the uniqueness in X, this<br />

completes the proof.<br />

□<br />

Now we are in positi<strong>on</strong> to prove Theorem 5.4<br />

Proof of Theorem 5.4. We define<br />

u ± (t) = u(t) +<br />

∫ t<br />

±∞<br />

V 2 (t − τ)(|u| α−1 u) xx (τ) dτ,<br />

where u(t) is given by Theorem (5.5).<br />

From (2.27), (2.33) and Hölder’s inequality it follows that<br />

‖u(t) − u ± (t)‖ 1,2 ≤ c<br />

≤ c<br />

∫ t<br />

±∞<br />

∫ t<br />

±∞<br />

‖|u| α−1 u(τ)‖ 1,2 dτ<br />

‖u(τ)‖ α 2α dτ + c<br />

∫ t<br />

±∞<br />

But L p 1 (R) ⊂ L2α (R) and L p 2(α−1)<br />

1 (R) ⊂ L γ (R) for α > 1<br />

1−γ<br />

‖u(t) − u ± (t)‖ 1,2 ≤ 2c<br />

∫ t<br />

±∞<br />

‖u(τ)‖ α−1<br />

‖u(τ)‖ α 1,p dτ.<br />

2(α−1)<br />

γ<br />

‖u x (τ)‖ p dτ.<br />

and γ ∈ (0, 4/5). Therefore<br />

By Theorem 5.5, the integral <strong>on</strong> the right hand side approaches to zero as t → ±∞. This<br />

gives the desired result.<br />


50 5. ASYMPTOTIC BEHAVIOR<br />

5.3. Blow-up<br />

As we commented in the introducti<strong>on</strong> the <strong>Boussinesq</strong> equati<strong>on</strong><br />

u tt − u xx + u xxxx + (u 2 ) xx = 0,<br />

has a large set of initial data for which there are no global (in time) smooth soluti<strong>on</strong>s.<br />

In this secti<strong>on</strong> we present a result obtained by Angulo and Scialom [2] showing the<br />

finite time blow-up of soluti<strong>on</strong>s to (1.1). This is an extensi<strong>on</strong> of a previous result obtained<br />

by Liu [35]. The main tool used in [35] was the applicati<strong>on</strong> of general methods introduced<br />

by Payne and Sattinger in [39].<br />

We will c<strong>on</strong>sider ψ(u) = u|u| α−1 , α > 1, and we write (1.1) as the first-order system<br />

given in (1.5), (1.6), that is,<br />

⎧⎪⎨<br />

⎪ ⎩<br />

u t = v x , x ∈ R, t ≥ 0<br />

v t = (u − u xx − ψ(u)) x ,<br />

(u(x, 0), v(x, 0)) = (u 0 , v 0 ).<br />

(5.19)<br />

One of the main idea is to find regi<strong>on</strong>s invariant for the flow and such that for initial<br />

data in these sets, it is possible either to find global bounded soluti<strong>on</strong>s or soluti<strong>on</strong>s blowingup<br />

in finite time. Here, we mean by blow-up of soluti<strong>on</strong>s the existence of t ∗ < ∞ such<br />

that<br />

lim<br />

t→t ∗−‖u(t)‖ 1 = +∞.<br />

We recall the time invariant quantities for the flow of (5.19),<br />

⎧ ∫<br />

1<br />

E(u, v) =<br />

R 2 u2 + 1 2 u2 x + 1 2 v2 − 1<br />

α + 1 |u|α+1 dx<br />

⎪⎨<br />

≡ 1 2 ‖u‖2 1,2 + 1 2 ‖v‖2 2 − 1<br />

α + 1 ‖u‖α+1<br />

∫<br />

⎪⎩ Q(u, v) = uv dx.<br />

Define the set K c 2 as:<br />

R<br />

K c 2 = {u ∈ H 1 (R) : L c (u, −cu) < d(c), R c (u) < 0},<br />

where R c (u) = ‖u‖ 2 1,c − ‖u‖α+1<br />

α+1 , L c(u, v) = E(u, v) + c Q(u, v) and d(c) = L c (φ c , −cφ c ).<br />

The ‖ · ‖ 2 1,c -norm is defined by ‖u‖2 1,c ≡ (1 − c2 )‖u‖ 2 2 + ‖u x‖ 2 2 , |c| < 1 and φ c is the soluti<strong>on</strong><br />

(up translati<strong>on</strong>) of the n<strong>on</strong>linear equati<strong>on</strong>,<br />

−φ ′′<br />

c + (1 − c 2 )φ c − φ c |φ c | α−1 = 0, |c| < 1. (5.20)<br />

As it was noted in B<strong>on</strong>a and Sachs [6] the functi<strong>on</strong> φ c can be found explicitly as<br />

[ (α + 1)(1 − c 2 )<br />

] 1 (<br />

√<br />

α−1<br />

φ c (ξ) =<br />

sech 2<br />

α−1<br />

(α − 1) 1 − c 2 )<br />

ξ .<br />

2<br />

2<br />

The main result regarding blow-up in finite time of soluti<strong>on</strong>s of (5.19) is next.<br />

Theorem 5.6. Let α > 1 and |c| < 1. Suppose,<br />

(a) (u 0 , v 0 ) ∈ H 1 (R) × L 2 (R), and ξ −1 û 0 (ξ) ∈ L 2 (R).<br />

(b) u 0 ∈ K c 2 , E(u 0, v 0 ) < d(c) and L c (u 0 , v 0 ) < d(c).


5.3. BLOW-UP 51<br />

Let ⃗u = (u, v) be the soluti<strong>on</strong> of (5.19) with ⃗u 0 = (u 0 , v 0 ) such that ⃗u ∈ C([0, T max );<br />

H 1 (R) × L 2 (R)), where T max is the maximum time of existence of the soluti<strong>on</strong>. Then,<br />

T max < +∞ and<br />

lim<br />

t→Tmax<br />

− ‖u(t)‖ 1 = lim<br />

t→Tmax<br />

− ‖u(t)‖ α+1 = +∞.<br />

Remark 5.7. The above theorem c<strong>on</strong>sidered in the special case of c = 0 recovers Liu’s<br />

result (see Theorem 4.2 in [35]).<br />

The first step in the proof of Theorem 5.6 is to characterize the best c<strong>on</strong>stant for the<br />

inequality<br />

‖f‖ α+1 ≦ B c α‖f‖ 1,c , (5.21)<br />

with |c| < 1, 1 < α < ∞. The value of the best c<strong>on</strong>stant B c α is obtained as the minimum<br />

of a c<strong>on</strong>strained variati<strong>on</strong>al problem naturally associated with (5.21). This is made by<br />

using the method of c<strong>on</strong>centrati<strong>on</strong>-compactness introduced by Li<strong>on</strong>s in [34] ( see also [1],<br />

