12.07.2015 Views

Preparation and in Vitro/in Vivo Evaluation of Insulin-Loaded Poly ...

Preparation and in Vitro/in Vivo Evaluation of Insulin-Loaded Poly ...

Preparation and in Vitro/in Vivo Evaluation of Insulin-Loaded Poly ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Pharmaceutical Research, Vol. 20, No. 3, March 2003 (© 2003)Research Paper<strong>Preparation</strong> <strong>and</strong> <strong>in</strong> <strong>Vitro</strong>/<strong>in</strong> <strong>Vivo</strong><strong>Evaluation</strong> <strong>of</strong> Insul<strong>in</strong>-<strong>Loaded</strong><strong>Poly</strong>(Acryloyl-HydroxyethylStarch)-PLGAComposite MicrospheresGe Jiang, 1 Wei Qiu, 1 <strong>and</strong> Patrick P. DeLuca 1,2Received November 7, 2002; accepted November 19, 2002Purpose. The purpose <strong>of</strong> this study was to develop <strong>and</strong> evaluate anovel composite microsphere delivery system composed <strong>of</strong> poly(D,Llactide-co-glycolide)(PLGA) <strong>and</strong> poly(acryloyl hydroxyethyl starch)(acryloyl derivatized HES; AcHES) hydrogel us<strong>in</strong>g bov<strong>in</strong>e <strong>in</strong>sul<strong>in</strong>as a model therapeutic prote<strong>in</strong>.Methods. Insul<strong>in</strong> was <strong>in</strong>corporated <strong>in</strong>to the AcHES hydrogel microparticlesby a swell<strong>in</strong>g technique, <strong>and</strong> then the <strong>in</strong>sul<strong>in</strong>-conta<strong>in</strong><strong>in</strong>gAcHES microparticles were encapsulated <strong>in</strong> a PLGA matrix us<strong>in</strong>g asolvent extraction/evaporation method. The composite microsphereswere characterized for load<strong>in</strong>g efficiency, particle size, <strong>and</strong> <strong>in</strong> vitroprote<strong>in</strong> release. Prote<strong>in</strong> stability was exam<strong>in</strong>ed by sodium dodecylsulfate polyacrylamide gel electrophoresis, high-performance liquidchromatography, <strong>and</strong> matrix-assisted laser desorption/ionizationtime-<strong>of</strong>-flight mass spectrometry. The hydrogel dispersion processwas optimized to reduce the burst effect <strong>of</strong> microspheres <strong>and</strong> avoidhypoglycemic shock <strong>in</strong> the animal studies <strong>in</strong> which the serum glucose<strong>and</strong> <strong>in</strong>sul<strong>in</strong> levels as well as animal body weight were monitored us<strong>in</strong>ga diabetic animal model.Results. Both the drug <strong>in</strong>corporation efficiency <strong>and</strong> the <strong>in</strong> vitro releasepr<strong>of</strong>iles were found to depend upon the preparation conditions.Sonication effectively dispersed the hydrogel particles <strong>in</strong> the PLGApolymer solution, <strong>and</strong> the higher energy resulted <strong>in</strong> microsphereswith a lower burst <strong>and</strong> susta<strong>in</strong>ed <strong>in</strong> vitro release. Average size <strong>of</strong> themicrospheres was around 22 m <strong>and</strong> the size distribution was not<strong>in</strong>fluenced by sonication level. High-performance liquid chromatography,sodium dodecyl sulfate polyacrylamide gel electrophoresis,along with matrix-assisted laser desorption/ionization time-<strong>of</strong>-flightmass spectrometry showed the retention <strong>of</strong> <strong>in</strong>sul<strong>in</strong> stability <strong>in</strong> themicrospheres. Subcutaneous adm<strong>in</strong>istration <strong>of</strong> microspheres providedglucose suppression


Insul<strong>in</strong>-<strong>Loaded</strong> AcHES-PLGA Composite Microspheres 453<strong>in</strong>sul<strong>in</strong>, was encapsulated <strong>in</strong>to the composite microspheres forpharmacologic assessment. Several research groups have <strong>in</strong>corporated<strong>in</strong>sul<strong>in</strong> <strong>in</strong> the PLGA microspheres <strong>and</strong> reportedstability problems, such as aggregation, degradation <strong>and</strong>deamidation (21,22). In addition, prote<strong>in</strong>-loaded PLGA microspheresusually exhibit a substantial <strong>in</strong>itial burst effect,which has a potential for toxicity (23). Such a burst can be aserious problem with <strong>in</strong>sul<strong>in</strong> because <strong>of</strong> a narrow therapeuticw<strong>in</strong>dow <strong>and</strong> the risk <strong>of</strong> hypoglycemic shock. In our work,<strong>in</strong>sul<strong>in</strong> content, stability, <strong>and</strong> <strong>in</strong> vitro release were characterizedto optimize appropriate batches for <strong>in</strong> vivo study. Effortwas made to develop a convenient <strong>and</strong> rapid extractionmethod to isolate <strong>in</strong>sul<strong>in</strong> form the composite for simultaneousprote<strong>in</strong> content determ<strong>in</strong>ation <strong>and</strong> stability assessment. Invivo studies were conducted by the subcutaneous adm<strong>in</strong>istration<strong>of</strong> the composite microparticles to streptozotoc<strong>in</strong><strong>in</strong>ducedtype I diabetic rats, <strong>and</strong> susta<strong>in</strong>ed pharmacologicaleffect was evaluated with regard to prolonged blood glucosesuppression, blood <strong>in</strong>sul<strong>in</strong> level, as well as animal growth.MATERIALS AND METHODSMaterials50:50 PLGA Resomer RG502H (M w 7831, M n 4544,RG502H) was supplied by Boehr<strong>in</strong>ger Ingelheim (Ingelheim,Germany). Hydroxyethyl starch (Hetastarch, HES, Mn 422kDa, 0.76 molar substitution <strong>of</strong> hydroxyethyl groups) was obta<strong>in</strong>edfrom Dupont Pharmaceutics (Wilm<strong>in</strong>gton, DE, USA).Acryloyl chloride was purchased from Aldrich ChemicalsCompany, Inc. (Milwaukee, WI, USA). Bov<strong>in</strong>e <strong>in</strong>sul<strong>in</strong> (BI),PVA (M w 3000–7000), streptozotoc<strong>in</strong>, <strong>and</strong> Inf<strong>in</strong>ity glucosereagent were obta<strong>in</strong>ed from Sigma Chemical Co. (St. Louis,MO, USA). The other reagents were <strong>of</strong> analytical grade. Insul<strong>in</strong>RIA kits were purchased from L<strong>in</strong>co Research, Inc (St.Charles, MO, USA). Male Sprague–Dawley rats were providedby Harlen (Indianapolis, IN, USA).