01.04.2015 Views

Giant spin Seebeck effect in a non-magnetic material

Giant spin Seebeck effect in a non-magnetic material

Giant spin Seebeck effect in a non-magnetic material

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

LETTER<br />

doi:10.1038/nature11221<br />

<strong>Giant</strong> <strong>sp<strong>in</strong></strong> <strong>Seebeck</strong> <strong>effect</strong> <strong>in</strong> a <strong>non</strong>-<strong>magnetic</strong> <strong>material</strong><br />

C. M. Jaworski 1 , R. C. Myers 2,3 , E. Johnston-Halper<strong>in</strong> 3 & J. P. Heremans 1,3<br />

The <strong>sp<strong>in</strong></strong> <strong>Seebeck</strong> <strong>effect</strong> is observed when a thermal gradient applied<br />

to a <strong>sp<strong>in</strong></strong>-polarized <strong>material</strong> leads to a spatially vary<strong>in</strong>g transverse<br />

<strong>sp<strong>in</strong></strong> current <strong>in</strong> an adjacent <strong>non</strong>-<strong>sp<strong>in</strong></strong>-polarized <strong>material</strong>, where it<br />

gets converted <strong>in</strong>to a measurable voltage. It has been previously<br />

observed with a magnitude of microvolts per kelv<strong>in</strong> <strong>in</strong> <strong>magnetic</strong>ally<br />

ordered <strong>material</strong>s, ferro<strong>magnetic</strong> metals 1 , semiconductors 2 and <strong>in</strong>sulators<br />

3 . Here we describe a signal <strong>in</strong> a <strong>non</strong>-<strong>magnetic</strong> semiconductor<br />

(InSb) that has the hallmarks of be<strong>in</strong>g produced by the <strong>sp<strong>in</strong></strong> <strong>Seebeck</strong><br />

<strong>effect</strong>, but is three orders of magnitude larger (millivolts per kelv<strong>in</strong>).<br />

We refer to the phenome<strong>non</strong> that produces it as the giant <strong>sp<strong>in</strong></strong><br />

<strong>Seebeck</strong> <strong>effect</strong>. Quantiz<strong>in</strong>g <strong>magnetic</strong> fields <strong>sp<strong>in</strong></strong>-polarize conduction<br />

electrons <strong>in</strong> semiconductors by means of Zeeman splitt<strong>in</strong>g, which<br />

<strong>sp<strong>in</strong></strong>–orbit coupl<strong>in</strong>g amplifies by a factor of 25 <strong>in</strong> InSb. We propose<br />

that the giant <strong>sp<strong>in</strong></strong> <strong>Seebeck</strong> <strong>effect</strong> is mediated by pho<strong>non</strong>–electron<br />

drag, which changes the electrons’ momentum and directly modifies<br />

the <strong>sp<strong>in</strong></strong>-splitt<strong>in</strong>g energy through <strong>sp<strong>in</strong></strong>–orbit <strong>in</strong>teractions. Ow<strong>in</strong>g to<br />

the simultaneously strong pho<strong>non</strong>–electron drag and <strong>sp<strong>in</strong></strong>–orbit<br />

coupl<strong>in</strong>g <strong>in</strong> InSb, the magnitude of the giant <strong>sp<strong>in</strong></strong> <strong>Seebeck</strong> voltage<br />

is comparable to the largest known classical thermopower values.<br />

At present, we understand 4–6 that the <strong>sp<strong>in</strong></strong> <strong>Seebeck</strong> <strong>effect</strong> (SSE) <strong>in</strong><br />

ferromagnets results from the <strong>in</strong>teraction between pho<strong>non</strong>s and excitations<br />

of <strong>magnetic</strong> moments (mag<strong>non</strong>s), which creates a gradient <strong>in</strong><br />

the magnetization across the sample. At the steady state, the pho<strong>non</strong><br />

driven excitation of mag<strong>non</strong>s out-of-equilibrium is balanced by<br />

damp<strong>in</strong>g back to equilibrium. This dissipation of angular momentum<br />

generates a <strong>sp<strong>in</strong></strong> current flow<strong>in</strong>g <strong>in</strong>to an adjacent <strong>non</strong>-<strong>magnetic</strong> metal,<br />

a process called <strong>sp<strong>in</strong></strong>-pump<strong>in</strong>g 7,8 . The generated <strong>sp<strong>in</strong></strong> current can be<br />

electrically detected because <strong>sp<strong>in</strong></strong>-polarized electrons are selectively<br />

scattered to one side of a heavy metal (plat<strong>in</strong>um), thereby generat<strong>in</strong>g<br />

a transverse voltage via the <strong>in</strong>verse <strong>sp<strong>in</strong></strong>-Hall <strong>effect</strong> (ISHE) 9 . The SSE is<br />

enhanced by pho<strong>non</strong>–mag<strong>non</strong> drag: 4,5 <strong>in</strong> the GaMnAs/GaAs system it<br />

reaches a maximum near 5 mVK 21 when the lattice thermal conductivity<br />

and pho<strong>non</strong>–electron drag (PED) are maximal. Here we select a<br />

system <strong>in</strong> which PED, <strong>sp<strong>in</strong></strong>–orbit coupl<strong>in</strong>g and <strong>sp<strong>in</strong></strong> polarizability are<br />

maximized, namely, InSb.<br />

SSE is a thermal <strong>sp<strong>in</strong></strong> <strong>effect</strong>, belong<strong>in</strong>g to the class of irreversible<br />

thermodynamic <strong>effect</strong>s <strong>in</strong> the absence of time-reversal symmetry.<br />

Other such <strong>sp<strong>in</strong></strong>–heat <strong>in</strong>teractions <strong>in</strong>clude thermal <strong>sp<strong>in</strong></strong> torque 10 and<br />

thermally driven <strong>sp<strong>in</strong></strong> <strong>in</strong>jection 11 , offer<strong>in</strong>g new possibilities for heatdriven<br />