[10] and Lopes in [36]). Once this characterizati<strong>on</strong> is obtained we use some of the ideas<br />

in ([39], [35]) to establish the theorem.<br />

5.3.1. Variati<strong>on</strong>al Problem and the Best C<strong>on</strong>stant. In this secti<strong>on</strong> we show<br />

that the best c<strong>on</strong>stant for the inequality (5.21) is Bα c = ‖φ c ‖ − α−1<br />

α+1<br />

1,c , where φ c is the soluti<strong>on</strong><br />

of (5.20) (see Theorem 5.10 below). This value can be obtained for instance using the<br />

c<strong>on</strong>centrati<strong>on</strong>-compactness method [34]. Here we will use the next result due to Lopes<br />

[36].<br />

Let<br />

V (u) = 1 ∫<br />

∫<br />

|∇u(x)| 2 dx + F (u(x)) dx (5.22)<br />

2<br />

R n R n<br />

and<br />

∫<br />

I(u) = G(u(x)) dx = λ ≠ 0. (5.23)<br />

R n<br />

For n ≥ 2 let l(n) =<br />

2n<br />

n−2 . Denote by M = {u ∈ H1 (R n ) : I(u) = λ} the admissible<br />

set. Denote by f(u) and g(u) the derivatives of F (u) and G(u), respectively. Set F (u) =<br />

mu 2 + F 1 (u) and G(u) = m 0 u 2 + G 1 (u).<br />

The following assumpti<strong>on</strong>s are made:<br />

(H1) F 1 (u) and G 1 (u) are C 2 functi<strong>on</strong>s with F 1 (0) = G 1 (0) = 0 = F 1 ′(0) = G′ 1 (0) and<br />

for some c<strong>on</strong>stant k and 2 < q ≤ p < l(N) we have<br />

|F ′′<br />

1 (u)|, |G ′′<br />

1(u)| ≤ k(|u| q−2 + |u| p−2 ).<br />

(H2) V is bounded below <strong>on</strong> M and any minimizing sequence is bounded in H 1 (R n ).<br />

(H3) If u ∈ H 1 (R n ) and u /≡ 0, then g(u(·)) /≡ 0<br />

Theorem 5.8. Assume (H1), (H2) and (H3). If u j is a minimizing sequence and<br />

u j c<strong>on</strong>verges weakly in H 1 (R n ) to u /≡ 0, then u j c<strong>on</strong>verges to u str<strong>on</strong>gly in L r (R n ),<br />

2 < r < l(n) (for n = 1 this interval becomes 2 < r ≤ ∞). Moreover, if m 0 = 0 and<br />

m > 0. Then modulo translati<strong>on</strong> in the x variable any minimizing sequence is precompact<br />

in H 1 (R n ).


52 5. ASYMPTOTIC BEHAVIOR<br />

First we will see that the inequality (5.21) is satisfied for |c| < 1, indeed, c<strong>on</strong>sidering<br />

the classical Sobolev embedding theorem, we obtain<br />

‖f‖ α+1 ≤ C α ‖f‖ 1,2 ≤ B c α‖f‖ 1,c , (5.24)<br />

where Bα c = √ Cα . 1−c 2<br />

Next we state the variati<strong>on</strong>al problem which leads to the best c<strong>on</strong>stant.<br />

Theorem 5.9. If α > 1 and |c| < 1, then for J(f) = ‖f‖2 1,c<br />

‖f‖ 2 α+1<br />

where φ c is the soluti<strong>on</strong> of (5.20).<br />

min{J(f) : f ∈ H 1 (R), f ≠ 0} = J(φ c ),<br />

we obtain<br />

Proof. Observe that since for f ∈ H 1 (R), f ≠ 0, J(<br />

‖f‖ α+1<br />

) = J(f), then<br />

min {J(f) : f ∈ H 1 (R), f ≠ 0} = min {J(f) : f ∈ H 1 (R), ‖f‖ α+1 = 1}.<br />

Therefore to find the minimum in Theorem 5.9, it is sufficient to minimize the functi<strong>on</strong>al<br />

V (f) ≡ 1 ∫<br />

[f ′ (x)] 2 dx + 1 ∫<br />

(1 − c 2 )f 2 (x) dx (5.25)<br />

2<br />

2<br />

subject to the c<strong>on</strong>straint,<br />

R<br />

∫<br />

I(f) ≡<br />

R<br />

R<br />

f<br />

|f(x)| α+1 dx = 1, (5.26)<br />

in the space H 1 (R). The proof of existence of this minimum is a straightforward applicati<strong>on</strong><br />

of Theorem 5.8.<br />

Therefore, let ϕ ∈ H 1 (R) be such that ‖ϕ‖ α+1 = 1 and V (ϕ) = Inf V (f). Then ϕ<br />

f∈M<br />

satisfies the Euler-Lagrange equati<strong>on</strong><br />

V ′ (ϕ) = λI ′ (ϕ),<br />

for some λ ∈ R (λ > 0). This implies that ϕ satisfies the equati<strong>on</strong><br />

−ϕ ′′ + (1 − c 2 )ϕ = λ(α + 1)ϕ|ϕ| α−1 ,<br />

in the distributi<strong>on</strong>s sense <strong>on</strong> R. Taking ˜φ c (ξ) = [λ(α+1)] α−1 ϕ(ξ), we obtain a distributi<strong>on</strong><br />

soluti<strong>on</strong> of (5.20), which, after a bootstrapping argument, is in fact a C ∞ -functi<strong>on</strong> and<br />

satisfies (5.20) pointwise. Then by the uniqueness (up translati<strong>on</strong>s) of soluti<strong>on</strong> for (5.20)<br />

(see [4], Theorem 5) we must have that ˜φ c (·) = φ c (· + r). Thus<br />

J(φ c ) = J([λ(α + 1)] α−1 ϕ) = J(ϕ) = 2V (ϕ)<br />

This completes the proof of Theorem 5.24.<br />

1<br />

1<br />

= 2 min{V (f) : f ∈ H 1 (R), ‖f‖ α+1 = 1}<br />

= min{J(f) : f ∈ H 1 (R), f ≠ 0}.<br />

As a c<strong>on</strong>sequence of this result we obtain the value of the best c<strong>on</strong>stant stated above.<br />

Theorem 5.10. Let α > 1. The smallest c<strong>on</strong>stant for which inequality (5.24) holds is<br />

given by Bα c = ‖φ c ‖ − α−1<br />

α+1<br />

1,c , where φ c is the soluti<strong>on</strong> of (5.20).<br />


5.3. BLOW-UP 53<br />

Proof. Since φ c satisfies (5.20) we obtain that ‖φ c ‖ 2 1,c = ‖φ c‖ α+1 . Moreover, by<br />

