01.04.2015 Views

CAPILLARY PRESSURE - UPC

CAPILLARY PRESSURE - UPC

CAPILLARY PRESSURE - UPC

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Daniel Fernàndez Garcia<br />

<strong>UPC</strong> – Constitutive eqs.<br />

<strong>CAPILLARY</strong> <strong>PRESSURE</strong><br />

Pressure difference between the non-wetting fluid and the wetting fluid.<br />

P<br />

c<br />

=<br />

P<br />

nw<br />

(non -<br />

wetting)<br />

−<br />

P<br />

w<br />

(wetting)<br />

Gas-Water<br />

P<br />

cgw<br />

=<br />

P<br />

g<br />

−<br />

P<br />

w<br />

Gas-NAPL<br />

P<br />

cgn<br />

=<br />

P<br />

g<br />

−<br />

P<br />

n<br />

Order of Wettability: WATER > NAPL > GAS<br />

General YOUNG-LAPLACE<br />

P<br />

c<br />

⎛<br />

= σ<br />

⎜<br />

⎝<br />

1<br />

r<br />

1<br />

+<br />

1<br />

r<br />

2<br />

⎞<br />

⎟<br />

⎠<br />

Capillary tub YOUNG-LAPLACE<br />

P c<br />

=<br />

2σcos(<br />

θ)<br />

r<br />

1


Daniel Fernàndez Garcia<br />

<strong>UPC</strong> – Constitutive eqs.<br />

<strong>CAPILLARY</strong> <strong>PRESSURE</strong><br />

A decrease of the meniscus radii corresponds to an increase of the capillary pressure.<br />

If a water-saturated soil is drained , the wetting phase retreats to smaller pores<br />

An increase of the meniscus radii corresponds to a decrease of the capillary pressure<br />

If imbibition occurs, the wetting phase penetrates into larger pores<br />

P c2<br />

< P c1<br />

R 2<br />

> R 1<br />

2


Daniel Fernàndez Garcia<br />

<strong>UPC</strong> – Constitutive eqs.<br />

<strong>CAPILLARY</strong> <strong>PRESSURE</strong> - SATURATION<br />

If we replace the meniscus radii by the pore radius, it becomes clear that<br />

an increase of the saturation of the non-wetting phase must also lead to<br />

an increase of the capillary pressure<br />

P<br />

c<br />

⎛<br />

= σ<br />

⎜<br />

⎝<br />

1<br />

r<br />

1<br />

+<br />

1<br />

r<br />

2<br />

⎞<br />

⎟<br />

⎠<br />

P c<br />

=<br />

2σcos(<br />

θ)<br />

r<br />

The relationship between the capillary pressure and saturation is known<br />

as the retention curve<br />

P<br />

cgw<br />

=<br />

P<br />

cgw<br />

(S<br />

w<br />

,S<br />

g<br />

)<br />

3


Daniel Fernàndez Garcia<br />

<strong>UPC</strong> – Constitutive eqs.<br />

TYPICAL RETENTION CURVES<br />

The shape of the retention curve depends on the material<br />

4


Daniel Fernàndez Garcia<br />

<strong>UPC</strong> – Constitutive eqs.<br />

HISTERESIS<br />

The relationship for p c (S w ) depends on the pressure (or saturation) history.<br />

Different relationship for drainage and imbibition<br />

5


Daniel Fernàndez Garcia<br />

a) Geometry of pores<br />

HISTERESIS<br />

<strong>UPC</strong> – Constitutive eqs.<br />

b) Contact angle depends on the process (drainage or imbibition)<br />

c) Trapped air reduces the amount of water available<br />

d) Others: swelling of soil.<br />

6


Daniel Fernàndez Garcia<br />

<strong>UPC</strong> – Constitutive eqs.<br />

RETENTION CURVES<br />

HISTERESIS<br />

Medium sand<br />

Fine sand<br />

7


Daniel Fernàndez Garcia<br />

<strong>UPC</strong> – Constitutive eqs.<br />

PUNTS DE LA CORBA DE RETENCIÓ<br />

Punt de marciment (θ w<br />

): θ en que les plantes no poden extreure l’aigua del subsòl. Les forces de<br />