<strong>sp<strong>in</strong></strong>tronics. Conversely, opportunities exist for new all-solidstate<br />

energy conversion devices based on SSE, along the l<strong>in</strong>es of current<br />

thermoelectric devices. The optimization of the efficiency of thermoelectric<br />

<strong>material</strong>s <strong>in</strong>volves reach<strong>in</strong>g a compromise between mutually<br />

counter-<strong>in</strong>dicated properties (thermopower, electrical and thermal<br />

conductivities) of a s<strong>in</strong>gle <strong>material</strong>. Conversely, SSE-based thermoelectrics<br />

<strong>in</strong>volve properties (pho<strong>non</strong>–<strong>sp<strong>in</strong></strong> <strong>in</strong>teractions, <strong>sp<strong>in</strong></strong>–orbit<br />

<strong>in</strong>teractions) of at least two different <strong>material</strong>s that can be optimized<br />

<strong>in</strong>dependently to achieve higher efficiency.<br />

SSE was first measured 1–3 us<strong>in</strong>g the ISHE <strong>in</strong> Pt strips oriented perpendicular<br />

to the thermal gradient, which is the same geometry that we<br />

use <strong>in</strong> this study (Fig. 1a, <strong>in</strong>set); the SSE can also be measured us<strong>in</strong>g a<br />

longitud<strong>in</strong>al temperature gradient applied uniformly 12 or locally 13 .<br />

Here, a slab of <strong>material</strong> is subject to a temperature gradient = x T (blue<br />

represents cold <strong>in</strong> the figures, and red hot), applied parallel to a<br />

<strong>magnetic</strong> field B x , which controls the magnetization (M) and <strong>sp<strong>in</strong></strong><br />

polarization (s) aligned along x. Pt strips are evaporated onto the<br />

top surface of the slab: when a flux of <strong>sp<strong>in</strong></strong>s (J S ) diffuses along z <strong>in</strong>to<br />

the Pt strips, it generates an electric field (E ISHE ) detected as a transverse<br />

voltage (V y ; ref. 14) shown schematically <strong>in</strong> Fig. 1a and given by<br />

V y =W~E ISHE ~D ISHE (J s |s) where W is the strip width and D ISHE is<br />

the ISHE coefficient of Pt. V y scales l<strong>in</strong>early with = x T, so that the slope<br />

def<strong>in</strong>es the <strong>sp<strong>in</strong></strong> <strong>Seebeck</strong> coefficient S xy :E ISHE =(+ x T), <strong>in</strong> the same<br />

units (V K 21 ) as a thermoelectric power (or ‘charge <strong>Seebeck</strong>’ coefficient).<br />

S xy changes polarity near the middle of the sample, yield<strong>in</strong>g<br />

opposite polarity between hot and cold sides.<br />

The macroscopic (,5mm3 15 mm 3 0.5 mm) InSb samples<br />

studied here are Te-doped n-type (electron concentration n 5 3.7<br />

3 10 15 cm 23 ) and have high mobility (m < 120,000 cm 2 V 21 s 21 at<br />

5 K). The work function of Pt is larger than the electron aff<strong>in</strong>ity of<br />

InSb: a high sheet density (p 1 ) of holes accumulates <strong>in</strong> InSb<br />

(,10 15 cm 22 ; Fig. 1b) at the InSb/Pt <strong>in</strong>terface, so the p 1 -InSb/Pt<br />

<strong>in</strong>terface is Ohmic. In this p 1 -InSb region, the light hole band is<br />

<strong>non</strong>-parabolic (almost l<strong>in</strong>ear) and subject to strong <strong>sp<strong>in</strong></strong>–orbit coupl<strong>in</strong>g<br />

(<strong>sp<strong>in</strong></strong>–orbit coupl<strong>in</strong>g energy at C for the light hole band is<br />

0.8 eV) 15 , so it is likely to contribute to E ISHE . Away from the InSb/Pt<br />

<strong>in</strong>terface, we have n-InSb; the depletion region at the n/p 1 <strong>in</strong>terface is<br />

th<strong>in</strong>, <strong>in</strong>terband tunnell<strong>in</strong>g gives quasi-ohmic behaviour, and we<br />

observe l<strong>in</strong>ear current–voltage relations.<br />

In an applied <strong>magnetic</strong> field B x , electrons <strong>in</strong> n-InSb move <strong>in</strong> a helical<br />

fashion, spirall<strong>in</strong>g <strong>in</strong> the y–z plane as they translate along x. If they can<br />

complete several orbits without phase change or scatter<strong>in</strong>g (the latter<br />

a 20<br />

b Detection Polarization<br />

0.6<br />

(1,↑) (0,↓)<br />

Pt InSb<br />

15<br />

(0,↑)<br />

ε F<br />

0.3<br />

z y<br />

10<br />

CB<br />

B<br />

+ x<br />

+ – x<br />

ε F<br />

0<br />

5 –<br />

Pt<br />

VB ε g<br />

InSb<br />

0 –0.3<br />

0 2 4 6 –10 0 10 20<br />

B (T)<br />

z (nm)<br />

ε (meV)<br />

Figure 1 | Detection scheme for measurement of the SSE <strong>in</strong> <strong>non</strong>-<strong>magnetic</strong><br />

InSb. a, Landau energy levels (labels on coloured l<strong>in</strong>es) for orbital and <strong>sp<strong>in</strong></strong><br />

quantized electrons <strong>in</strong> InSb, together with calculated e F (Fermi level; black<br />

curve) as a function of the applied <strong>magnetic</strong> field B. e, k<strong>in</strong>etic energy of<br />

electrons. Inset, experimental geometry for <strong>sp<strong>in</strong></strong> <strong>Seebeck</strong> detection, not to scale;<br />

red denotes the hot side, blue the cold. b, The Pt-InSb band edge diagram,<br />

show<strong>in</strong>g, from left to right, an <strong>in</strong>terface (bold vertical l<strong>in</strong>e) between Pt and p 1 -<br />