2(α−1)<br />

α+1<br />

Theorem 5.9 J(φ c ) = ‖φ c ‖ 1,c , thus Bα c = ‖φ c ‖ − α−1<br />

α+1<br />

1,c . □<br />

5.3.2. Finite Blow-up Time. In this secti<strong>on</strong> we use the best c<strong>on</strong>stant result to<br />

obtain the prove Theorem 5.9.<br />

The next lemma is c<strong>on</strong>cerned with the invariance of the regi<strong>on</strong> K2 c for the flow governed<br />

by (5.19).<br />

Lemma 5.11 (Invariant sets). Suppose f(s) = s|s| α−1 with α > 1. Let |c| < 1,<br />

(u 0 , v 0 ) ∈ K c 2 × L2 (R) and L c (u 0 , v 0 ) < d(c). Let ⃗u = (u, v) be the soluti<strong>on</strong> of (5.19)<br />

with ⃗u(0) = (u 0 , v 0 ) such that ⃗u ∈ C([0, T ); H 1 (R) × L 2 (R)) for T > 0. Then<br />

and<br />

Proof. See Lemma 5.3 in [35].<br />

u(t) ∈ K c 2<br />

R c (u(t)) < 2L c (u 0 , v 0 ) − 2d(c) for t ∈ [0, T ).<br />

The next differential inequality will play a crucial role in the proof of finite blow-up<br />

in time for (5.19).<br />

Lemma 5.12. Suppose that a twice-differentiable functi<strong>on</strong> Ψ(t) is positive and satisfies<br />

for t ∈ [0, T ) the inequality<br />

Ψ(t)Ψ ′′ (t) − (1 + β)(Ψ ′ (t)) 2 ≥ 0<br />

where β > 0. If Ψ(0) > 0 and Ψ ′ (0) > 0, then<br />

where t ∗ 1 ≤ Ψ(0)<br />

βΨ ′ (0) .<br />

lim Ψ(t) = +∞,<br />

t↑t ∗<br />

1<br />

Proof. See Sachs ([31]) or Levine ([29]).<br />

We are ready to establish Theorem 5.6.<br />

Proof of Theorem 5.6. Suppose that T max = +∞. A c<strong>on</strong>tradicti<strong>on</strong> will be obtained<br />

from Lemma 5.12, choosing Ψ(t) = ‖ξ −1 û(t)‖ 2 . In fact, as ξ −1 û t ∈ L 2 (R), we<br />

obtain<br />

Ψ ′ (t) = 2Re < ξ −1 û, ξ −1 û t > .<br />

From (1.1) and (5.19) it follows that Ψ ′′ (t) = 2‖v(t)‖ 2 − 2‖u(t)‖ 2 1 + 2‖u(t)‖α+1<br />

α+1 . We<br />

now see that, Ψ ′′ (t) > (α + 3)‖v(t)‖ 2 . In fact,<br />

Ψ ′′ (t) = (α + 3)‖v(t)‖ 2 + (α − 1)‖u(t)‖ 2 1,2 − 2(α + 1)E(u 0 , v 0 )<br />

α+1<br />

= (α + 3)‖v‖ 2 + (α − 1)‖u‖ 2 1,c + (α − 1)c 2 ‖u‖ 2 − 2(α + 1)E(u 0 , v 0 )<br />

> (α + 3)‖v‖ 2 + (α − 1)‖u‖ 2 1,c − 2(α + 1)d(c) + (α − 1)c 2 ‖u‖ 2 .<br />

Now, from assumpti<strong>on</strong> (b) and the result c<strong>on</strong>cerning the best c<strong>on</strong>stant (Theorem 5.10),<br />

we obtain<br />

‖u‖ 2 1,c < ‖u(t)‖ α+1<br />

α+1 ≤ ‖φ c‖ −(α−1)<br />

1,c ‖u‖ α+1<br />

1,c .<br />

□<br />


54 5. ASYMPTOTIC BEHAVIOR<br />

Thus,<br />

Ψ ′′ (t) > (α + 3)‖v‖ 2 + (α − 1)‖φ c ‖ 2 1,c − 2(α + 1)d(c) + (α − 1)c 2 ‖u‖ 2<br />

= (α + 3)‖v‖ 2 + (α − 1)‖φ c ‖ 2 α − 1<br />

1,c − 2(α + 1)[<br />

2(α + 1) ‖φ c‖ 2 1,c]<br />

(5.27)<br />

+ (α − 1)c 2 ‖u‖ 2<br />

= (α + 3)‖v‖ 2 + (α − 1)c 2 ‖u‖ 2<br />

where we used that d(c) = L c (φ c , −cφ c ) =<br />

α−1<br />

2(α+1) ‖φ c‖ 2 1,c .<br />

Thus, the Cauchy-Schwarz inequality implies that<br />

Ψ(t)Ψ ′′ (t) − α + 3 (Ψ ′ (t)) 2 > (α + 3)‖ξ −1 û‖ 2 ‖v‖ 2<br />

4<br />

− α + 3 (2 Re < ξ −1 û, ξ −1 û t >) 2<br />

4<br />

≥ (α + 3)‖ξ −1 û‖ 2 ‖v‖ 2 − (α + 3)‖ξ −1 û‖ 2 ‖v‖ 2 = 0.<br />

Now, we suppose that Ψ ′ (t 1 ) > 0 for some t 1 > 0 (this will imply that Ψ(t 1 ) > 0).<br />

Then from Lemma 5.12 we obtain that<br />

lim ‖ξ −1 û(t)‖ 2<br />

t→t − 2<br />

= lim Ψ(t) = +∞<br />

t→t − 2<br />

for t 1 < t 2 ≦ t ∗ = Ψ(t 1)<br />

βΨ ′ (t 1 ) +t 1, where β = α−1<br />

4 . Hence there exists a sequence {t n} n≧1 , t n →<br />

t − 2 such that lim ‖v(t n )‖ = +∞. This c<strong>on</strong>tradicts the fact that v ∈ C([0, +∞); L 2 (R)).<br />

t n→t − 2<br />

Thus T max < +∞ and from the local existence theory (see [31]), we have that<br />

Finally, since E(u, v) = E(u 0 , v 0 ) we obtain<br />

lim ‖u(t)‖ 1 + ‖v(t)‖ = +∞.<br />

t→Tmax<br />

−<br />

lim ‖u(t)‖ 1 = lim ‖u(t)‖ α+1<br />

t→Tmax<br />

− t→Tmax<br />

−<br />

= +∞.<br />

Next we prove that Ψ ′ (t 1 ) > 0 for some t 1 > 0. Suppose not, then, Ψ ′ (t) ≦ 0 for all<br />

t ≧ 0. Since Ψ ′′ (t) > 0 and Ψ ′ is c<strong>on</strong>tinuous, the limit lim<br />

t→+∞ Ψ′ (t) exists. Then,<br />

lim<br />

t→+∞ Ψ′ (t) = Ψ ′ (0) +<br />

∫ +∞<br />

Hence, we obtain a sequence {t n } n≧1 such that<br />

(5.27) that lim<br />

t n →+∞ ‖v(t n)‖ =<br />

0 = lim<br />

t n →+∞ Ψ′′ (t n )<br />

0<br />

Ψ ′′ (s) ds < +∞.<br />

lim ‖u(t n)‖ = 0. Moreover,<br />

t n →+∞<br />

lim<br />

t n →+∞ Ψ′′ (t n ) = 0. Then it follows from<br />

= lim<br />

t n →+∞ [(α + 3)‖v(t n)‖ 2 + (α − 1)‖u(t n )‖ 2 1,c + (α − 1)c 2 ‖u(t n )‖ 2 ]<br />