<strong>Preparation</strong> <strong>of</strong> Insul<strong>in</strong>-<strong>Loaded</strong> AcHES-PLGAComposite MicrospheresAcHES was synthesized by esterify<strong>in</strong>g HES with acryloylchloride (24). AcHES hydrogel microparticles around 0.5˜2m were produced by free radical polymerization, <strong>and</strong> the<strong>in</strong>sul<strong>in</strong>-loaded composite microspheres were prepared withsome m<strong>in</strong>or modification <strong>in</strong> a previously reported method(20). To prepare a 1.5-g microsphere batch, 150 mg <strong>of</strong> <strong>in</strong>sul<strong>in</strong><strong>in</strong> 0.75 mL <strong>of</strong> 30% acetic acid were added to 101 mg <strong>of</strong>AcHES microparticles, <strong>and</strong> the particles were allowed toswell for 5 m<strong>in</strong> with vortex mix<strong>in</strong>g. The polymer phase consisted<strong>of</strong> 1.25 g <strong>of</strong> PLGA <strong>in</strong> 2.91 g <strong>of</strong> methylene chloride (30%w/w). The polymer phase was added to the swollen AcHESparticles <strong>and</strong> either vortexed for 5 m<strong>in</strong> or sonicated (W-370probe, Ultrasonic, Inc.) for 30 s at a predeterm<strong>in</strong>ed powersett<strong>in</strong>g to form a (<strong>in</strong>sul<strong>in</strong> <strong>in</strong> hydrogel)/(PLGA <strong>in</strong> methylenechloride) dispersion. This primary dispersion was then addedto 6% PVA solution <strong>and</strong> stirred by a Silverson mixer(Chesham, UK) at 3000 rpm for 2 m<strong>in</strong>, then transferred to 1L <strong>of</strong> deionized water for solvent extraction <strong>and</strong> evaporation.These procedures were conducted at ∼4°C us<strong>in</strong>g an ice bath.Then the temperature was gradually elevated to 39°C t<strong>of</strong>acilitatethe removal <strong>of</strong> methylene chloride. F<strong>in</strong>ally, the microsphereswere washed with water <strong>and</strong> freeze-dried. Blank compositemicrospheres were fabricated <strong>in</strong> the same way without<strong>in</strong>sul<strong>in</strong>. BI029 <strong>and</strong> BI030 were two repetitive batches <strong>of</strong> BI022to provide a sufficient quantity <strong>of</strong> microspheres for animalstudy.Particle CharacterizationParticle Size MeasurementThe particle size <strong>of</strong> each batch was measured by laserscatter<strong>in</strong>g us<strong>in</strong>g a Malvern 2600 sizer (Malvern InstrumentsPC6300, Engl<strong>and</strong>). The average particle size was expressed asthe volume mean diameter <strong>in</strong> m.Morphology <strong>of</strong> MicrospheresThe surface morphology <strong>and</strong> <strong>in</strong>ternal structure <strong>of</strong> fracturedmicrospheres were exam<strong>in</strong>ed by scann<strong>in</strong>g electron microscopy(Hitachi Model S800, Japan) after palladium/goldcoat<strong>in</strong>g.Acetonitrile (ACN) Extraction Method for Insul<strong>in</strong> ContentAssay <strong>in</strong> Composite MicrospheresACN Extraction <strong>and</strong> RecoveryKnown amounts <strong>of</strong> <strong>in</strong>sul<strong>in</strong> (1 or 2 mg) were mixed withblank AcHES-PLGA microspheres (18 or 19 mg) to mimic5% <strong>and</strong> 10% load<strong>in</strong>g. The mixture was dissolved <strong>in</strong> 4 mL <strong>of</strong>90% ACN (conta<strong>in</strong><strong>in</strong>g 0.1% trifluoroacetic acid [TFA]) withgentle shak<strong>in</strong>g. Then, 6 mL <strong>of</strong> 0.1% TFA <strong>in</strong> water was addedto precipitate the polymer. The supernatant was analyzed byhigh-performance liquid chromatography (HPLC) us<strong>in</strong>g aphenomax-C18 column at room temperature with a b<strong>in</strong>arygradient consist<strong>in</strong>g <strong>of</strong> (A) 0.1% TFA <strong>and</strong> (B) ACN/water/TFA (90:9.9:0.1). The gradient consisted <strong>of</strong> 15% B to 75% B<strong>in</strong> 10 m<strong>in</strong>, followed by equilibration at 15% B for 5 m<strong>in</strong>. Thepeak elution was monitored at 220 nm. Ten milligrams <strong>of</strong> eachmicrosphere sample was analyzed us<strong>in</strong>g ACN extraction <strong>and</strong>HPLC described above to determ<strong>in</strong>e the load<strong>in</strong>g efficiency.NaOH Digestion MethodTen milligrams <strong>of</strong> microspheres were hydrolyzed <strong>in</strong> 1 mL<strong>of</strong> 1 M NaOH with vigorous shak<strong>in</strong>g at room temperatureovernight. Insul<strong>in</strong> st<strong>and</strong>ards were also hydrolyzed us<strong>in</strong>g thesame procedure. After hydrolysis, 1 mL <strong>of</strong> 1.0 M HCl wasadded to neutralize the sample solutions. Insul<strong>in</strong> concentrationswere determ<strong>in</strong>ed by a micro-BCA (Bic<strong>in</strong>choniric acid)total prote<strong>in</strong> assay method.Insul<strong>in</strong> Integrity AssessmentElectrophoresisThe structural <strong>in</strong>tegrity <strong>of</strong> the bov<strong>in</strong>e <strong>in</strong>sul<strong>in</strong> extractedfrom the composite microspheres was characterized by sodiumdodecyl sulfate polyacrylamide gel electrophoresis(SDS-PAGE). Five milligrams <strong>of</strong> composite microsphereswere boiled with the sample buffer conta<strong>in</strong><strong>in</strong>g 8% SDS <strong>and</strong>0.2 M dithiothreitol (DTT) <strong>and</strong> then loaded onto a 16.5%tris-tric<strong>in</strong>e SDS-PAGE gel after sp<strong>in</strong>n<strong>in</strong>g down. The electrophoresiswas performed at a constant voltage <strong>of</strong> 150 V. Pro-