InSb layers, followed by a th<strong>in</strong> tunnel junction bracketed by the two grey<br />

vertical l<strong>in</strong>es, and an n-InSb layer with n 5 3.7 3 10 15 cm 23 where the <strong>sp<strong>in</strong></strong><br />

polarization orig<strong>in</strong>ates. e g is the bandgap, e F the Fermi level (dashed horizontal<br />

l<strong>in</strong>e). Conduction electrons <strong>in</strong> Pt are hatched purple. In InSb, the conduction<br />

band (CB) is hatched p<strong>in</strong>k, the valence band (VB) dark blue. The<br />

<strong>sp<strong>in</strong></strong>-polarization can be detected by either holes <strong>in</strong> InSb or electrons <strong>in</strong> Pt.<br />

ε (eV)<br />

1 Department of Mechanical Eng<strong>in</strong>eer<strong>in</strong>g, The Ohio State University, Columbus, Ohio 43210, USA. 2 Department of Materials Science and Eng<strong>in</strong>eer<strong>in</strong>g, The Ohio State University, Columbus, Ohio 43210,<br />

USA. 3 Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA.<br />

210 | NATURE | VOL 487 | 12 JULY 2012<br />

©2012 Macmillan Publishers Limited. All rights reserved


LETTER<br />

RESEARCH<br />

when mB x . 1), the only rema<strong>in</strong><strong>in</strong>g degree of freedom is their wave<br />

vector k which has only one component k x parallel to B x The Lorentz<br />

force conf<strong>in</strong>es the motion to cyclotron orbits that are quantized <strong>in</strong>to<br />

Landau levels with orbital quantum number i (5 0, 1, 2…). Each<br />

Landau level becomes further divided <strong>in</strong>to two <strong>sp<strong>in</strong></strong>-polarized levels.<br />

The equation of motion for the k<strong>in</strong>etic energy (e) of such electrons is<br />

described by the k x -dependence of the energy function c(e) for a given<br />

orbital (i) and <strong>sp<strong>in</strong></strong> (s x ) quantum number, which is given by: 16<br />

c(e) i,sx :e(1z e )~ B2 k 2 x<br />

e g 2m z(iz 1 2 )Bv czgm B s x B x ð1Þ<br />

where e g is the band gap, m* the <strong>effect</strong>ive mass, B the reduced Planck<br />

constant, v c (5 eB x /m c ) the cyclotron frequency, m c<br />

the cyclotron<br />

mass, g the <strong>effect</strong>ive g-factor (a function of n and Fermi energy), m B<br />

the Bohr magneton, and s x (6K) is the projection of <strong>sp<strong>in</strong></strong> along x. The<br />

Zeeman <strong>sp<strong>in</strong></strong> splitt<strong>in</strong>g energy De"# 5 gm B B x is the energy difference<br />

between s x 51K and s x 52K levels. For e , e g , c!e!B 2 k 2 x<br />

and the<br />

energy bands are free-electron-like; for high e . e g , c!e 2 !B 2 k 2 x and<br />

the relation between e and k x becomes l<strong>in</strong>ear. The Fermi surface for<br />

lightly doped n-InSb at low temperatures is spherical and located at<br />

the centre of the Brillou<strong>in</strong> zone, lead<strong>in</strong>g to isotropic behaviour<br />

with m c 5 m* 5 0.0136 m 0 (the free electron mass), g < 249 for<br />

n < 2 3 10 15 cm 23 , and e g 5 0.235 eV at 4.2 K (ref. 15). Figure 1a<br />

shows the B x dependence of each energy level (i, s x ) from equation<br />

(1) at k x 5 0. For n 5 3.7 310 15 cm 23 , we calculate the location of the<br />

Fermi level e F at T 5 0 K (an acceptable approximation for T , 20 K),<br />

shown as a full l<strong>in</strong>e <strong>in</strong> Fig. 1a. Therefore, at fields B x . 1.6 T most<br />

electrons occupy the lowest energy <strong>sp<strong>in</strong></strong>-polarized Landau level<br />

(i 5 0, s x 51K), called the ultra-quantum limit (UQL). At T . 0<br />

and under the <strong>in</strong>fluence of = x T, a small fraction of these electrons<br />

populate the next (i 5 0, s x 52K) level follow<strong>in</strong>g Fermi–Dirac<br />

statistics. Magnetoresistance below ,10 K shows quantum oscillations,<br />

the Shubnikov–de Haas <strong>effect</strong> 16 , as a function of B x as e F crosses<br />

different Landau levels (these are reported and analysed <strong>in</strong><br />

Supplementary Information). The last oscillation is observed at<br />

1.6 T, above this the sample is <strong>in</strong> the UQL.<br />

Figure 2 shows S xy as a function of B x , for four J S -sensitive Pt strips,<br />

two at the hot end (red, orange traces) and two at the cold end (green,<br />

blue traces) of the sample at four different temperatures. V y (= x T 5 0,<br />

B x 5 0) has a residual <strong>non</strong>-zero value, especially at low T, which was<br />

subtracted from the data <strong>in</strong> Fig. 2a–e. As was the case for the SSE <strong>in</strong><br />

ferro<strong>magnetic</strong> <strong>material</strong>s, S xy changes polarity at some location near the<br />

middle of the sample, yield<strong>in</strong>g signals of opposite polarity between<br />

hot and cold sides (although not perfectly antisymmetric). The traces<br />

show a large even-symmetric dependence on B x, and a small oddsymmetric<br />

one, especially below the UQL. The even-symmetric part<br />

(V y ) even :½V y (B z x )zV y(B { x )Š=2; Bz x ~{B{ x measured at 31.2 K on<br />

the hottest and coldest Pt strip is shown <strong>in</strong> Fig. 2e. These voltages<br />

are plotted as a function of the DT x between thermometers located<br />

on the samples’ hot and cold ends (not shown <strong>in</strong> Fig. 2g) <strong>in</strong> Fig. 2f,<br />

which illustrates that V y varies l<strong>in</strong>early with = x T, aga<strong>in</strong> as was the case<br />

for the SSE signal <strong>in</strong> ferro<strong>magnetic</strong> <strong>material</strong>s; this justifies a posteriori<br />

the def<strong>in</strong>ition of the quantity S xy ; E y /(= x T) 5 V y L/(DT x W), where<br />