− 2(α + 1)E(u 0 , v 0 )<br />

=(α − 1) lim ‖u(t n)‖ 2 1,c − 2(α + 1)E(u 0 , v 0 ).<br />

t n →+∞


5.3. BLOW-UP 55<br />

Thus,<br />

lim ‖u(t n)‖ 2 2(α + 1)<br />

1,c =<br />

t n →+∞ α − 1 E(u 0, v 0 ).<br />

Now, since L c (u 0 , v 0 ) < d(c), Lemma 5.11 implies that<br />

R c (u) = ‖u‖ 2 1,c − |u| α+1<br />

α+1 < 2L c(u 0 , v 0 ) − 2d(c)<br />

≤ 2E(u 0 , v 0 ) + 2|c|‖u‖‖v‖ − 2d(c),<br />

and the result c<strong>on</strong>cerning the best c<strong>on</strong>stant yields<br />

lim sup |u(t n )| α+1<br />

α+1 ≦ ‖φ c‖ −(α−1)<br />

1,c lim sup ‖u(t n )‖ α+1<br />

1,c<br />

(5.28)<br />

= ‖φ c ‖ −(α−1)<br />

1,c (lim sup ‖u(t n )‖ 2 1,c) α+1<br />

2<br />

(5.29)<br />

[<br />

≤ ‖φ c ‖ −(α−1) 2(α + 1)<br />

] α+1<br />

2<br />

1,c<br />

[E(u 0 , v 0 )] α+1<br />

2 .<br />

α − 1<br />

Therefore, from (5.28) and the relati<strong>on</strong> lim sup(a n −b n ) ≧ lim sup a n −lim sup b n we deduce<br />

that<br />

2(α + 1)<br />

[<br />

α − 1 E(u 0, v 0 ) − ‖φ c ‖ −(α−1) 2(α + 1)<br />

] α+1<br />

2<br />

1,c<br />

[E(u 0 , v 0 )] α+1<br />

2<br />

α − 1<br />

≦ lim sup ‖u(t n )‖ 2 1,c − lim sup |u(t n )| α+1<br />

α+1<br />

≦ 2E(u 0 , v 0 ) − 2d(c).<br />

α−1<br />

(5.30)<br />

Since d(c) =<br />

2(α+1) ‖φ c‖ 2 1,c and E(u 0, v 0 ) < d(c) the left hand side of (3.4) is positive,<br />

therefore E(u 0 , v 0 ) > d(c). This c<strong>on</strong>tradicti<strong>on</strong> completes the proof of Theorem 5.6. □


APPENDIX A<br />

A.1. Fourier Transform<br />

Definiti<strong>on</strong> A.1. The Fourier transform of a functi<strong>on</strong> f ∈ L 1 (R n ), denoted by ̂f, is<br />

defined as<br />

∫<br />

̂f(ξ) = f(x)e 2πix·ξ dx, for ξ ∈ R n , (A.1)<br />

R n<br />

where x · ξ = x 1 ξ 1 + · · · + x n ξ n .<br />

We list some basic properties of the Fourier transform in L 1 (R n ).<br />

Theorem A.2. Let f ∈ L 1 (R n ). Then<br />

(1) f ↦→ ̂f defines a linear transformati<strong>on</strong> from L 1 (R n ) into L ∞ (R n ) with<br />

‖ ̂f ‖ ∞ ≤ ‖f‖ 1 .<br />

(2) ̂f is c<strong>on</strong>tinuous.<br />

(3) ̂f(ξ) → 0 as |ξ| → ∞ (Riemann–Lebesgue).<br />

(4) If τ h f(x) = f(x − h) denotes the translati<strong>on</strong> by h ∈ R n , then<br />

and<br />

(A.2)<br />

̂ (τ h f)(ξ) = e −2πi(h·ξ) ̂f(ξ), (A.3)<br />

̂ (e −2πi(x·h) f)(ξ) = (τ −h ̂f )(ξ). (A.4)<br />

(5) If δ a f(x) = f(ax) denotes a dilati<strong>on</strong> by a > 0, then<br />

̂(δ a f)(ξ) = a −n ̂f(a −1 ξ).<br />

(6) Let g ∈ L 1 (R n ) and f ∗ g be the c<strong>on</strong>voluti<strong>on</strong> of f and g. Then<br />

(7) If x k f ∈ L 1 (R n ), then<br />

(8) If<br />

∂f<br />

∂x k<br />

∈ L 1 (R n ), then<br />

(A.5)<br />

̂ (f ∗ g)(ξ) = ̂f(ξ)ĝ(ξ). (A.6)<br />

∂ ̂f (ξ) = (−2πixk ̂f(x))(ξ).<br />

∂ξ k<br />

̂∂f<br />

∂x k<br />

(ξ) = 2πiξ k ̂f(ξ).<br />

57<br />

(A.7)<br />

(A.8)


58 A<br />

Theorem A.3 (Plancherel). Let f ∈ L 1 (R n ) ∩ L 2 (R n ). Then ̂f ∈ L 2 and<br />

‖ ̂f ‖ 2 = ‖f‖ 2 .<br />

(A.9)<br />

Theorem A.3 shows that the Fourier transform defines a linear bounded operator from<br />

L 1 (R n ) ∩ L 2 (R n ) into L 2 (R n ). Indeed, this operator is an isometry. Thus, there is a<br />

unique bounded extensi<strong>on</strong> F defined in all L 2 (R n ). F is called the Fourier transform in<br />

L 2 (R n ). We shall use the notati<strong>on</strong> ̂f = F(f) for f ∈ L 2 (R n ). In general, this definiti<strong>on</strong><br />

̂f is realized as a limit in L 2 of the sequence {ĥj}, where {h j } denotes any sequence<br />

in L 1 (R n ) ∩ L 2 (R n ) which c<strong>on</strong>verges to f in the L 2 -norm. It is c<strong>on</strong>venient to take h j<br />

equals to f for |x| ≤ j and vanishing for |x| > j. Then,<br />

∫<br />

∫<br />

ĥ j (ξ) = f(x) e 2πix·ξ dx = h j (x) e 2πix·ξ dx<br />

and so<br />

|x| 2 has a Fourier transform in the distributi<strong>on</strong> sense. However, they may not be<br />

functi<strong>on</strong>s, they are tempered distributi<strong>on</strong>s.<br />