454te<strong>in</strong> b<strong>and</strong>s on the gel were sta<strong>in</strong>ed with GELCODE BlueSta<strong>in</strong> Reagent (Pierce, Rockford, IL, USA).Matrix-Assisted Laser Desorption/Ionization Time-<strong>of</strong>-FlightMass Spectrometry (MALDI-TOF MS)Ten milligrams <strong>of</strong> microspheres were mixed with 0.4 mL<strong>of</strong> 50:50 ACN:H 2 O, vortexed <strong>and</strong> shaken for 30 m<strong>in</strong>, centrifuged,<strong>and</strong> then the supernatant analyzed by MALDI-TOFMS. Spectra were obta<strong>in</strong>ed on a Kratos Kompact SEQ time<strong>of</strong>-flightmass spectrometer (Manchester, UK), with -cyano-4-hydroxyc<strong>in</strong>namic acid as the matrix.In <strong>Vitro</strong> Insul<strong>in</strong> ReleaseTwenty milligrams <strong>of</strong> microspheres were weighed <strong>and</strong>placed <strong>in</strong> 1.5-mL centrifuge tubes conta<strong>in</strong><strong>in</strong>g 10 mM glyc<strong>in</strong>ebuffer (pH 2.8). The tubes were <strong>in</strong>cubated at 37°C. At designatedsampl<strong>in</strong>g times, the tubes were vortexed before centrifugationat 4000 rpm for 5 m<strong>in</strong>. The supernatant was collected,<strong>and</strong> the volume <strong>of</strong> the release medium was restoredwith fresh glyc<strong>in</strong>e buffer. The samples were analyzed byHPLC.In <strong>Vivo</strong> <strong>Evaluation</strong> <strong>of</strong> Insul<strong>in</strong> Composite MicrospheresDiabetic Animal ModelSprague–Dawley male rats were <strong>in</strong>jected <strong>in</strong>traperitoneallywith 75 mg/kg <strong>of</strong> streptozotoc<strong>in</strong> (40 mg/mL <strong>in</strong> 50 mM citratebuffer at pH 4.5). After 7 days the animals were anesthetizedwith ethyl ether after 3˜4 h fast<strong>in</strong>g, <strong>and</strong> 0.7 mL <strong>of</strong>blood was collected from the tail ve<strong>in</strong>. Rats with serum glucoselevels higher than 500 mg/dL analyzed by Inf<strong>in</strong>ity glucosereagent were used for the follow<strong>in</strong>g experiments.Treatment with Insul<strong>in</strong> Composite MicrospheresS<strong>in</strong>gle Dose Treatment. Eight <strong>and</strong> six diabetic animalsreceived BI021 <strong>and</strong> BI022, respectively, at 345 IU <strong>in</strong>sul<strong>in</strong>/kg(˜80 IU/rat) via subcutaneous <strong>in</strong>jections at the neck region tosimulate a dose <strong>of</strong> approximately 8 IU/day. The microsphereswere suspended <strong>in</strong> an aqueous solution conta<strong>in</strong><strong>in</strong>g 1% carboxymethylcellulosesodium <strong>and</strong> 2% mannitol. The diabeticTable I. Batch Summary <strong>of</strong> Insul<strong>in</strong> <strong>Loaded</strong> Composite MicrospheresBatchBatchsize(g)control group consisted <strong>of</strong> six animals without <strong>in</strong>sul<strong>in</strong> treatment.At the predeterm<strong>in</strong>ed time po<strong>in</strong>ts, 0.7 mL <strong>of</strong> blood wascollected after 3–4 h fast<strong>in</strong>g <strong>and</strong> the serum was assayed forglucose level (Inf<strong>in</strong>ity glucose reagent) <strong>and</strong> <strong>in</strong>sul<strong>in</strong> contentby radioimmunoassay (L<strong>in</strong>co Research, St. Charles, MO, USA).Multiple Dos<strong>in</strong>g Treatment. Eight diabetic rats weretreated with 26 mg <strong>of</strong> microspheres (80 IU <strong>in</strong>sul<strong>in</strong>) every 10days. Blood was collected every other day until day 36. Controldiabetic rats without <strong>in</strong>sul<strong>in</strong> treatment were <strong>in</strong>cluded.RESULTSSonicationoutputlevel aParticle CharacterizationLoad<strong>in</strong>g(%)Jiang, Qiu, <strong>and</strong> DeLucaLoad<strong>in</strong>gefficiency(%)Burstrelease(%)Averagesize(m)BI018 2.0 Vortex 7.65 76.5 69.2 23.8BI019 2.0 1.7 8.73 87.3 60.1 20.6BI020 1.5 2.7 9.59 95.9 16.2 24.6BI021 1.5 3.0 9.94 99.4 5.07 22.1BI022 1.5 3.3 10.1 101.1 1.86 21.3a Vortex<strong>in</strong>g <strong>and</strong> sonication time was 5 m<strong>in</strong> <strong>and</strong> 30 s, respectively.Table I shows that the average particle size <strong>of</strong> the compositemicrospheres was 20.6–24.6 m, suitable for parenteraladm<strong>in</strong>istration through a 21-gauge needle. The particle sizes<strong>of</strong> each batch were similar <strong>and</strong> <strong>in</strong>dependent <strong>of</strong> the sonicationpower used for prepar<strong>in</strong>g the primary dispersion. This is expectedbecause the f<strong>in</strong>al particle size depends ma<strong>in</strong>ly on thedroplet size <strong>in</strong> the secondary emulsion <strong>and</strong> solidificationrather than the size <strong>in</strong> the primary emulsion. Additionally,stirr<strong>in</strong>g speed, PLGA concentration <strong>in</strong> the organic phase, <strong>and</strong>PVA concentration <strong>in</strong> the aqueous cont<strong>in</strong>uous phase were thesame for each batch. This result is <strong>in</strong> agreement with Heya etal. (25).The microspheres prepared were spherical with relativelysmooth surfaces (Fig. 1a). Fig. 1b shows a fracturedcomposite microsphere (BI022), with the <strong>in</strong>sul<strong>in</strong> loadedFig. 1. Scann<strong>in</strong>g electron micrographs <strong>of</strong> <strong>in</strong>sul<strong>in</strong>-loaded acryloyl chloride with HES (AcHES)-poly(D,L-lactide-co-glycolidecomposite microspheres. (a) Interior structure <strong>of</strong> a fractured microsphere (b, arrows po<strong>in</strong>t to embedded AcHES microparticles)<strong>and</strong> (c) freeze-dried AcHES hydrogel microparticles.