L is the length between the thermometers. As <strong>in</strong> the case of the SSE<br />

signal <strong>in</strong> ferro<strong>magnetic</strong> <strong>material</strong>s, this signal is not observed when<br />

<strong>sp<strong>in</strong></strong>-<strong>in</strong>sensitive In-po<strong>in</strong>t contacts are used on the sample (see<br />

Fig. 3). It displays polarity <strong>in</strong>version near the middle of the sample,<br />

and is l<strong>in</strong>ear <strong>in</strong> = x T. For those reasons, and because the signal is much<br />

larger and has a different B x -dependence from the classical thermo<strong>magnetic</strong><br />

<strong>effect</strong>s taken <strong>in</strong> the same geometry (Fig. 3), we conclude that<br />

Fig. 2 shows signals similar to the SSE that orig<strong>in</strong>ate from the <strong>effect</strong> of<br />

= x T on the <strong>sp<strong>in</strong></strong>-polarized carriers <strong>in</strong> the n-type InSb; because of their<br />

amplitude, we call them the giant <strong>sp<strong>in</strong></strong> <strong>Seebeck</strong> <strong>effect</strong> (GSSE).<br />

Below the UQL <strong>in</strong> the Shubnikov–de Haas regime, S xy shows an<br />

oscillatory dependence on B x with the same period <strong>in</strong> 1/B x as the<br />

a<br />

S xy (μV K –1 )<br />

c<br />

S xy (μV K –1 )<br />

e<br />

(V y ) even (μV)<br />

g<br />

2,000<br />

μV K –1<br />

4.3 K<br />

1,500<br />

μV K –1 150<br />

μV K –1<br />

0.5 μV<br />

6.3 K<br />

–8 –4 0 4 8<br />

B x (T)<br />

∇ x T<br />

Increas<strong>in</strong>g ∇ x T<br />

Hot Pt bar<br />

Cold Pt<br />

bar<br />

Increas<strong>in</strong>g ∇ x T<br />

0 2 4 6 8<br />

B x (T)<br />

B x<br />

Pt bars<br />

InSb<br />

Shubnikov–de Haas oscillations observed <strong>in</strong> resistivity or thermopower.<br />

Interest<strong>in</strong>gly, above the UQL S xy cont<strong>in</strong>ues to change as a<br />

function of B x ; even though S xy is sensitive to orbital quantization,<br />

its orig<strong>in</strong> is clearly different from that of the Shubnikov–de Haas<br />

oscillations. The maximum value of S xy reaches 8 mV K 21 near<br />

2.8 K, more than 1,000 times larger than the largest value of SSE<br />

measured <strong>in</strong> a ferro<strong>magnetic</strong> <strong>material</strong> 4 .<br />

The amplitude of the maximum at B x 5 2.7 T is plotted as a function<br />

of T <strong>in</strong> Fig. 2h. This shows that GSSE persists above the UQL up to<br />

40 K, a temperature far <strong>in</strong> excess of the 10–15 K where the Shubnikov–de<br />

Haas oscillations disappear. We also plot <strong>in</strong> Fig. 2h a temperature amplitude<br />

reduction function<br />

R T ~ 2p2 k B T<br />

gm B B<br />

b<br />

S xy (μV K –1 )<br />

d<br />

S xy (μV K –1 )<br />

f<br />

(V y ) max<br />

even (μV)<br />

h<br />

|S xy | max (μV K –1 )<br />

1,000<br />

μV K –1<br />

–8<br />

0.5<br />

0<br />

–0.5<br />

10.4 K<br />

–4 0 4 8<br />

B x (T)<br />

0 0.1 0.2 0.3 0.4<br />

Δ x T (K)<br />

10 3<br />

R T<br />

10 4 10 20 30 40<br />

10 2<br />

0<br />

31.2 K<br />

25.1 K<br />

T (K)<br />

Figure 2 | Experimental data on the SSE <strong>in</strong> InSb. a–d, Sp<strong>in</strong> <strong>Seebeck</strong><br />

coefficient S xy (def<strong>in</strong>ed <strong>in</strong> text) as a function of applied <strong>magnetic</strong> field (B x )on<br />

first sample. The zero is the horizontal l<strong>in</strong>e <strong>in</strong> the middle of each panel. e, Evensymmetric<br />

part (V y ) even of the transverse voltage at selected temperature<br />

differences DT x between hottest and coldest strip on second sample at 31.2 K,<br />

and f, maximum of (V y ) even <strong>in</strong> e versus DT x . g, Diagram (not to scale) of InSb<br />

sample, Pt bar colour corresponds to a–d. h, Absolute value of maximum of<br />

S xy (B x ) at 2.7 T of the cold Pt bar, and function R T (see text). Error bars, s.d.<br />

{1<br />

s<strong>in</strong>h ( 2p2 k B T<br />

gm B B )<br />

ð2Þ<br />

©2012 Macmillan Publishers Limited. All rights reserved<br />

12 JULY 2012 | VOL 487 | NATURE | 211


RESEARCH<br />

LETTER<br />

a<br />

–α xxx (mV K –1 )<br />

1<br />

0.1<br />

0.01<br />

0<br />

V x<br />

V y<br />

In B b<br />

4.04 K<br />

x 0<br />

5.63 K<br />

8.28 K<br />

11.3 K<br />

InSb<br />

–20<br />

15.8 K<br />

–40<br />

c<br />

0<br />

α xxx (0T)<br />

–0.4<br />

3.8 K<br />

α xxx (7T)–α xxx (0T)<br />

–0.8<br />

8.2 K<br />

SSE (normalized)<br />

16.1 K<br />

–1.2<br />

25 50 75 100<br />

–8 –4 0 4 8<br />

T (K)<br />

B x (T)<br />

α xxx (mV K –1 ) α xyx (μV K –1 )<br />

Figure 3 | Classical thermo<strong>magnetic</strong> properties of InSb. a, Thermopower<br />

a xxx as a function of T <strong>in</strong> zero field (green open dots) and excess thermopower<br />

a xxx (B x ) 2 a xxx (B x 5 0) measured <strong>in</strong> longitud<strong>in</strong>al applied <strong>magnetic</strong> field B x //<br />