For each (ν, β) ∈ (Z + ) 2n we denote the semi-norm ||| · ||| (ν,β) defined as<br />

||f|| (ν,β) = ‖x ν ∂ β x f‖ ∞ .<br />

Now we define the Schwartz space S(R n ), the space of the C ∞ -functi<strong>on</strong>s decaying at<br />

infinity, i.e.,<br />

S(R n ) = {ϕ ∈ C ∞ (R n ) : ||ϕ||| (ν,β) < ∞ for any ν, β ∈ (Z + ) n }.<br />

Observe that S(R n ) is dense in L p (R n ) for 1 ≤ p < ∞. The topology in S(R n ) is given<br />

by the family of semi-norms || · || (ν,β) , (ν, β) ∈ (Z + ) 2n .<br />

Definiti<strong>on</strong> A.6. Let {ϕ j } ⊂ S(R n ). Then ϕ j → 0 as j → ∞ if for any (ν, β) ∈<br />

(Z + ) 2n <strong>on</strong>e has that<br />

||ϕ j || (ν,β) −→ 0 as j → ∞.<br />

The relati<strong>on</strong>ship between the Fourier transform and the functi<strong>on</strong> space S(R n ) is<br />

described in the formulae (A.7), (A.8). More precisely, we have the following result:<br />

Theorem A.7. The map ϕ ↦→ ̂ϕ is an isomorphism from S(R n ) into itself.


A.2. INTERPOLATION OF OPERATORS 59<br />

The space S(R n ) appears naturally associated to the Fourier transform. By duality we<br />

can define the tempered distributi<strong>on</strong>s S ′ (R n ).<br />

Definiti<strong>on</strong> A.8. We say that Ψ : S(R n ) ↦→ C defines a tempered distributi<strong>on</strong> if<br />

(1) Ψ is linear,<br />

(2) Ψ is c<strong>on</strong>tinuous, i.e. if ϕ j → 0 as j → ∞ then the numerical sequence Ψ(ϕ j ) → 0<br />

as j → ∞.<br />

Now given a Ψ ∈ S ′ (R n ) its Fourier transform can be defined in the following natural<br />

form.<br />

as<br />

Definiti<strong>on</strong> A.9. Given Ψ ∈ S ′ (R n ) its Fourier transform<br />

̂Ψ(ϕ) = Ψ( ̂ϕ), for any ϕ ∈ S(R n ).<br />

̂Ψ ∈ S ′ (R n ) is defined<br />

(A.11)<br />

Definiti<strong>on</strong> A.10. Let {Ψ j } ⊂ S ′ (R n ). Then Ψ j → 0 as n → ∞ in S ′ (R n ), if for<br />

any ϕ ∈ S(R n ) it follows that Ψ j (ϕ) −→ 0 as j → ∞.<br />

As a c<strong>on</strong>sequence of the definiti<strong>on</strong>s A.8, A.10 we get the following extensi<strong>on</strong> of Theorem<br />

A.7.<br />

Theorem A.11. The map F : Ψ ↦→ ̂Ψ is an isomorphism from S ′ (R n ) into itself.<br />

A.2. Interpolati<strong>on</strong> of Operators<br />

Let (X, A, µ) be a measurable space ( i.e. X is a set, A denotes a σ−algebra<br />

of measurable sub-sets of X and µ is a measure defined <strong>on</strong> A). L p = L p (X, A, µ),<br />

1 ≤ p < ∞ denotes the space of complex valued functi<strong>on</strong>s f that are σ-measurable such<br />

that<br />

( ∫<br />

‖f‖ p =<br />

X<br />

|f(x)| p dµ) 1/p<br />

< ∞.<br />

Functi<strong>on</strong>s in L p (X, A, µ) are defined almost everywhere with respect to µ. Similarly, we<br />

have L ∞ (X, A, µ) the space of functi<strong>on</strong>s f that are µ−measurable complex valued and<br />

essentially µ–bounded, with ‖f‖ ∞ the essential supremum of f.<br />

Let T be a linear operator from L p (X) to L q (Y ). If T is c<strong>on</strong>tinuous or bounded,<br />

i.e.,<br />

‖T f‖ q<br />

M = sup < ∞.<br />

f≠0 ‖f‖ p<br />

we call the number M the norm of the operator T .<br />

Theorem A.12 (Riesz-Thorin). Let p 0 ≠ p 1 , q 0 ≠ q 1 . Let T be a bounded linear<br />

operator from L p 0<br />

(X, A, µ) to L q 0<br />

(Y, B, ν) with norm M 0 and from L p 1<br />

(X, A, µ) to<br />

L q 1<br />

(Y, B, ν) with norm M 1 . Then T is bounded from L p θ(X, A, µ) in L q θ(Y, B, ν) with<br />

norm M θ such that<br />

M θ ≤ M0 1−θ M1 θ ,<br />

with<br />

1<br />

= 1 − θ + θ 1<br />

, = 1 − θ + θ ,<br />

p θ p 0 p 1 q θ q 0 q 1<br />

θ ∈ (0, 1). (A.12)


60 A<br />

An extensi<strong>on</strong> of this result to a family of linear operators is given next.<br />

Let S be the strip defined by<br />

S = {z = x + iy : 0 ≤ x ≤ 1}<br />

and z = x + iy ∈ S. Suppose that for each z ∈ S corresp<strong>on</strong>ds a linear operator T z defined<br />

<strong>on</strong> the space of simple functi<strong>on</strong>s in L 1 (X, A, µ) into measurable functi<strong>on</strong>s <strong>on</strong> Y in such a<br />

way (T z f)g is integrable <strong>on</strong> Y provided f is a simple functi<strong>on</strong> in L 1 (X, A, µ) and g is a<br />

simple functi<strong>on</strong> in L 1 (Y, B, ν).<br />

Definiti<strong>on</strong> A.13. The family of operators {T z } is called admissible if the mapping<br />