Insul<strong>in</strong>-<strong>Loaded</strong> AcHES-PLGA Composite Microspheres 455AcHES particles distributed throughout the matrix. The size<strong>of</strong> the AcHES particles was 0.5–2 m (Fig. 1c), small enoughfor multiple particles to be encapsulated <strong>in</strong> a composite microsphere.The composite reduced the contact <strong>of</strong> prote<strong>in</strong> moleculeswith the organic solvent dur<strong>in</strong>g the emulsify<strong>in</strong>g process,which could contribute to prote<strong>in</strong> denaturation <strong>and</strong> aggregation.ACN Extraction Method for Insul<strong>in</strong> Assay <strong>in</strong>Composite MicrospheresA typical RP-HPLC chromatogram is shown <strong>in</strong> Fig. 2,where the <strong>in</strong>sul<strong>in</strong> sample from composite microspheres hadan identical retention time as that <strong>of</strong> the <strong>in</strong>sul<strong>in</strong> st<strong>and</strong>ard; thisprovided supportive evidence that <strong>in</strong>sul<strong>in</strong> did not degrade toproducts <strong>of</strong> different chemical nature, such as the A21 desamido-<strong>in</strong>sul<strong>in</strong>.With the ACN extraction approach, blank microspheresdid not show any <strong>in</strong>terference <strong>in</strong> the HPLC chromatograph,<strong>and</strong> <strong>in</strong>sul<strong>in</strong>-spiked samples <strong>of</strong> blank microsphereshad recoveries <strong>of</strong> 97.3–99.3% <strong>in</strong> all cases regardless <strong>of</strong> thetype <strong>of</strong> PLGA or the amount <strong>of</strong> spiked <strong>in</strong>sul<strong>in</strong> (5 or 10%w/w). The satisfactory recovery enabled further determ<strong>in</strong>ation<strong>of</strong> <strong>in</strong>sul<strong>in</strong> content <strong>in</strong> prote<strong>in</strong>-loaded microspheres, whichyielded results similar to that from NaOH digestion (detaileddata not shown).Characterization <strong>of</strong> Insul<strong>in</strong> Integrity <strong>in</strong> Composite MSSDS-PAGE (Fig. 3a) <strong>of</strong> extracts from composite microsphereswhich were subjected to DTT reduction shows an<strong>in</strong>sul<strong>in</strong> b<strong>and</strong> at 3 kDa, correspond<strong>in</strong>g to a mixture <strong>of</strong> A cha<strong>in</strong><strong>and</strong> B cha<strong>in</strong>. No impurity b<strong>and</strong> was found. In the MALDI-TOF mass spectrum (Fig. 3b), <strong>in</strong>sul<strong>in</strong> extracted from the microspheresdisplayed an identical monoisotropic peak at MH +<strong>of</strong> 5734 with no evidence <strong>of</strong> covalent aggregation or degradationpeaks. In contrast, forced degradation <strong>of</strong> <strong>in</strong>sul<strong>in</strong> by DTTreduction showed no <strong>in</strong>tact <strong>in</strong>sul<strong>in</strong> peak <strong>and</strong> only separatepeaks at MH + <strong>of</strong> 3401 <strong>and</strong> 2338 for the A cha<strong>in</strong> <strong>and</strong> B cha<strong>in</strong>,respectively (spectrum not <strong>in</strong>cluded). Therefore, <strong>in</strong>sul<strong>in</strong> fragmentscould be detected us<strong>in</strong>g this extraction <strong>and</strong> MALDI-TOF MS as a stability-<strong>in</strong>dicat<strong>in</strong>g assay. Both the electrophoresis<strong>and</strong> mass spectrometry provided additional evidence for<strong>in</strong>tegrity <strong>of</strong> bov<strong>in</strong>e <strong>in</strong>sul<strong>in</strong> <strong>in</strong> the composite microspheres.Influence <strong>of</strong> Microsphere <strong>Preparation</strong> on Prote<strong>in</strong>Incorporation <strong>and</strong> ReleaseInsul<strong>in</strong> <strong>in</strong>corporation efficiency was <strong>in</strong>fluenced by thepreparation method <strong>of</strong> the primary emulsion. An efficiency <strong>of</strong>Fig. 2. High-performance liquid chromatography chromatogram <strong>of</strong><strong>in</strong>sul<strong>in</strong> sample isolated from composite microspheres by acetonitrileextraction <strong>and</strong> <strong>in</strong>tact <strong>in</strong>sul<strong>in</strong> st<strong>and</strong>ard.Fig. 3. Characterization <strong>of</strong> <strong>in</strong>sul<strong>in</strong> <strong>in</strong>tegrity <strong>in</strong> the composite microspheres(a) sodium dodecyl sulfate polyacrylamide gel electrophoresiswith dithiothreitol. Lane 1, Molecular weight marker; lane 2, bov<strong>in</strong>e<strong>in</strong>sul<strong>in</strong> st<strong>and</strong>ard; lane 3, <strong>in</strong>sul<strong>in</strong> sample from BI021; <strong>and</strong> lane 4,<strong>in</strong>sul<strong>in</strong> sample from BI022. (b) Matrix-assisted laser desorption/ionization time-<strong>of</strong>-flight mass spectrometry <strong>of</strong> <strong>in</strong>sul<strong>in</strong> extracted fromcomposite <strong>in</strong> comparison to <strong>in</strong>tact st<strong>and</strong>ard.76.5% was obta<strong>in</strong>ed by vortex<strong>in</strong>g, whereas sonication yieldedefficiencies > 87.3% (Table I). Igartua et al. (26) <strong>and</strong> Cohenet al. (1) obta<strong>in</strong>ed similar results with PLGA microspheresconta<strong>in</strong><strong>in</strong>g either bov<strong>in</strong>e serum album<strong>in</strong> or isothiocyanatelabeledbov<strong>in</strong>e serum album<strong>in</strong> prepared by a water-<strong>in</strong>-oil-<strong>in</strong>wateremulsion. In this study, the load<strong>in</strong>g efficiency also <strong>in</strong>creasedslightly with higher sonication power level. Thismight be because vortex mix<strong>in</strong>g at a lower power output resulted<strong>in</strong> large <strong>in</strong>ner emulsion droplets, which aided prote<strong>in</strong>escape <strong>in</strong>to the bulk aqueous phase when the secondary emulsionwas prepared. At the higher sonication sett<strong>in</strong>gs to furtherdisperse the hydrogel particles, a more uniform <strong>and</strong> f<strong>in</strong>er primaryemulsion was possible, result<strong>in</strong>g <strong>in</strong> a more effective <strong>in</strong>corporation<strong>of</strong> the prote<strong>in</strong>.Because <strong>in</strong>sul<strong>in</strong> has a narrow therapeutic w<strong>in</strong>dow, the