succió de les plantes és més petita que les forces de retenció del terreny<br />

Capacitat de camp (θ f<br />

): θ després de drenar l’aigua gravífica. Representa l’aigua que, després de<br />

tres dies de ploure o regar, es queda en el terreny<br />

Capacitat de retenció (∆θ p<br />

⇒ θ f<br />

- θ w<br />

): θ disponible per les plantes<br />

Porositat drenable (S y<br />

= φ - θ f<br />

)<br />

Pressió d’entrada (Pd)<br />

Contingut volumètric residual (θ r<br />

)<br />

P c<br />

θ r<br />

∆θ p S y<br />

P d<br />

θ →<br />

θ w φ<br />

θ f<br />

8


Daniel Fernàndez Garcia<br />

RETENTION CURVE MODELS<br />

<strong>UPC</strong> – Constitutive eqs.<br />

Brooks and Corey (1964)<br />

S −S ⎛p<br />

⎞<br />

S (p ) = = if p ≥p<br />

− ⎝ ⎠<br />

w wr d<br />

e c ⎜ ⎟<br />

c d<br />

Sm Swr pc<br />

S −S<br />

S (p ) = = 1 if p < p<br />

w wr<br />

e c c d<br />

Sm<br />

−Swr<br />

Van Genutchen (1980)<br />

S −S<br />

S (p ) = = 1 + ( α⋅ p ) if p > 0<br />

λ<br />

n<br />

−<br />

( ) m<br />

w wr<br />

e c c c<br />

Sm<br />

−Swr<br />

S<br />

λ : pore -size index → values between 0.3 and 3<br />

p<br />

wr<br />

d<br />

: residual water saturation<br />

: air entry pressure<br />

α: constant<br />

n: constant<br />

m:constant<br />

Physical meaning:<br />

λ : slope → granulometry<br />

p : related to the largest pores<br />

d<br />

α:<br />

interfacial properties of the fluids<br />

9


Daniel Fernàndez Garcia<br />

<strong>UPC</strong> – Constitutive eqs.<br />

EFFECTIVE SATURATION<br />

S(p)<br />

e<br />

c<br />

=<br />

S<br />

S<br />

w<br />

m<br />

− S<br />

− S<br />

wr<br />

wr<br />

S m<br />

= 1 when DNAPL is invading into a<br />

water saturated porous medium<br />

S m<br />

< 1 when water displaces DNAPL<br />

because of the entrapment of DNAPL<br />

s m<br />

s m : Maximum wetting phase saturation<br />

10


Daniel Fernàndez Garcia<br />

RETENTION CURVE MODELS<br />

<strong>UPC</strong> – Constitutive eqs.<br />

Correlation of Lenhard et al. (1989):<br />

1<br />

m= 1− n ∈[<br />

λ,1]<br />

n<br />

m<br />

λ= −<br />

1−<br />

m<br />

x<br />

( 1 S<br />

1/m<br />

) we<br />

S = 0.72 −0.35e<br />

Sx<br />

S 1<br />

d<br />

(<br />

1/m<br />

)<br />

x<br />

α= −<br />

p<br />

−n<br />

4<br />

1−m<br />

11


Daniel Fernàndez Garcia<br />

<strong>UPC</strong> – Constitutive eqs.<br />

LEVERETT J-FUNCTION (1941)<br />

The p c -S-relations in NAPL-water or gas-NAPL systems differ from<br />

gas-water due to the interdependence of the interfacial tension and<br />

the contact angle<br />