= x T at B x 5 7 T (yellow dots). The dashed blue l<strong>in</strong>e is the function R T from<br />

Fig. 2h, the amplitude of the GSSE signal as a function of T. Inset, diagram of In<br />

which, with the literature value of g 5249 and B x 5 2.7 T and only the<br />

absolute amplitude as adjustable parameter, follows the data over<br />

almost three orders of magnitude. R T was derived 16 to express the <strong>effect</strong><br />

on transport, thermal and <strong>magnetic</strong> properties of the f<strong>in</strong>ite probability<br />

of occupation of Zeeman-split Landau levels at a temperature T. In<br />

equation (2), R T depends on the ratio between the thermal energy<br />

k B T and the Zeeman energy gm B B x of conduction electrons on helical<br />

trajectories. R T is dist<strong>in</strong>ct from the Brillou<strong>in</strong> or Langev<strong>in</strong> functions that<br />

characterize the same <strong>effect</strong>s <strong>in</strong> <strong>magnetic</strong> systems where the <strong>magnetic</strong><br />

moments are due to bound electrons. We contrast R T <strong>in</strong> Fig. 2h with the<br />

much faster temperature-<strong>in</strong>duced decay <strong>in</strong> the Shubnikov–de Haas<br />

oscillations <strong>in</strong> resistivity, analysed <strong>in</strong> Supplementary Information,<br />

which <strong>in</strong>volve the orbital quantum number. Both the T and B x dependence<br />

<strong>in</strong> Fig. 2 give evidence that S xy exists <strong>in</strong> InSb even when orbital<br />

quantization is no longer resolved, and is driven by <strong>sp<strong>in</strong></strong>-polarization of<br />

conduction electrons.<br />

The classical charge-transport properties of the samples (made<br />

without Pt strips but with In po<strong>in</strong>t contacts) with B x aligned<br />

parallel to heat flux as <strong>in</strong> the SSE are reported <strong>in</strong> Fig. 3a–c. More<br />

thermo<strong>magnetic</strong> measurements are reported <strong>in</strong> the Supplementary<br />

Information, where the notation used is also expla<strong>in</strong>ed. Figure 3a shows<br />

the thermopower a xxx (B x 5 0 T) at zero field and the difference<br />

a xxx (B x 5 7T)2 a xxx (B x 5 0 T). This difference was attributed to the<br />

PED contribution to a xxx (B) (ref. 17): the magnitude and temperature<br />

dependence of the excess <strong>in</strong>dicates that PED dom<strong>in</strong>ates the thermopower<br />

<strong>in</strong> our samples, and persists above 50 K. PED is a long-range<br />

<strong>effect</strong>. Pho<strong>non</strong>–electron and pho<strong>non</strong>–pho<strong>non</strong> <strong>in</strong>teraction lengths at<br />

T , 50 K are of the order of the macroscopic sample size, as shown<br />

experimentally <strong>in</strong> measurements of size-<strong>effect</strong>s at the millimetre scale 17 .<br />

We add to Fig. 3a, as a dashed l<strong>in</strong>e, the temperature dependence of the<br />

GSSE <strong>effect</strong> from Fig. 2h, re<strong>in</strong>forc<strong>in</strong>g the conclusion that its temperature<br />

dependence is limited by equation (2), and not by PED. Figure 3b shows<br />

a pseudo-thermopower a xyx ; its purpose is to show that the E y picked up<br />

<strong>in</strong> the same configuration as the GSSE shown <strong>in</strong> Fig. 2 is negligibly small<br />

<strong>in</strong> the absence of a <strong>sp<strong>in</strong></strong>-sensitive detector. Although great care was taken<br />

to avoid small misalignments <strong>in</strong> the (x,z) plane, the reported a xyx<br />

probably has no physical significance. The <strong>magnetic</strong> field dependence<br />

of a xxx (B x ) is shown <strong>in</strong> Fig. 3c, and is quite dist<strong>in</strong>ct from that of the<br />

GSSE signals. Except for the transverse magnetothermopower a xxz (B z ),<br />

a configuration very different from the one <strong>in</strong> Fig. 2, <strong>non</strong>e of the<br />

potential parasitic <strong>effect</strong>s has the same magnitude, <strong>magnetic</strong> field<br />

dependence, or position dependence along the sample length as the<br />

GSSE.<br />

We now dist<strong>in</strong>guish the B x dependence of GSSE <strong>in</strong> <strong>non</strong>-<strong>magnetic</strong><br />

InSb from that of the SSE <strong>in</strong> ferro<strong>magnetic</strong> <strong>material</strong>s. First, the evensymmetric<br />

nature of S xy (B x ) with B x above the UQL is opposite to that<br />

po<strong>in</strong>t contacts on InSb. b, Transverse thermally <strong>in</strong>duced voltage observed with<br />

a <strong>magnetic</strong> field B x applied <strong>in</strong> the sample plane, a xyx , most probably aris<strong>in</strong>g<br />

from small parasitic misalignments. c, a xxx as a function of B x at different<br />

temperatures. Error bars, s.d.<br />

<strong>in</strong> ferro<strong>magnetic</strong> <strong>material</strong>s where S xy (B x ) is odd-symmetric with B x .<br />

Second, pho<strong>non</strong>–mag<strong>non</strong> <strong>effect</strong>s dom<strong>in</strong>ate <strong>in</strong> ferro<strong>magnetic</strong> <strong>material</strong>s,<br />

while there are no mag<strong>non</strong>s <strong>in</strong> InSb, but long-range 17 and <strong>in</strong>tense<br />