456Jiang, Qiu, <strong>and</strong> DeLucaburst release from the microspheres has to be low to avoidhypoglycemic shock <strong>and</strong> fatality <strong>in</strong> the animals. The sonicationreported by Igartua et al. (26) reduced the burst release<strong>of</strong> album<strong>in</strong> by nearly one half. Table I shows that <strong>in</strong>creas<strong>in</strong>gthe power level to disperse hydrogel <strong>in</strong> the polymer phaseresulted <strong>in</strong> a significant decrease <strong>in</strong> the burst release. Forexample, BI018, prepared by vortex<strong>in</strong>g, showed around 70%burst. Sonication reduced the burst to 5.07% <strong>and</strong> 1.86% atsonication output levels <strong>of</strong> 3.0 <strong>and</strong> 3.3, respectively.The burst effect reported by Pean et al. (13) is likely to beascribed to a honeycomb-like <strong>in</strong>ternal structure. Similarly,with <strong>in</strong>sufficient dispersion power, the hydrogel particles maynot be separated from each other <strong>and</strong> were eventually encapsulated<strong>in</strong> the PLGA matrix as clumps <strong>of</strong> multiple microparticles,which <strong>in</strong>creased the accessibility <strong>of</strong> <strong>in</strong>sul<strong>in</strong> to the releasemedium through pores <strong>and</strong> channels formed dur<strong>in</strong>gpreparation <strong>of</strong> the microspheres. When the hydrogel was suspended<strong>in</strong> the polymer phase by vortex<strong>in</strong>g or low energy levelsonication (level 1.7), the result<strong>in</strong>g suspension did not appearvery white <strong>and</strong> upon settl<strong>in</strong>g, hydrogel clumps were found onthe wall <strong>of</strong> the vial. At sonication levels <strong>of</strong> 2.7, 3.0, <strong>and</strong> 3.3, thesuspension appeared much whiter with no evidence <strong>of</strong> clump<strong>in</strong>g,<strong>in</strong>dicat<strong>in</strong>g a more uniform dispersion <strong>of</strong> the hydrogelparticles.Figure 4 shows the release pr<strong>of</strong>iles <strong>of</strong> <strong>in</strong>sul<strong>in</strong> from fourbatches <strong>of</strong> composite microspheres prepared. The vortexbatch had a 70% burst with slow subsequent <strong>in</strong>sul<strong>in</strong> diffusionuntil erosion <strong>of</strong> polymer-enhanced drug release after day 7.Because <strong>of</strong> the limited amount <strong>of</strong> <strong>in</strong>sul<strong>in</strong> left with<strong>in</strong> the microspheres,the release soon exhausted <strong>and</strong> reached a plateau.Three sonicated batches displayed similar release patterns exceptfor the extent <strong>of</strong> <strong>in</strong>itial burst. There was not much releasefrom day 2 to 7 when prote<strong>in</strong> diffuses through the <strong>in</strong>completelyhydrated matrix before polymer erosion occurs. Therelease accelerated dur<strong>in</strong>g the second week because <strong>of</strong> polymerdegradation <strong>and</strong> erosion <strong>and</strong> was even more rapidthrough the third <strong>and</strong> fourth weeks before the release plateauedafter 30 days. Interest<strong>in</strong>gly, <strong>in</strong> comparison with someprevious reports where <strong>in</strong>sul<strong>in</strong> release from PLGA microsphereswas <strong>in</strong>complete (10,27), each batch <strong>in</strong> this study releasedalmost the entire <strong>in</strong>corporated drug (>78%). The improvedrelease pattern <strong>in</strong>dicates AcHES hydrogel particlesmay have a protective function for enhanc<strong>in</strong>g the retention <strong>of</strong><strong>in</strong>sul<strong>in</strong> stability <strong>and</strong> reduc<strong>in</strong>g <strong>in</strong>sul<strong>in</strong> adsorption to PLGA. Aswell, the appropriate choice <strong>of</strong> release medium could alsocontribute to complete drug release.In <strong>Vivo</strong> <strong>Evaluation</strong> <strong>of</strong> Insul<strong>in</strong> Composite MicrospheresS<strong>in</strong>gle Dose TreatmentTwo composite microsphere batches, BI021 <strong>and</strong> BI022,with 5.0% <strong>and</strong> 1.9% <strong>in</strong> vitro release on day 1, were selectedfor <strong>in</strong> vivo study. Fig. 5a <strong>and</strong> 5b describe the <strong>in</strong> vivo serumglucose pr<strong>of</strong>iles obta<strong>in</strong>ed upon subcutaneous adm<strong>in</strong>istration<strong>of</strong> the two batches to diabetic rats. The rapid <strong>and</strong> immediatedecrease <strong>in</strong> the serum glucose concentration observed on thevery first day with batch BI021 seems <strong>in</strong> good agreement withits higher <strong>in</strong>itial <strong>in</strong> vitro release rate. On day 2, glucose levelelevated to around 200 mg/dL but was still effectively suppressedcompared with diabetic animals. The suppression wassusta<strong>in</strong>ed through day 8 between 70 <strong>and</strong> 150 mg/dL with themost remarkable reduction seen on day 6. Hyperglycemiarecurred after day 10 <strong>and</strong> returned to the diabetic controllevel on day 16. With respect to BI022, the suppression <strong>of</strong>glucose level was more gradual on the first 2 days, most likelyresult<strong>in</strong>g from the lower burst. On day 3, glucose fell toFig. 4. In vitro release <strong>of</strong> <strong>in</strong>sul<strong>in</strong> from composite microspheres <strong>in</strong>glyc<strong>in</strong>e buffer at 37°C. Sonication levels are <strong>in</strong>dicated <strong>in</strong> parentheses(n 3; mean ± SE).Fig. 5. Serum glucose suppression <strong>in</strong> diabetic rats treated with <strong>in</strong>sul<strong>in</strong>loaded composite microsphere batches BI021 (a) <strong>and</strong> BI022 (b) (n 6 for diabetic; 8 for BI022; mean ± SE).