Dimensionless form of the p c -S-relations<br />

Leverett (1941)<br />

Richardson (1961)<br />

J(S)<br />

J(S)<br />

Pc<br />

= κ / φ<br />

σ<br />

= Pc<br />

κ φ<br />

f ( θ)<br />

σ<br />

/<br />

Influence of contact angle not negligible for drainage or wetting<br />

processes with θ =35-40 or 15-25, respectively.<br />

Contact angle increases with decreasing surface tension so that it is<br />

possible to estimate a range for σ (not negligible for < 50 mN/m)<br />

12


Daniel Fernàndez Garcia<br />

<strong>UPC</strong> – Constitutive eqs.<br />

Pc-S relation for water-NAPL-gas system<br />

Order of Wettability: WATER > NAPL > GAS<br />

Gas-Water<br />

Gas-NAPL<br />

Pn − Pw<br />

=<br />

P<br />

cnw<br />

(S<br />

Pg − Pn<br />

= Pcgn<br />

(Sg<br />

) = Pcgn<br />

(Sn<br />

+ S<br />

w<br />

)<br />

w<br />

)<br />

GAS<br />

NAPL<br />

Parker et al Model (1987)<br />

WATER<br />

S + S −S<br />

n w wr<br />

1−S<br />

wr<br />

(<br />

n<br />

)<br />

−<br />

1 ( m<br />

gn<br />

p<br />

cgn<br />

)<br />

= + α⋅β ⋅<br />

β<br />

gn<br />

=<br />

σ<br />

σ<br />

gw<br />

gn<br />

S<br />

w<br />

−S<br />

1−<br />

S<br />

wr<br />

wr<br />

(<br />

n<br />

)<br />

−<br />

1 ( m<br />

nw<br />

p<br />

cnw<br />

)<br />

= + α⋅β ⋅<br />

β<br />

nw<br />

=<br />

σ<br />

σ<br />

gw<br />

nw<br />

13


Daniel Fernàndez Garcia<br />

<strong>UPC</strong> – Constitutive eqs.<br />

EFFECTIVE SATURATION<br />

S(p)<br />

e<br />

c<br />

14


Daniel Fernàndez Garcia<br />

<strong>UPC</strong> – Constitutive eqs.<br />

TYPICAL PARAMETERS FOR VAN GENUTCHEN<br />

15


Daniel Fernàndez Garcia<br />

<strong>UPC</strong> – Constitutive eqs.<br />

ENERGY STATUS OF THE PORE WATER<br />

The soil-water system has energy associated to it.<br />

E = Energy [N-m], [Kg m 2 s -2 ]<br />

h = hydraulic head = Energy per unit weight<br />

h<br />

s<br />

= −∫<br />

0<br />

F(s)<br />

m(s)<br />

ds<br />

E = E + E + E + ... = PV + mgz + 1/2mv<br />

T p g c<br />

h = E /mg = P / ρ g + z + ...<br />

T<br />

T<br />

2<br />

We can define energy in other basis. For example, in many soil<br />

physics texts:<br />

"Soil Water Potential" ( ψ)<br />

ψ = Energy per unit volume (units of pressure)<br />

s<br />

ψ=− ρ ∫<br />

0<br />

(s)<br />

F(s)<br />

ds<br />

m(s)<br />

16


Daniel Fernàndez Garcia<br />

<strong>UPC</strong> – Constitutive eqs.<br />

COMPONENTS OF SOIL WATER POTENTIAL<br />

We continue to neglect kinetic energy<br />

Gravimetric head: Energy required to move pure free water from a<br />

reference elevation to the elevation z<br />