PED especially <strong>in</strong> the UQL. The sign of the momentum exchange <strong>in</strong><br />

pho<strong>non</strong>–mag<strong>non</strong> drag is not important <strong>in</strong> ferro<strong>magnetic</strong> <strong>material</strong>s<br />

because the change <strong>in</strong> M is due to heat<strong>in</strong>g or cool<strong>in</strong>g. Therefore, for<br />

a fixed= x T, the sign of the <strong>sp<strong>in</strong></strong>-current (and result<strong>in</strong>g E ISHE ) is determ<strong>in</strong>ed<br />

by the orientation of M and S xy is odd with B x . The reverse holds<br />

true when <strong>sp<strong>in</strong></strong>–orbit coupl<strong>in</strong>g is strong, because then the orientation<br />

of electron <strong>sp<strong>in</strong></strong>s (determ<strong>in</strong>ed by their total <strong>sp<strong>in</strong></strong> splitt<strong>in</strong>g De"#) is<br />

coupled to their Fermi wavevector (k F ). Sp<strong>in</strong>–orbit coupl<strong>in</strong>g <strong>in</strong> bulk<br />

InSb (ref. 18) is the orig<strong>in</strong> of the very narrow gap, small m*, large<br />

negative g, and <strong>non</strong>-parabolic dispersion (see equation (1)). Thus,<br />

when a pho<strong>non</strong> drags an electron, result<strong>in</strong>g <strong>in</strong> a Dk F , De"# changes<br />

by an amount we label De k "#. We suggest that a two-step mechanism<br />

(pho<strong>non</strong> momentum gives Dk F by PED, and Dk F gives De k "# by <strong>sp<strong>in</strong></strong>–<br />

orbit coupl<strong>in</strong>g) results <strong>in</strong> the GSSE <strong>effect</strong>, as described below.<br />

By analogy with the SSE <strong>in</strong> ferro<strong>magnetic</strong> <strong>material</strong>s, which required<br />

a mag<strong>non</strong> population out of thermal equilibrium with the pho<strong>non</strong><br />

population, the GSSE requires the electrons to be out of thermal equilibrium<br />

4–6 . Follow<strong>in</strong>g similar arguments, the imposition of the thermal<br />

gradient implies an equilibrium between pho<strong>non</strong>s and electrons near<br />

the middle of the sample, and we set the Zeeman splitt<strong>in</strong>g energy there<br />

as De 0"# 5 gm B B x , as well as Dk F 5 0. At the hot end, PED adds<br />

momentum (Dk F . 0) to the electrons above the thermal equilibrium<br />

value set <strong>in</strong> the middle of the sample; at the cold end, PED subtracts<br />

momentum from the equilibrium value (Dk F , 0). While k F and the<br />

netmotion<strong>in</strong>equation(1)alignwithB x along the x axis, the electron<br />

trajectory is helical, with a component <strong>in</strong> the (y,z)-plane; Dk F results <strong>in</strong> a<br />

change of orbital velocity, which, through <strong>sp<strong>in</strong></strong>–orbit <strong>in</strong>teractions, results<br />

<strong>in</strong> a <strong>sp<strong>in</strong></strong>–orbit field DB s-o oriented along x. DB s-o adds (hot side) or<br />

subtracts (cold side) from the applied field B x , result<strong>in</strong>g <strong>in</strong> a perturbation<br />

De k "# 5 gm B DB s-o of the Zeeman energy, De"# 5 De 0"# 1 De k "# 5 gm B<br />

(B x 1 DB s-o ). Def<strong>in</strong><strong>in</strong>g b ; de"#/dk F , the sign of this <strong>effect</strong> is shown <strong>in</strong><br />

Fig. 4. When B x is parallel to= x T (B x . 0, Fig. 4b), for the hot side Dk F . 0,<br />

and, assum<strong>in</strong>g b . 0, De k "# . 0. At the cold side, Dk F ,0 and De k "# , 0.<br />

The orientation of B x has no <strong>effect</strong> on the orientation of DB s-o , as shown<br />

<strong>in</strong> Fig. 4. Because the perturbation of <strong>sp<strong>in</strong></strong>-up and <strong>sp<strong>in</strong></strong>-down states is<br />

<strong>in</strong>dependent of applied field direction, the result<strong>in</strong>g S xy is <strong>in</strong>dependent<br />

of the sign of the background <strong>sp<strong>in</strong></strong> splitt<strong>in</strong>g, result<strong>in</strong>g <strong>in</strong> the evensymmetric<br />

behaviour observed. The sign of the <strong>sp<strong>in</strong></strong> polarization of<br />

the <strong>sp<strong>in</strong></strong> current <strong>in</strong> Pt is solely determ<strong>in</strong>ed by the direction of PED,<br />

which determ<strong>in</strong>es the sign of Dk F and the result<strong>in</strong>g De k "#.<br />

To estimate the order of magnitude of the <strong>effect</strong> of the above mechanism,<br />

we derive the slope b from the experimental dependence of g on<br />

n (dg/dn < 25 3 10 222 m 23 ; ref. 15); <strong>in</strong> that experiment, the <strong>effect</strong> of<br />

212 | NATURE | VOL 487 | 12 JULY 2012<br />

©2012 Macmillan Publishers Limited. All rights reserved


LETTER<br />

RESEARCH<br />

a<br />

InSb<br />

b<br />

Pt<br />

+½βΔk<br />

ε<br />

–½βΔk<br />

c<br />

–½βΔk<br />

ε<br />

+½βΔk<br />

–q x 0 +q x Δk<br />

B x //∇ x T<br />

–gμ B<br />

B<br />

–gμ B<br />

B<br />

B x //–∇ x T<br />

+½βΔk<br />

–½βΔk<br />

–½βΔk<br />

+½βΔk<br />

Figure 4 | How pho<strong>non</strong>–electron drag causes the SSE <strong>in</strong> InSb through the<br />

<strong>sp<strong>in</strong></strong>-orbit <strong>in</strong>teraction. a, Sample geometry (not to scale), with the grey bar<br />

show<strong>in</strong>g the change <strong>in</strong> electron momentum Dk due to drag by pho<strong>non</strong>s of<br />

momentum q x correspond<strong>in</strong>g to the applied temperature gradient. b, c, The<br />