∫<br />

z ↦→ (T z f)g dν<br />

Y<br />

is analytic in the interior of S, c<strong>on</strong>tinuous <strong>on</strong> S and there exists a c<strong>on</strong>stant a < π such<br />

that<br />

e −a|y| log ∣ ∫<br />

(T z f)g dν ∣ is uniformly bounded above in the strip S.<br />

Theorem A.14 (Stein). Suppose {T z }, z ∈ S, is an admissible family of linear operators<br />

satisfying<br />

Y<br />

‖T iy f‖ q0 ≤ M 0 (y) ‖f‖ p0 and ‖T 1+iy f‖ q1 ≤ M 1 (y) ‖f‖ p1<br />

for all simple functi<strong>on</strong>s f in L 1 (X, A, µ), where 1 ≤ p j , q j ≤ ∞, M j (y), j = 0, 1, are<br />

independent of f and satisfy<br />

sup e b|y| log M j (y) < ∞<br />

−∞


A.4. SOBOLEV SPACES 61<br />

Definiti<strong>on</strong> A.15. Let 0 < α < n. The Riesz potential of order α, denoted by I α<br />

is defined as<br />

∫<br />

f(y)<br />

I α f(x) = c α<br />

|x − y| n−α dy = c αk α ∗ f(x) (A.13)<br />

R n<br />

where c α = π n/2 2 α Γ(α/2)/Γ(n/2 − α/2).<br />

Since the Riesz potentials are defined as integral operators it is natural to study their<br />

c<strong>on</strong>tinuity properties in L p (R n ).<br />

Theorem A.16 (Hardy-Littlewood-Sobolev). Let 0 < α < n, 1 ≤ p < q < ∞, with<br />

1<br />

q = 1 p − α n .<br />

(1) If f ∈ L p (R n ), then the integral (A.13) is absolutely c<strong>on</strong>vergent for almost every<br />

x ∈ R n .<br />

(2) If p > 1, then I α is of type (p,q), i.e.,<br />

‖I α (f)‖ q ≤ c p,α,n ‖f‖ p .<br />

A proof of this result can be seen in [45].<br />

(A.14)<br />

as<br />

A.4. Sobolev Spaces<br />

Definiti<strong>on</strong> A.17. Let s ∈ R, we define Sobolev space of order s, denoted by H s (R n ),<br />

{<br />

}<br />

H s (R n ) = f ∈ S ′ (R n ) : Λ s f(ξ) = (1 + |ξ| 2 ) s/2 ̂f(ξ) ∈ L 2 (R n ) , (A.15)<br />

with norm ‖ · ‖ s,2<br />

defined as<br />

‖f‖ s,2 = ‖Λ s f‖ 2 .<br />

From the definiti<strong>on</strong> of Sobolev spaces we deduce the following properties.<br />

Propositi<strong>on</strong> A.18.<br />

(A.16)<br />

(1) If s < s ′ , then H s′ (R n ) ⊈ H s (R n ).<br />

(2) H s (R n ) is a Hilbert space with respect to the inner product 〈·, ·〉 s defined as<br />

follows:<br />

∫<br />

If f, g ∈ H s (R n ), then 〈f , g〉 s = Λ s f(ξ) Λ s g(ξ) dξ.<br />

We can see, via the Fourier transform, that H s (R n ) is equal to L 2 (R n ; (1 +<br />

|ξ| 2 ) s dξ).<br />

(3) For any s ∈ R, the Schwartz space, S(R n ), is dense in H s (R n ).<br />

(4) If s 1 ≤ s ≤ s 2 , with s = θs 1 + (1 − θ)s 2 , 0 ≤ θ ≤ 1, then<br />

‖f‖ s,2<br />

R n<br />

≤ ‖f‖ θ s 1 ,2‖f‖ 1−θ<br />

s 2 ,2 .<br />

The relati<strong>on</strong>ship between the spaces H s (R n ) and the differentiability of functi<strong>on</strong>s in<br />

L 2 (R n ), is given in the next result.


62 A<br />

Theorem A.19. If k is a positive integer, then H k (R n ) coincides with the space<br />

of functi<strong>on</strong>s f ∈ L 2 (R n ) whose derivatives (in the distributi<strong>on</strong> sense) ∂x α f bel<strong>on</strong>g to<br />

L 2 (R n ) for every α ∈ (Z + ) n with |α| = α<br />

∑ 1 + · · · + α n ≤ k.<br />

In this case the norms ‖f‖ k,2 and<br />

|α|≤k ‖∂α x f‖ 2 are equivalent.<br />

Theorem A.20 (Embedding). If s > n/2+k, then H s (R n ) is c<strong>on</strong>tinuously embedded<br />

in C∞(R k n ) the space of functi<strong>on</strong>s with k c<strong>on</strong>tinuous derivatives vanishing at infinity. In<br />

other words, if f ∈ H s (R n ), s > n/2 + k, then (after a possible modificati<strong>on</strong> of f in a<br />

set of measure zero) f ∈ C∞(R k n ) and<br />

‖f‖ C k ≤ c s ‖f‖ s,2 . (A.17)<br />

From the point of view of n<strong>on</strong> linear analysis the next property is essential.<br />

Theorem A.21. If s > n/2, then H s (R n ) is an algebra with respect to the product<br />

of functi<strong>on</strong>s. That is, if f, g ∈ H s (R n ), then fg ∈ H s (R n ) with<br />

‖fg‖ s,2 ≤ c s ‖f‖ s,2 ‖g‖ s,2 .<br />

(A.18)<br />

Next we list some useful inequalities. We begin with the so called the Gagliardo-<br />

Nirenberg inequality, that is,<br />

‖∂x α f‖ p ≤ c ∑<br />

‖∂x β f‖ θ q ‖f‖ 1−θ<br />

r , (A.19)<br />

|β|≤m<br />

with |α| = j, c = c(j, m, p, q, r), 1 p − j n = θ( 1 q − m n ) + (1 − θ) 1 r , θ ∈ [ j m<br />

, 1]. For the proof<br />

of this inequality we address the reader to the reference [16].<br />

For the general case s > 0 where the usual pointwise Leibniz rule is not available, the<br />

inequality<br />

‖fg‖ s,2 ≤ c s (‖f‖ s,2 ‖g‖ ∞ + ‖f‖ ∞ ‖g‖ s,2 ).<br />

(A.20)<br />

holds (see [25]).<br />

In many applicati<strong>on</strong>s the following commutator estimates are often used.<br />

∑<br />

‖[∂x α ; g] f‖ 2 = ∑<br />

‖∂x α (gf) − g∂x α f‖ 2<br />

|α|=s<br />

|α|=s<br />

≤ c n,s<br />

(<br />

‖∇g‖∞<br />

∑<br />

|β|=s−1<br />

(see [25], [28]). Similarly, for s ≥ 1 <strong>on</strong>e has<br />

(see [25]).<br />

∑<br />

‖∂x β f‖ 2 + ‖f‖ ∞ ‖∂x α )<br />

g‖ 2 ,<br />

|β|=s<br />

‖[Λ s ; g] f‖ 2 ≤ c (‖∇g‖ ∞ ‖Λ s−1 f‖ 2 + ‖f‖ ∞ ‖Λ s g‖ 2 ),<br />

(A.21)<br />

(A.22)


Bibliography<br />

[1] J. P. Albert, J. L. B<strong>on</strong>a, and J.C. Saut, Model equati<strong>on</strong>s for waves in stratified fluids, Proc.<br />