Gas, Water or NAPL Pressure head: Energy associated with<br />

pressure exerted on a point by surrounding water.<br />

h<br />

g<br />

s<br />

pg<br />

= ∫ ds ρ g<br />

0<br />

g<br />

h<br />

w<br />

s<br />

p<br />

= ∫ ρ<br />

0<br />

Capillary pressure head: Energy associated with the curvature of<br />

the air-water (or NAPL-air-water) interface, and the wettability of the<br />

soil, for the phases of interest.<br />

w<br />

ds<br />

g<br />

w<br />

hz<br />

h<br />

=<br />

n<br />

z<br />

s<br />

pn<br />

= ∫ ds ρ g<br />

0<br />

n<br />

s<br />

s<br />

pw − pg pc<br />

hc<br />

= ∫ ds=− ds<<br />

0<br />

ρ g<br />

∫ρ<br />

g<br />

0 w<br />

0<br />

w<br />

17


Daniel Fernàndez Garcia<br />

<strong>UPC</strong> – Constitutive eqs.<br />

COMPONENTS OF SOIL WATER POTENTIAL<br />

Not considered potentials:<br />

Osmotic head (Solute Potential): Change in energy associated with<br />

solutes (dissolved chemicals) in the soil water (or gas) compared to<br />

clean water, pure water. Measures the capability of a solution to suck<br />

water in.<br />

Overburden head: Energy associated with changing the mechanical<br />

pressure exerted by the unsupported solid material on the soil water<br />

from zero to some value P env . For rigid soil P env =0. For swelling or<br />

compacting sois P env >0.<br />

Other grouped potentials terms:<br />

h o<br />

h b<br />

Matric Potental and head: Soil-water systems only. Capillary<br />

pressure or suction but may include overburden or intergranular forces<br />

18


Daniel Fernàndez Garcia<br />

<strong>UPC</strong> – Constitutive eqs.<br />

COMPONENTS OF SOIL WATER POTENTIAL<br />

FOR VARIOUS APPLICATIONS<br />

Swelling Soil: Containing Water and Gas<br />

h = h + h + h + h +<br />

T<br />

z<br />

o<br />

cgw<br />

g<br />

h<br />

b<br />

Rigid Soil without osmotic process: Containing Water and Gas<br />

h = h + h +<br />

T<br />

z<br />

cgw<br />

h<br />

g<br />

19


Daniel Fernàndez Garcia<br />

<strong>UPC</strong> – Constitutive eqs.<br />

MEASUREMENTS OF Pc-S<br />

LABORATORY<br />

LONG COLUMNS<br />

A long porous media is allowed to reach equilibrium with the source of wetting fluid at its base<br />

HANGING COLUMN<br />

Small porous plate connected to a water column that ends in a burette. The position of the<br />

burette can be changed to increase suction.<br />

CENTRIFUGE<br />

Saturated short column is placed with its long axis horizontal in a centrifuge.<br />

<strong>PRESSURE</strong> PLATE<br />

Similar to hanging column but sample is in chamber with controlled external pressures.<br />