<strong>sp<strong>in</strong></strong>-up and <strong>sp<strong>in</strong></strong>-down electron energy levels are plotted at the cold, middle<br />

and hot side of the sample (coloured blue, pale grey and p<strong>in</strong>k respectively) for<br />

the applied <strong>magnetic</strong> field (B x ) parallel (b, green arrows) and anti-parallel<br />

(c, brown arrows) to = x T. At the cold end, pho<strong>non</strong> drag reduces (<strong>in</strong>creases) the<br />

<strong>sp<strong>in</strong></strong>-down (<strong>sp<strong>in</strong></strong>-up) energy irrespective of the sign of B x , while the reverse<br />

holds true at the hot end. Therefore the sign of the <strong>sp<strong>in</strong></strong> <strong>Seebeck</strong> <strong>effect</strong> depends<br />

on the direction of pho<strong>non</strong> drag, not on the sign of B x .<br />

<strong>sp<strong>in</strong></strong>–orbit <strong>in</strong>teractions is parameterized <strong>in</strong> the value of g(n), rather<br />

than a separate term DB s-o . We further use the k F dependence of the<br />

electron concentration on a s<strong>in</strong>gle Landau level 16 dn/dk F 5 eB/(2p 2 B),<br />

and write b 5 m B B x (dg/dn)(dn/dk F ). The temperature difference of<br />

DT will then change pho<strong>non</strong> momentum by Dq ; k B DT/(Bc) where c<br />

is the average sound velocity. If we assume that PED fully transfers this<br />

to electrons, Dk F 5 Dq. For DT 5 40 mK, as we use near 5 K<br />

(k B T < 430 meV), jDe k "#j is of the order of 150 meV at 7 T, quite<br />

enough to alter the statistical distribution and therefore the <strong>sp<strong>in</strong></strong>-polarization<br />

of electrons. Note that <strong>in</strong> the absence of a quantitative measure<br />

of the <strong>sp<strong>in</strong></strong> transfer efficiency across the Pt/InSb <strong>in</strong>terface, translat<strong>in</strong>g<br />

this energy <strong>in</strong>to an estimated magnitude of the GSSE signal is not<br />

possible at present.<br />

There is a small odd-symmetric component of S xy (B x ), especially<br />

below the UQL where Shubnikov–de Haas oscillations are observed.<br />

We suggest that it arises from the classical magneto-thermopower, an<br />

even-symmetric function of B x , of the electrons on the (i 5 0, s x 5 K)<br />

level. Because their polarization flips with the direction of B x , the<br />

perturbation of their distribution due to PED <strong>in</strong> = x T creates a SSE<br />

signal that is odd <strong>in</strong> B x .<br />

The magnitude and generality of GSSE and SSE, and the fact that the<br />

thermal voltages are generated <strong>in</strong> metallic electrodes that have a low<br />

source impedance, suggest the potential for further optimization of<br />

these <strong>effect</strong>s and perhaps of all solid-state <strong>sp<strong>in</strong></strong>-thermal devices.<br />

METHODS SUMMARY<br />

Several parallelepiped-shaped samples (z 5 0.5 mm thick, y 5 3–5 mm wide and<br />

x 5 10–20 mm long) were cleaved from a Te-doped InSb wafer along the [110]<br />

direction. For GSSE measurements, 10 nm of Pt was deposited on top of a<br />

1-nm-thick Ti adhesion layer on the InSb. To perform classical galvano<strong>magnetic</strong><br />

and thermo<strong>magnetic</strong> measurements, different samples were equipped with<br />

diffused In po<strong>in</strong>t contacts. All contacts were verified to be ohmic with I/V curves<br />

at the millivolt scale. Measurements were made us<strong>in</strong>g the conventional heater and<br />

s<strong>in</strong>k method <strong>in</strong> a modified Thermal Transport Option <strong>in</strong> the Quantum Design<br />

PPMS system 2 . Out-of-plane temperature gradients are avoided 19 by the use of<br />

bulk samples with m<strong>in</strong>imized heat leaks through contacts (40-mm copper wires<br />

attached to the Pt bars with silver epoxy, or soldered to the In po<strong>in</strong>t contacts as<br />

voltage leads), and with m<strong>in</strong>imized radiative or convective losses (fully gold-plated<br />

cryopumped sample chamber). The top and bottom surfaces of the samples are<br />

<strong>in</strong>dium-soldered to the heat source/s<strong>in</strong>k. Cernox thermometry (Lakeshore CX-<br />

1050-BR) calibrated as a function of T is used. For GSSE measurements, we fix<br />

cryostat temperature and heater power and sweep B while record<strong>in</strong>g V y across the<br />

Pt strips us<strong>in</strong>g a Keithley 2182A nanovoltmeter. Relative error <strong>in</strong> S xy (B) is readily<br />

apparent <strong>in</strong> the noise <strong>in</strong> Fig. 2; the ma<strong>in</strong> source of absolute error is <strong>in</strong> DT x , and is<br />

<strong>in</strong>dividually estimated for each po<strong>in</strong>t <strong>in</strong> Fig. 2f and h. The SSE data were reproduced<br />

on a second, <strong>in</strong>dependently prepared sample, and further S xy (B x ) data are<br />

reported <strong>in</strong> Supplementary Information. Reproducibility of the amplitude is<br />

limited by the reproducibility of the quality of the Pt/InSb <strong>in</strong>terfaces.<br />

Received 16 February; accepted 8 May 2012.<br />

1. Uchida, K. et al. Observation of the <strong>sp<strong>in</strong></strong> <strong>Seebeck</strong> <strong>effect</strong>. Nature 455, 778–781<br />