Roy. Soc. L<strong>on</strong>d<strong>on</strong> Ser. A 453 (1997), 1233–1260.<br />

[2] J. Angulo and M. Scialom, Improved blow-up of soluti<strong>on</strong>s of a generalized <strong>Boussinesq</strong> equati<strong>on</strong>,<br />

Comput. Appl. Math. 18 (1999), no. 3, 333–341.<br />

[3] R. Beals, P. Deift and C. Tomei, Direct and inverse scattering <strong>on</strong> the line, Mathematical<br />

Survey and M<strong>on</strong>ographs, American Mathematical Society 28, (1988).<br />

[4] H. Berestycki and P. L. Li<strong>on</strong>s, N<strong>on</strong>linear scalar field equati<strong>on</strong>s, Arch. Rati<strong>on</strong>al Mech. Anal.<br />

82 (1983) 313–375.<br />

[5] J. Bergh and J. Löfstöm, Interpolati<strong>on</strong> Spaces Springer-Verlag, Berlin and New York (1970).<br />

[6] J. L. B<strong>on</strong>a and R. L. Sachs, Global existence of smooth soluti<strong>on</strong>s and Stability theory of solitary<br />

waves for a generalized <strong>Boussinesq</strong>, Comm. Math. Phys. 118 (1988) 15–29.<br />

[7] M. J. <strong>Boussinesq</strong>, Théorie des <strong>on</strong>des et des remous qui se propagent le l<strong>on</strong>g d’un canal rectangulaire<br />

horiz<strong>on</strong>tal, en communiquant au liquide c<strong>on</strong>tenu dans un canal des vitesses sensiblement<br />

pareilles de la surface au f<strong>on</strong>d, J. Math. Pures Appl. 17 (1872) 55–108.<br />

[8] R. E. Caflisch, Shallow water waves unpublished manuscript.<br />

[9] T. Cazenave, An introducti<strong>on</strong> to n<strong>on</strong>linear Schrödinger equati<strong>on</strong>s, Textos de métodos<br />

mátematicos. Universidade Federal do Rio de Janeiro 22 (1989).<br />

[10] T. Cazenave and P. L. Li<strong>on</strong>s, Orbital stability of standing waves for some n<strong>on</strong>linear<br />

Schrödinger equati<strong>on</strong>s, Comm. Math. Phys. 85 (1982) 549–561.<br />

[11] T. Cazenave and F. Weissler, Some remarks <strong>on</strong> the n<strong>on</strong>linear Schrödinger equati<strong>on</strong> in the<br />

critical case, Lectures <str<strong>on</strong>g>Notes</str<strong>on</strong>g> in Math. 1394 (1989) 18–29.<br />

[12] T. Cazenave and F. Weissler, The Cauchy problem for the n<strong>on</strong>linear Schrödinger equati<strong>on</strong> in<br />

H 1 , Manuscrita Math. 61 (1988) 477–494.<br />

[13] P. C<strong>on</strong>stantin and J-C. Saut, Local smoothing properties of dispersive equati<strong>on</strong>s, Journal Amer.<br />

Math. Soc. 1 (1988) 413–446.<br />

[14] L. Debnath and B. K. Shivamoggi, Some n<strong>on</strong>linear model equati<strong>on</strong>s in dispersive systems and<br />

their solitary wave soluti<strong>on</strong>s in fluids and plasmas, Advances in n<strong>on</strong>linear waves II, Research<br />

<str<strong>on</strong>g>Notes</str<strong>on</strong>g> in Mathematics, Pitman Advanced Publishing Program 111 (1985) 309–347.<br />

[15] P. Deift, C. Tomei and E. Trubowitz, Inverse Scattering and the <strong>Boussinesq</strong> equati<strong>on</strong>, Comm.<br />

Pure Appl. Math. 35 (1982) 567–628.<br />

[16] A. Friedman, Partial Differential Equati<strong>on</strong>s, Holt, Rinehart and Winst<strong>on</strong>, New York, 1976.<br />

[17] J. Ginibre and G. Velo, On the class of n<strong>on</strong>linear Schrödinger equati<strong>on</strong>s, J. Funct. Anal. 32<br />

(1979) 1–71.<br />

[18] J. Ginibre and G. Velo, Scattering theory in the energy space for the class of n<strong>on</strong>linear<br />

Schrödinger equati<strong>on</strong>, J. Math. Pures Appl. 64 (1985) 363–401.<br />

[19] J. Grillakis, J. Shatah and W. A. Strauss, Stability theory of solitary waves in the presence of<br />

symmetry I J. Funct. Anal. 74 (1987) 160–197.<br />

[20] N. Hayashi, K. Nakamitsu and M. Tsutsumi, On soluti<strong>on</strong>s of the initial value problem for the<br />

n<strong>on</strong>linear Schrödinger equati<strong>on</strong>s in <strong>on</strong>e space dimensi<strong>on</strong> Math Z 192 (1986) 637–650.<br />

[21] V. K. Kalantarov and O. A. Ladyzhenskaya, The occurrence of collapse for quasilinear equati<strong>on</strong>s<br />

of parabolic and hyperbolic types J. Soviet Math 10 (1978) 53–70.<br />

[22] T. Kato, Quasilinear equati<strong>on</strong>s of evoluti<strong>on</strong>s, with applicati<strong>on</strong>s to Partial Differential Equati<strong>on</strong>s,<br />

Lecture <str<strong>on</strong>g>Notes</str<strong>on</strong>g> in Math. Springer-Verlag 448 (1975) 25–70.<br />

63


64 BIBLIOGRAPHY<br />

[23] T. Kato, On n<strong>on</strong>linear Schrödinger equati<strong>on</strong>s Ann. Inst. Henri P<strong>on</strong>cairé, Physique Théorique<br />

46 (1987) 113–129.<br />

[24] T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equati<strong>on</strong>, Advances<br />

in Mathematics Supplementary Studies, Studies in Applied Math. 8 (1983) 93–128.<br />

[25] T. Kato and G. P<strong>on</strong>ce, Commutator estimates and the Euler and Navier-Stokes equati<strong>on</strong>s,<br />

Comm. Pure Appl. Math. 41 (1988), 891–907.<br />

[26] C. E. Kenig, G. P<strong>on</strong>ce, and L. Vega, Oscillatory integrals and regularity of dispersive equati<strong>on</strong>s,<br />

Indiana U. Math. J 40 (1991) 33–69.<br />

[27] C. E. Kenig, G. P<strong>on</strong>ce, and L. Vega, On the (generalized) Korteweg-de Vries equati<strong>on</strong>, Duke<br />