FIELD<br />

TENSIOMETER<br />

20


Daniel Fernàndez Garcia<br />

<strong>UPC</strong> – Constitutive eqs.<br />

Pc-S LABORATORY MEASUREMENTS<br />

“ HANGING COLUMN FOR WATER-AIR SYSTEMS”<br />

Cover to prevent<br />

evaporation<br />

-300 cm < -h c<br />

< 0<br />

Drainage of a saturated sample.<br />

After drainage step the system us<br />

taken to equilibrium.<br />

Equilibrium time depends on<br />

microporous cup material.<br />

21


Daniel Fernàndez Garcia<br />

<strong>UPC</strong> – Constitutive eqs.<br />

Pc-S LABORATORY MEASUREMENTS<br />

“ HANGING COLUMN FOR DNAPLs”<br />

DNAPL pressure increased<br />

incrementally.<br />

Porous plate allows water to flow<br />

but not DNAPL.<br />

Water pressure is indicated by<br />

the water level in the outflow<br />

burette, and the DNAPL<br />

pressure is calculated from the<br />

fluid levels in the DNAPL<br />

reservoir.<br />

22


Daniel Fernàndez Garcia<br />

<strong>UPC</strong> – Constitutive eqs.<br />

EXAMPLE PCE-WATER SYSTEM<br />

<strong>CAPILLARY</strong><br />

<strong>PRESSURE</strong><br />

[cm-water]<br />

23


Daniel Fernàndez Garcia<br />

<strong>UPC</strong> – Constitutive eqs.<br />

Pc MEASUREMENTS IN THE FIELD<br />

Pressure<br />

transducer or<br />

manometer<br />

Water<br />

TENSIOMETER<br />

L<br />

Contact between water-soil and<br />

tensiometer through microporous cup<br />

Microporous cup allows contact but not<br />

air penetration into the tensimeter<br />

Equilibrium time depends on flux<br />

resistance through microporous cup<br />

Capillary head = manometer – pressure<br />

head tensiometer<br />

h<br />

⎛p<br />

manometer<br />

c<br />

= ⎜ −<br />

ρwg<br />

⎝<br />

⎞<br />

L⎟<br />

⎠<br />

Maximum suction 800-900 milibars o cmaigua<br />

Microporous cup (5-10 cm long and 1-2 cm<br />

in diametre)<br />

24


Daniel Fernàndez Garcia<br />

<strong>UPC</strong> – Constitutive eqs.<br />

APLICATION - AGRICULTURE<br />

TENSIOMETER<br />

Can be automated<br />

Tensiometer indicates when to apply<br />

water but not how much.<br />

Water quantity calculated through<br />

retention curve<br />

25


Daniel Fernàndez Garcia<br />

<strong>UPC</strong> – Constitutive eqs.<br />

BUNDLE OF TUBES MODEL FOR<br />

RETENTION CURVE<br />

h i<br />

26


Daniel Fernàndez Garcia<br />

<strong>UPC</strong> – Constitutive eqs.<br />

MODELS OF RELATIVE PERMEABILITY<br />

Relationship between relative permeabiility and capillary pressure<br />

κ = S<br />

⎡<br />

⎢<br />

⎢<br />

⎢<br />

⎢<br />

⎣<br />

Se<br />

∫<br />

A 0<br />

rw e 1.0<br />

∫<br />

0<br />

[ p(S) ]<br />

c<br />

[ p(S) ]<br />

c<br />

−B<br />

−B<br />

⎤<br />

dS⎥<br />

⎥<br />

⎥<br />

dS⎥<br />

⎦<br />

C<br />

( 1 S )<br />

κ = −<br />

Burdine amb Brooks and Corey<br />

A<br />

⎡<br />

⎢<br />

⎢<br />

⎢<br />

⎢<br />

⎢⎣<br />

1.0<br />

∫<br />