(2008).<br />

2. Jaworski, C. M. et al. Observation of the <strong>sp<strong>in</strong></strong>-<strong>Seebeck</strong> <strong>effect</strong> <strong>in</strong> a ferro<strong>magnetic</strong><br />

semiconductor. Nature Mater. 9, 898–903 (2010).<br />

3. Uchida, K. et al. Sp<strong>in</strong> <strong>Seebeck</strong> <strong>in</strong>sulator. Nature Mater. 9, 894–897 (2010).<br />

4. Jaworski, C. M. et al. Sp<strong>in</strong>-<strong>Seebeck</strong> <strong>effect</strong>: a pho<strong>non</strong> driven <strong>sp<strong>in</strong></strong> distribution. Phys.<br />

Rev. Lett. 106, 186601 (2011).<br />

5. Adachi, H. et al. Gigantic enhancement of <strong>sp<strong>in</strong></strong> <strong>Seebeck</strong> <strong>effect</strong> by pho<strong>non</strong> drag.<br />

Appl. Phys. Lett. 97, 252506 (2010).<br />

6. Adachi, H. et al. L<strong>in</strong>ear-response theory of <strong>sp<strong>in</strong></strong> <strong>Seebeck</strong> <strong>effect</strong> <strong>in</strong> ferro<strong>magnetic</strong><br />

<strong>in</strong>sulators. Phys. Rev. B 83, 094410 (2011).<br />

7. Tserkovnyak, Y. et al. Sp<strong>in</strong> pump<strong>in</strong>g and magnetization dynamics <strong>in</strong> metallic<br />

multilayers. Phys. Rev. B 66, 224403 (2002).<br />

8. Xiao, J. et al. Theory of mag<strong>non</strong>-driven <strong>sp<strong>in</strong></strong> <strong>Seebeck</strong> <strong>effect</strong>. Phys. Rev. B 81, 214418<br />

(2010).<br />

9. Valenzuela, S. O. & T<strong>in</strong>kham, M. Direct electronic measurement of the <strong>sp<strong>in</strong></strong> Hall<br />

<strong>effect</strong>. Nature 442, 176–179 (2006).<br />

10. Yu, H. et al. Evidence for thermal <strong>sp<strong>in</strong></strong>-transfer torque. Phys. Rev. Lett. 104, 146601<br />

(2010).<br />

11. Le Breton, J.-C. et al. Thermal <strong>sp<strong>in</strong></strong> current from a ferromagnet to silicon by<br />

<strong>Seebeck</strong> <strong>sp<strong>in</strong></strong> tunnell<strong>in</strong>g. Nature 475, 82–85 (2011).<br />

12. Uchida, K. et al. Observation of the longitud<strong>in</strong>al <strong>sp<strong>in</strong></strong>-<strong>Seebeck</strong> <strong>effect</strong> <strong>in</strong> <strong>magnetic</strong><br />

<strong>in</strong>sulators. Appl. Phys. Lett. 97, 172505 (2010).<br />

13. Weiler, M. et al. Local charge and <strong>sp<strong>in</strong></strong> currents <strong>in</strong> magnetothermal landscapes.<br />

Phys. Rev. Lett. 108, 106602 (2012).<br />

14. Saitoh, E. et al. Conversion of <strong>sp<strong>in</strong></strong> current <strong>in</strong>to charge current at room<br />

temperature: <strong>in</strong>verse <strong>sp<strong>in</strong></strong>-Hall <strong>effect</strong>. Appl. Phys. Lett. 88, 182509 (2006).<br />

15. Madelung, O. Landolt-Börnste<strong>in</strong>. Numerical Data and Functional Relationships <strong>in</strong><br />

Science and Technology New Series Group III, Vol. 17, Subvol. A, section 2.15<br />

(Spr<strong>in</strong>ger, 1982).<br />

16. Shoenberg, D. Magnetic Oscillations <strong>in</strong> Metals (Cambridge Univ. Press, 1984).<br />

17. Puri, S. M. & Geballe, T. H. Pho<strong>non</strong> drag <strong>in</strong> n-type InSb. Phys. Rev. 136,<br />

A1767–A1774 (1964).<br />

18. Dresselhaus, G. Sp<strong>in</strong>-orbit coupl<strong>in</strong>g <strong>effect</strong>s <strong>in</strong> z<strong>in</strong>c blende structures. Phys. Rev.<br />

100, 580–586 (1955).<br />

19. Bosu, S. et al. Sp<strong>in</strong> <strong>Seebeck</strong> <strong>effect</strong> <strong>in</strong> th<strong>in</strong> films of the Heusler compound Co 2 MnSi.<br />

Phys. Rev. B 83, 224401 (2011).<br />

Supplementary Information is l<strong>in</strong>ked to the onl<strong>in</strong>e version of the paper at<br />

www.nature.com/nature.<br />

Acknowledgements We thank Y. Kato, H. Adachi, S. Maekawa and D. Stroud for<br />

discussions, and K. Wickey for assistance. This work was supported by the NSF<br />

CBET-1133589 (data acquisition and <strong>in</strong>terpretation) and by DMR-0820414 (sample<br />

preparation). C.M.J. has a fellowship from the DOE GATE Center of Excellence FG26<br />

05NT42616.<br />

Author Contributions C.M.J., R.C.M. and J.P.H. conceived the study; C.M.J. designed the<br />

experiments, prepared the samples with help from E.J.-H., and collected and carried out<br />

analysis of the data. R.C.M. and J.P.H. developed the explanation. All authors discussed<br />

the results and participated <strong>in</strong> writ<strong>in</strong>g the manuscript.<br />

Author Information Repr<strong>in</strong>ts and permissions <strong>in</strong>formation is available at<br />

www.nature.com/repr<strong>in</strong>ts. The authors declare no compet<strong>in</strong>g f<strong>in</strong>ancial <strong>in</strong>terests.<br />

Readers are welcome to comment on the onl<strong>in</strong>e version of this article at<br />

www.nature.com/nature. Correspondence and requests for <strong>material</strong>s should be<br />

addressed to J.P.H. (heremans.1@osu.edu).<br />

h<br />

©2012 Macmillan Publishers Limited. All rights reserved<br />

12 JULY 2012 | VOL 487 | NATURE | 213

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!