Math. J. 59 (1989) 585–610.<br />

[28] S. Klainerman, Uniform decay estimates and the Lorentz invariance of the classical wave<br />

equati<strong>on</strong>, Comm. Pure Appl. Math 38 (1985), 321–332.<br />

[29] H. A. Levine, Instability and n<strong>on</strong>existence of global soluti<strong>on</strong>s to n<strong>on</strong>linear wave equati<strong>on</strong> of<br />

the form P u tt = −Au + F (u), Trans. Am. Math. Soc. 192 (1974) 1–21.<br />

[30] E. H. Lieb, Sharp c<strong>on</strong>stants in the Hardy-Littlewood-Sobolev and related inequalities, Annals<br />

Math. 118 (1983) 349–374.<br />

[31] F. Linares, Global existence of small soluti<strong>on</strong>s for a generalized <strong>Boussinesq</strong> equati<strong>on</strong>, J. Diff.<br />

Eq. 106 (1993) 257–293.<br />

[32] F. Linares and M. Scialom, Asymptotic behavior of soluti<strong>on</strong>s of a generalized <strong>Boussinesq</strong> type<br />

equati<strong>on</strong>, N<strong>on</strong>linear Anal. 25 (1995), no. 11, 1147–1158.<br />

[33] F. Linares and G. P<strong>on</strong>ce, Introducti<strong>on</strong> to n<strong>on</strong>linear dispersive equati<strong>on</strong>, Publicações<br />

Matemáticas, IMPA, 2004.<br />

[34] P. L. Li<strong>on</strong>s, The c<strong>on</strong>centrati<strong>on</strong>-compactness principle in the calculus of variati<strong>on</strong>s, Ann. Inst.<br />

H. Poincaré, Anal. N<strong>on</strong> lineáire sec A, 1 (1984) Part I 109–145, Part II 223–283.<br />

[35] Y. Liu, Instability and blow-up of soluti<strong>on</strong>s to a generalized <strong>Boussinesq</strong> equati<strong>on</strong>, SIAM J.<br />

Math. Anal 26 (1995) 1527–1546.<br />

[36] O. Lopes, A c<strong>on</strong>strained minimizati<strong>on</strong> problem with integrals <strong>on</strong> the entire space, Bol. Soc.<br />

Bras. 25 (1994) 77–92.<br />

[37] B. Marshall, Mixed norm estimates for the Klein-Gord<strong>on</strong> equati<strong>on</strong>, Proc. C<strong>on</strong>f. in h<strong>on</strong>or of A.<br />

Zygmund, Wadsworth (1981) 638-639.<br />

[38] F. Merle and Y. Tsutsumi, L 2 c<strong>on</strong>centrati<strong>on</strong> of blow-up for the n<strong>on</strong>linear Schrödinger equati<strong>on</strong><br />

with critical power n<strong>on</strong>linearity, J. Differential Equati<strong>on</strong>s 84 (1990) 205–214.<br />

[39] L. E. Payne and D. H. Sattinger, Saddle points and instability of n<strong>on</strong>linear hyperbolic equati<strong>on</strong>s,<br />

Israel J. Math 22 (1975) 47–94.<br />

[40] H. Pecher, N<strong>on</strong>linear small data scattering for the wave and Klein-Gord<strong>on</strong> equati<strong>on</strong>, Math Z<br />

185 (1985) 261–270.<br />

[41] G. P<strong>on</strong>ce and L. Vega, N<strong>on</strong>linear small data scattering for the generalized Korteweg-de Vries<br />

equati<strong>on</strong>, J. Funct. Anal. 90 (1990) 445–457.<br />

[42] R. L. Sachs, On the Blow-up of certain soluti<strong>on</strong>s of the “Good” <strong>Boussinesq</strong> equati<strong>on</strong>, Applicable<br />

Analysis 34 (1990) 145–152.<br />

[43] Sjölin, P., Regularity of soluti<strong>on</strong>s to the Schrödinger equati<strong>on</strong>, Duke Math. J. 55 (1987) 699–<br />

715.<br />

[44] E. M. Stein, Oscillatory integrals in Fourier Analysis, Beijing Lectures in Harm<strong>on</strong>ic Analysis,<br />

Princet<strong>on</strong> University Press (1986) 307–355.<br />

[45] E. M. Stein, Singular integrals and differentiability properties of functi<strong>on</strong>s, Princet<strong>on</strong> University<br />

Press (1970).<br />

[46] E. M. Stein and G. Weiss, Introducti<strong>on</strong> to Fourier Analysis in Eucliden Spaces Princet<strong>on</strong><br />

University Press (1971).<br />

[47] W. A. Strauss, N<strong>on</strong>linear scattering theory at low energy J. Funct. Anal. 41 (1981) 110–133.<br />

[48] R. S. Strichartz, Restricti<strong>on</strong> of Fourier transform to quadratic surfaces and decay of soluti<strong>on</strong>s<br />

of wave equati<strong>on</strong>s Duke Math. J. 44 (1977) 705–714.<br />

[49] B. Sz.-Nagy, Uber integratungleichugen zwischen einer funkti<strong>on</strong> und ihrer ableitung, Acta Sci.<br />

Math 10 (1941) 64–74.


BIBLIOGRAPHY 65<br />

[50] P. Tomas, A restricti<strong>on</strong> theorem for the Fourier transform, Bull. A.M.S. 81 (1975) 477–478.<br />

[51] M. Tsutsumi and T. Matahashi, On the Cauchy problem for the <strong>Boussinesq</strong> type equati<strong>on</strong><br />

Math. Jap<strong>on</strong>ica 36 (1991) 371–379.<br />

[52] Y. Tsutsumi, L 2 soluti<strong>on</strong>s for n<strong>on</strong>linear Schrödinger equati<strong>on</strong>s and n<strong>on</strong>linear groups Funk.<br />

Ekva. 30 (1987) 115–125.<br />

[53] L. Vega, Schrödinger equati<strong>on</strong>s: pointwise c<strong>on</strong>vergence to the initial data, Proc. Amer. Math.<br />

Soc. 102 (1988) 874–878.<br />

[54] N. J. Zabusky, N<strong>on</strong>linear Partial Differential Equati<strong>on</strong>s, Academic Press, New York (1967).<br />

[55] N. J. Zabusky and M. D. Kruskal, Interacti<strong>on</strong> of “solit<strong>on</strong>s” in a collisi<strong>on</strong>less plasma and the<br />

recurrence of initial states Phys. Rev. Lett 15 (1965) 240–243.<br />

[56] V. E. Zakharov, On stochastizati<strong>on</strong> of <strong>on</strong>e-dimensi<strong>on</strong>al chains of n<strong>on</strong>linear oscillators, Sov.<br />

Phys. JETP 38 (1974) 108–110.<br />

[57] V. E. Zakharov and A. B. Shabat, Exact theory of two dimensi<strong>on</strong>al self modulati<strong>on</strong> of waves<br />

in n<strong>on</strong>linear media, Sov. Phys. J.E.T.P. 34 (1972) 62–69.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!