rnw e 1.0<br />

S<br />

e<br />

∫<br />

0<br />

[ p (S)]<br />

c<br />

[ p (S)]<br />

c<br />

−B<br />

−B<br />

⎤<br />

dS⎥<br />

⎥<br />

⎥<br />

dS⎥<br />

⎥⎦<br />

C<br />

MODEL A<br />

BURDINE 2<br />

MUALEM 0.5<br />

S<br />

e<br />

S−S<br />

=<br />

1 − S<br />

r<br />

r<br />

B<br />

2<br />

1<br />

C<br />

1<br />

2<br />

κ =<br />

rw<br />

( S ) 2 3<br />

λ<br />

e<br />

+ λ<br />

⎛<br />

κ = − ⎜ −<br />

⎝<br />

2+ 3λ<br />

2<br />

λ<br />

rnw ( 1 Se ) 1 Se<br />

⎞<br />

⎟<br />

⎠<br />

S: saturation<br />

λ: pore size index<br />

S : residual saturation<br />

r<br />

Mualem amb Van Genutchen<br />

( ) (<br />

1/m<br />

S 1 1 S )<br />

ε<br />

⎡<br />

rw e e<br />

κ =<br />

⎢<br />

− −<br />

⎣<br />

m<br />

⎤<br />

⎥⎦<br />

2<br />

( )<br />

1/m<br />

rnw<br />

1 S ε ⎡<br />

e<br />

1 Se<br />

κ = − ⎣ −<br />

⎤<br />

⎦<br />

2m<br />

ε: connectivity of the pores ≈<br />

1<br />

2<br />

27


Daniel Fernàndez Garcia<br />

<strong>UPC</strong> – Constitutive eqs.<br />

28


Daniel Fernàndez Garcia<br />

<strong>UPC</strong> – Constitutive eqs.<br />

MODELS OF RELATIVE PERMEABILITY<br />

NAPL-WATER SYSTEM<br />

29


Daniel Fernàndez Garcia<br />

<strong>UPC</strong> – Constitutive eqs.<br />

MODELS OF RELATIVE PERMEABILITY<br />

NAPL-GAS SYSTEM<br />

30


Daniel Fernàndez Garcia<br />

<strong>UPC</strong> – Constitutive eqs.<br />

MODELS OF RELATIVE PERMEABILITY<br />

WATER-NAPL-GAS SYSTEM<br />

We need to define<br />

the region where<br />

NAPL is mobile<br />

31


Daniel Fernàndez Garcia<br />

<strong>UPC</strong> – Constitutive eqs.<br />

MODELS OF RELATIVE PERMEABILITY<br />

3-PHASE SYSTEMS<br />

Parker et al. (1987)<br />

WATER<br />

NAPL<br />

⎡<br />

⎢<br />

⎢<br />

⎢<br />

⎢<br />

⎢⎣<br />

S<br />

w<br />

A<br />

0<br />

rw<br />

Sw<br />

1<br />

κ =<br />

∫<br />

∫<br />

0<br />

( S Sw<br />

)<br />

κ = −<br />

[ p(S) ]<br />

c<br />

[ p(S) ]<br />

c<br />

A<br />

⎡<br />

⎢<br />

⎢<br />

⎢<br />

⎢<br />

⎢<br />

⎣<br />

rn L 1<br />

S<br />

L<br />

∫<br />

S<br />

w<br />

∫<br />

0<br />

−B<br />

−B<br />

⎤<br />

dS⎥<br />

⎥<br />

⎥<br />

dS⎥<br />

⎥⎦<br />

C<br />

[ p(S) ]<br />

[ p(S) ]<br />

c<br />

c<br />

−B<br />

−B<br />

⎤<br />

dS⎥<br />

⎥<br />

⎥<br />

dS⎥<br />

⎥<br />

⎦<br />

C<br />

S<br />

w<br />

S<br />

L<br />

S<br />

=<br />

S<br />

w<br />

wm<br />

−S<br />

−S<br />

wr<br />

wr<br />

Total liquid (NAPL+water) effective saturation<br />

Sw + Sn −Swr −Snr<br />

=<br />

S + S −S −S<br />

wm nm wr nr<br />

AIR<br />

⎡<br />

⎢<br />

⎢<br />

⎢<br />

⎢<br />

⎢⎣<br />

1<br />

A S L<br />

ra<br />

Sa<br />

1<br />

κ =<br />

∫<br />

∫<br />

0<br />

[ p(S) ]<br />

c<br />

[ p(S) ]<br />

c<br />

−B<br />

−B<br />

⎤<br />

dS⎥<br />

⎥<br />

⎥<br />

dS⎥<br />

⎥⎦<br />