Insul<strong>in</strong>-<strong>Loaded</strong> AcHES-PLGA Composite Microspheres 457around 130 mg/dL, <strong>and</strong> the suppression was susta<strong>in</strong>ed for 10days. After day 10, the level elevated to that <strong>of</strong> the diabeticcontrol on day 16.The serum <strong>in</strong>sul<strong>in</strong> pr<strong>of</strong>iles seen <strong>in</strong> Fig. 6a <strong>and</strong> 6b show the<strong>in</strong>sul<strong>in</strong> level <strong>in</strong> the two treated groups as well as the diabeticcontrols. In Fig. 6a, the adm<strong>in</strong>istration <strong>of</strong> BI021 gave rise toan immediate peak on day 1, which correlated well with therapid glucose suppression <strong>and</strong> the 5% <strong>in</strong> vitro burst release.Although the levels were <strong>in</strong> the 4–6 ng/mL range between 2<strong>and</strong> 8 days, there is some evidence <strong>of</strong> a triphasic pattern,where the <strong>in</strong>sul<strong>in</strong> level decreased on the second day <strong>and</strong> thenelevated to a second peak on day 6. The decl<strong>in</strong>e <strong>of</strong> <strong>in</strong>sul<strong>in</strong>level was gradual, <strong>and</strong> there was steady <strong>in</strong>sul<strong>in</strong> release fromthe composite microsphere up to day 10. In contrast, serum<strong>in</strong>sul<strong>in</strong> levels <strong>of</strong> the control group showed a low level with nomore than 0.7 ng/mL throughout the study. Treatment withBI022 led to a lower <strong>in</strong>itial <strong>in</strong>sul<strong>in</strong> level <strong>of</strong> 3.5 ng/mL with<strong>in</strong> 24h, which also correlated well with the 1.9% <strong>in</strong> vitro burst <strong>of</strong>this batch <strong>and</strong> the gradual suppression <strong>of</strong> blood glucose seen<strong>in</strong> Fig. 5b. Aga<strong>in</strong>, three phases could be discerned with relativelylower <strong>in</strong>sul<strong>in</strong> level on days 2 <strong>and</strong> 3, a peak <strong>of</strong> 5.8 ng/mLon day 6, <strong>and</strong> then the gradual decrease to orig<strong>in</strong>al diabeticlevel after day 12.Because a physiologic response to <strong>in</strong>sul<strong>in</strong> was the growth<strong>of</strong> the animals <strong>and</strong> body weight <strong>in</strong>crease, body weight <strong>of</strong> theBI021- <strong>and</strong> BI022-treated rats was monitored. The treateddiabetic rats grew at a comparable rate as the control group <strong>of</strong>normal rats until day 10 when hyperglycemia reappeared <strong>and</strong>loss <strong>of</strong> body weight reoccurred.Multiple Dos<strong>in</strong>g TreatmentThe objective <strong>of</strong> this treatment was to asses a multipledose regimen for the model prote<strong>in</strong> <strong>and</strong> evaluate if the compositedosage form would have potential therapeutic application.As seen <strong>in</strong> Fig. 5b, the blood glucose elevated on day 10after dos<strong>in</strong>g. Therefore, <strong>in</strong> this study, rats (n 8) weretreated with microspheres conta<strong>in</strong><strong>in</strong>g 80 IU <strong>in</strong>sul<strong>in</strong> every 10days. The pr<strong>of</strong>ile <strong>of</strong> glucose shown <strong>in</strong> Fig. 7 from day 0 to day10 was similar to that <strong>in</strong> Fig. 5b with maximum glucose suppressionon day 6. The rate <strong>of</strong> glucose suppression was similarfor the first <strong>and</strong> second doses, but because there were detectableresidual levels <strong>of</strong> serum <strong>in</strong>sul<strong>in</strong> upon adm<strong>in</strong>istration <strong>of</strong>the second dose, the levels were suppressed to below 100mg/dL faster, that is, 5 days for the first dose but only 3 daysfor the second dose. The second <strong>and</strong> third doses both exhibitedprolonged <strong>and</strong> comparable pharmacological effect over 8days. The result suggests that 10 days could be an appropriatedos<strong>in</strong>g schedule because once the blood glucose elevates beyondnormal level, a subsequent dose could take over <strong>and</strong>keep the glucose level <strong>in</strong> control. The <strong>in</strong> vivo <strong>in</strong>sul<strong>in</strong> level(Fig. 8) also displayed comparable pharmacok<strong>in</strong>etic pr<strong>of</strong>ilesfrom the three doses with regard to C max , T max , <strong>and</strong> areaunder the curve.DISCUSSIONFig. 6. Serum Insul<strong>in</strong> level <strong>of</strong> (a) BI021- <strong>and</strong> (b) BI022-treated diabeticrats. (n 6 for diabetic control; 8 for treated rats; mean ± SE).Two techniques have been reported for extraction <strong>of</strong>prote<strong>in</strong>s from PLGA or PLA microparticles. One <strong>in</strong>volvesthe dissolution <strong>of</strong> the microspheres <strong>in</strong> methylene chloride followedby aqueous extraction <strong>of</strong> the organic phase (1,28). Thistwo-phase extraction was <strong>of</strong>ten <strong>in</strong>complete, giv<strong>in</strong>g rise to anunderestimation <strong>of</strong> the actual prote<strong>in</strong> content (29). A secondtechnique was alkal<strong>in</strong>e hydrolysis <strong>of</strong> the microparticles, followedby total prote<strong>in</strong> assay (30), a method that accuratelydeterm<strong>in</strong>ed prote<strong>in</strong> load<strong>in</strong>g but failed to provide any stability<strong>in</strong>formation because the extraction process digested the prote<strong>in</strong>.In this study, the ACN extraction method was found tobe a rapid <strong>and</strong> convenient approach for determ<strong>in</strong>ation <strong>of</strong> prote<strong>in</strong>content <strong>and</strong>, simultaneously, assessment <strong>of</strong> prote<strong>in</strong> degradationto products <strong>of</strong> different chemical nature by HPLC.The more homogenous distribution <strong>of</strong> hydrogel particlesthroughout the PLGA matrix retarded the <strong>in</strong>itial release <strong>of</strong><strong>in</strong>sul<strong>in</strong> <strong>and</strong> made the subsequent release dependent on polymerhydration <strong>and</strong> mass loss. As an alternate to sonication,Rojas et al. (2) used surfactants, such as Tween 20, to reducethe burst. However, such burst suppression was not observed<strong>in</strong> Rosa et al.’s (31) study where non-ionic surfactants, poloxamer188, polysorbate 20, <strong>and</strong> sorbitan monooleate 80,were co-encapsulated <strong>in</strong> microspheres. Yamaguchi (32) usedcerta<strong>in</strong> hydrophilic additives, such as glycerol <strong>in</strong> the S/O(solid <strong>in</strong> oil) dispersion, i.e., crystall<strong>in</strong>e <strong>in</strong>sul<strong>in</strong> suspended <strong>in</strong>dichloromethane, to achieve a heterogeneous <strong>in</strong>ternal localization<strong>of</strong> <strong>in</strong>sul<strong>in</strong> <strong>in</strong>stead <strong>of</strong> on the surface <strong>of</strong> the PLGA microcapsules<strong>and</strong> thereby achiev<strong>in</strong>g a lower burst effect.Previously <strong>in</strong> neutral medium, a release pattern with aburst with<strong>in</strong> 1 day <strong>and</strong> almost no further release afterwardswas reported for <strong>in</strong>sul<strong>in</strong> loaded PLGA microspheres (10).