C<br />

S<br />

a<br />

=<br />

S<br />

S<br />

a<br />

am<br />

−S<br />

−S<br />

ar<br />

ar<br />

32


Daniel Fernàndez Garcia<br />

<strong>UPC</strong> – Constitutive eqs.<br />

MODELS OF RELATIVE PERMEABILITY<br />

3-PHASE SYSTEMS<br />

Parker et al. (1987) with Mualem / Van Genucthen Model<br />

WATER<br />

1/2<br />

w<br />

κ<br />

rw<br />

= S ⎡<br />

⎣1 −(1−S )<br />

1/m m<br />

w<br />

⎤<br />

⎦<br />

2<br />

S<br />

w<br />

=<br />

S<br />

S<br />

w<br />

wm<br />

−S<br />

−S<br />

wr<br />

wr<br />

NAPL<br />

( ) 1/2 1/m m 1/m m<br />

2<br />

S S w ⎡(1 S ) (1 S ) ⎤<br />

κ = − ⎣ − − −<br />

rn L w L<br />

( ) 1/2 2m<br />

1 S ⎡1 S ⎤<br />

κ = − −<br />

1/m<br />

AIR ra<br />

L<br />

⎣ L ⎦<br />

Sa −Sar<br />

a<br />

OBSERVATION:<br />

K rw depends only on S w<br />

K ra depends only on S a (or S L )<br />

⎦<br />

S<br />

S<br />

L<br />

Sw + Sn −Swr −Snr<br />

=<br />

S + S −S −S<br />

=<br />

S<br />

wm nm wr nr<br />

am<br />

−S<br />

ar<br />

K rn depends on both S a and S w<br />

33


Daniel Fernàndez Garcia<br />

<strong>UPC</strong> – Constitutive eqs.<br />

MODELS OF RELATIVE PERMEABILITY<br />

3-PHASE SYSTEMS<br />

Stone’s 1 model (1970) – Estimates of K rn based on two-phase systems<br />

First K rw (S w ) is obtained as for water-NAPL. Then K rg (S g ) is<br />

determined for gas-NAPL phase system.<br />

NAPL<br />

κ<br />

⎛<br />

= ⎜<br />

S ⎞<br />

⎟κ κ<br />

⎝<br />

⎠<br />

n<br />

rn<br />

⎜<br />

rnw rng<br />

(1−S w)(1−S g)<br />

⎟<br />

κ<br />

rnw<br />

=κrn (S<br />

w<br />

) in a water-NAPL system<br />

κ<br />

= κ<br />

rng rg g<br />

(S ) in a gas-NAPL system<br />

34


Daniel Fernàndez Garcia<br />

<strong>UPC</strong> – Constitutive eqs.<br />

MODELS OF RELATIVE PERMEABILITY<br />

3-PHASE SYSTEMS<br />

Stone’s 2 model (1973) – Estimates of K rn based on two-phase systems<br />

First K rw (S w ) is obtained as for water-NAPL. Then K rg (S g ) is<br />

determined for gas-NAPL phase system.<br />

⎡⎛κ<br />

⎞⎛ κ ⎞<br />

⎢⎜ ⎟⎜ ⎟<br />

⎣⎝ ⎠⎝ ⎠<br />

NAPL * rnw<br />

rng<br />

κ =κ +κ +κ −( κ +κ )<br />

rn rnw * rw * rg rw rg<br />

κrnw<br />

κrnw<br />

⎤<br />

⎥<br />

⎦<br />

κ =κ (S = S ) in a water-NAPL system<br />

*<br />

rnw rn w wr<br />

κ<br />

rnw<br />

=κrn (S<br />

w<br />

) in a water-NAPL system<br />

κ<br />

= κ<br />

rng rg g<br />

(S ) in a gas-NAPL system<br />

35


Daniel Fernàndez Garcia<br />

<strong>UPC</strong> – Constitutive eqs.<br />

MODELS OF RELATIVE PERMEABILITY<br />

3-PHASE SYSTEMS<br />

Interpolation model<br />

κ<br />

rw<br />

=κrw (S<br />

w<br />

)<br />

κ<br />

= κ<br />

(S )<br />

ra ra a<br />

κ =κ (S ,S ) =<br />

rn rn g w<br />

S κ (S ) + S κ (S )<br />

g rng g w rnw w<br />

S<br />

g<br />

+ S<br />

w<br />

36

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!