458Jiang, Qiu, <strong>and</strong> DeLucaFig. 7. Blood glucose suppression <strong>of</strong> multiple dos<strong>in</strong>g treatment <strong>of</strong> <strong>in</strong>sul<strong>in</strong> loaded compositemicrospheres (n 8, dose 80 IU/rat; mean ± SE).Consider<strong>in</strong>g the limited solubility <strong>in</strong> PBS (145.8 g/mL), aneutral pH medium was not desirable to study the release.Moreover, bov<strong>in</strong>e <strong>in</strong>sul<strong>in</strong> has a higher tendency to self aggregateor “fibrillate” <strong>in</strong> solution than either human or porc<strong>in</strong>e<strong>in</strong>sul<strong>in</strong> (33). Additionally, <strong>in</strong>sul<strong>in</strong> adsorption to PLGA mightoccur <strong>and</strong> contribute to the <strong>in</strong>complete release. In this study,glyc<strong>in</strong>e buffer was used as the <strong>in</strong> vitro release medium becauseit ensured high solubility (>5 mg/mL) to mimic s<strong>in</strong>kcondition, <strong>and</strong> no <strong>in</strong>sul<strong>in</strong> precipitation occurred upon <strong>in</strong>cubation<strong>in</strong> the buffer for 2 weeks (data not shown).Compar<strong>in</strong>g the <strong>in</strong> vitro release <strong>and</strong> <strong>in</strong> vivo pr<strong>of</strong>iles <strong>of</strong> thecomposite microspheres, there appeared to be a lack <strong>of</strong> timewise po<strong>in</strong>t-to-po<strong>in</strong>t correlation. The release test medium conditionswere based on <strong>in</strong>sul<strong>in</strong> solubility <strong>and</strong> fibrillation. However,an <strong>in</strong> vivo system is far more complex <strong>and</strong> <strong>of</strong>ten will notcorrelate with the <strong>in</strong> vitro release because <strong>of</strong> the presence <strong>of</strong>proteolytic enzymes, cellular <strong>in</strong>filtrates, various cytok<strong>in</strong>es,<strong>and</strong> pH gradients. Nevertheless, an <strong>in</strong> vitro release test canserve to demonstrate performance <strong>and</strong> reproducibility <strong>in</strong> thepreparation <strong>of</strong> microspheres, despite not simulat<strong>in</strong>g <strong>in</strong> vivok<strong>in</strong>etics. In this study, the <strong>in</strong> vitro release does share somesimilarity with <strong>in</strong> vivo blood pr<strong>of</strong>ile. For example, the triphasicpattern, i.e., an <strong>in</strong>itial release followed by a period <strong>of</strong>relatively slower release <strong>and</strong> then an accelerated stage, wasfound both <strong>in</strong> vitro <strong>and</strong> <strong>in</strong> vivo, albeit the phases occur sooner<strong>in</strong> vivo. Further <strong>in</strong>vestigations will have to address whetherpolymer accumulation <strong>in</strong> vivo gives rise to any adverse effects.CONCLUSIONBov<strong>in</strong>e <strong>in</strong>sul<strong>in</strong> was successfully encapsulated <strong>in</strong>to thecomposite microspheres with retention <strong>of</strong> <strong>in</strong>sul<strong>in</strong> <strong>in</strong>tegrity<strong>and</strong> the microsphere preparation process was optimized toreduce the burst <strong>and</strong> provide <strong>in</strong> vitro-susta<strong>in</strong>ed release. Anextraction <strong>and</strong> HPLC analytical method was developed tosimultaneously determ<strong>in</strong>e <strong>in</strong>sul<strong>in</strong> load<strong>in</strong>g <strong>and</strong> prote<strong>in</strong> stability.The glucose suppression <strong>in</strong> diabetic rats was prolongedthrough 8˜10 days with the most remarkable reduction seen ondays 6–8. Multiple dos<strong>in</strong>g reflected the repetitive pharmacologicalefficacy <strong>and</strong> pharmacok<strong>in</strong>etic pr<strong>of</strong>ile <strong>of</strong> a s<strong>in</strong>gle dose.The <strong>in</strong> vitro <strong>and</strong> <strong>in</strong> vivo results suggest that the novel compositemicrosphere system could be used as a carrier for prolongeddelivery <strong>of</strong> prote<strong>in</strong> drugs.ACKNOWLEDGMENTSThe authors wish to gratefully thank Jianx<strong>in</strong> Guo at Department<strong>of</strong> Pharmaceutics, Ch<strong>in</strong>a Pharmaceutical Universityfor her valuable suggestions perta<strong>in</strong><strong>in</strong>g the selection <strong>of</strong> <strong>in</strong>vitro release medium. This paper was selected for an AAPSFig. 8. Serum <strong>in</strong>sul<strong>in</strong> level <strong>of</strong> multiple dos<strong>in</strong>g treatment <strong>of</strong> <strong>in</strong>sul<strong>in</strong> loaded composite microspheres (n 8, dose 80 IU/rat; mean ± SE).


Insul<strong>in</strong>-<strong>Loaded</strong> AcHES-PLGA Composite Microspheres 459Outst<strong>and</strong><strong>in</strong>g Graduate Research Award <strong>in</strong> PharmaceuticalTechnologies, sponsored by EMISPHERE Technologies Inc.Ge Jiang received the award at the Annual AAPS Meet<strong>in</strong>g <strong>in</strong>Toronto Canada, November 2002.REFERENCE1. S. Cohen, T. Yoshioka, M. Lucarelli, L. H. Hwang, <strong>and</strong> R.Langer. Controlled delivery systems for prote<strong>in</strong>s based on poly-(lactic/glycolic acid) microspheres. Pharm. Res. 8:713–720 (1991).2. J. Rojas, H. P<strong>in</strong>to-Alph<strong>and</strong>ary, E. Leo, S. Pecquet, P. Couvreur,<strong>and</strong> E. Fattal. Optimization <strong>of</strong> the encapsulation <strong>and</strong> release <strong>of</strong>beta-lactoglobul<strong>in</strong> entrapped poly(DL-lactide-co-glycolide) microspheres.Int. J. Pharm. 183:67–71 (1999).3. J. L. Clel<strong>and</strong> <strong>and</strong> A. J. Jones. Stable formulations <strong>of</strong> recomb<strong>in</strong>anthuman growth hormone <strong>and</strong> <strong>in</strong>terferon-gamma for microencapsulation<strong>in</strong> biodegradable microspheres. Pharm. Res. 13:1464–1475 (1996).4. K. A. Athanasiou, G. G. Niederauer, <strong>and</strong> C. M. Agrawal. Sterilization,toxicity, biocompatibility <strong>and</strong> cl<strong>in</strong>ical applications <strong>of</strong>polylactic acid/polyglycolic acid copolymers. Biomaterials 17:93–102 (1996).5. S. P. Schwendeman, M. Cardamone, M. R. Br<strong>and</strong>on, A. M. Klibanov,<strong>and</strong> R. Langer. Stability <strong>of</strong> prote<strong>in</strong>s <strong>and</strong> their deliveryfrom biodegradable microspheres. In S. Cohen <strong>and</strong> H. Bernste<strong>in</strong>(eds.), Microparticulate systems for the Delivery <strong>of</strong> Prote<strong>in</strong>s <strong>and</strong>Vacc<strong>in</strong>es, Marcel Dekker, New York, 1996 pp. 1–50.6. J. L. Clel<strong>and</strong>, A. Mac, B. Boyd, J. Yang, E. T. Duenas, D. Yeung,D. Brooks, C. Hsu, H. Chu, V. Mukku, <strong>and</strong> A. J. Jones. Thestability <strong>of</strong> recomb<strong>in</strong>ant human growth hormone <strong>in</strong> poly(lacticco-glycolicacid) (PLGA) microspheres. Pharm. Res. 14:420–425(1997).7. G. Crotts <strong>and</strong> T. G. Park. Prote<strong>in</strong> delivery from poly(lactic-coglycolicacid) biodegradable microspheres: release k<strong>in</strong>etics <strong>and</strong>stability issues. J. Microencapsul. 15:699–713 (1998).8. H. Sah. Prote<strong>in</strong> <strong>in</strong>stability toward organic solvent/water emulsification:implications for prote<strong>in</strong> microencapsulation <strong>in</strong>to microspheres.PDA J. Pharm. Sci. Technol. 53:3–10 (1999).9. M. van de Weert, J. Hoechstetter, W. E. Henn<strong>in</strong>k, <strong>and</strong> D. J.Crommel<strong>in</strong>. The effect <strong>of</strong> a water/organic solvent <strong>in</strong>terface on thestructural stability <strong>of</strong> lysozyme. J. Control. Release 68:351–359(2000).10. P. G. Shao <strong>and</strong> L. C. Bailey. Stabilization <strong>of</strong> pH-<strong>in</strong>duced degradation<strong>of</strong> porc<strong>in</strong>e <strong>in</strong>sul<strong>in</strong> <strong>in</strong> biodegradable polyester microspheres.Pharm. Dev. Technol. 4:633–642 (1999).11. K. Fu, D. W. Pack, A. M. Klibanov, <strong>and</strong> R. Langer. Visual evidence<strong>of</strong> acidic environment with<strong>in</strong> degrad<strong>in</strong>g poly(lactic-coglycolicacid) (PLGA) microspheres. Pharm. Res. 17:100–106(2000).12. G. Crotts, H. Sah, <strong>and</strong> T. G. Park. Adsorption determ<strong>in</strong>es <strong>in</strong>-vitroprote<strong>in</strong> release rate from biodegradable microspheres: quantitativeanalysis <strong>of</strong> surface area dur<strong>in</strong>g degradation. J. Control. Release47:101–111 (1997).13. J. M. Pean, M. C. Venier-Julienne, F. Boury, P. Menei, B. Denizot,<strong>and</strong> J. P. Benoit. NGF release from poly(D,L-lactide-coglycolide)microspheres. Effect <strong>of</strong> some formulation parameterson encapsulated NGF stability. J. Control. Release 56:175–187(1998).14. J. M. Pean, F. Boury, M. C. Venier-Julienne, P. Menei, J. E.Proust, <strong>and</strong> J. P. Benoit. Why does PEG 400 co-encapsulationimprove NGF stability <strong>and</strong> release from PLGA biodegradablemicrospheres? Pharm. Res. 16:1294–1299 (1999).15. H. Doll<strong>in</strong>ger <strong>and</strong> S. Sawan. Bicont<strong>in</strong>uous controlled-release matricescomposed <strong>of</strong> poly(d,l-lactic acid) blended with ethylenev<strong>in</strong>ylacetate copolymer. <strong>Poly</strong>m. Prepr. 31:211–212 (1990).16. C. G. Pitt, Y. Cha, S. S. Shah, <strong>and</strong> K. J. Zhu. Blends <strong>of</strong> PVA <strong>and</strong>PGLA: control <strong>of</strong> the permeability <strong>and</strong> degradability <strong>of</strong> hydrogelsby blend<strong>in</strong>g. J. Control. Release 19:189–199 (1992).17. N. Wang <strong>and</strong> X. S. Wu. A novel approach to stabilization <strong>of</strong>prote<strong>in</strong> drugs <strong>in</strong> poly(lactic-co-glycolic acid) microspheres us<strong>in</strong>gagarose hydrogel. Int. J. Pharm. 166:1–14 (1998).18. N. Wang, X. S. Wu, <strong>and</strong> J. K. Li. A heterogeneously structuredcomposite based on poly(lactic-co-glycolic acid) microspheres<strong>and</strong> poly(v<strong>in</strong>yl alcohol) hydrogel nanoparticles for long-term prote<strong>in</strong>drug delivery. Pharm. Res. 16:1430–1435 (1999).19. J. K. Li, N. Wang, <strong>and</strong> X. S. Wu. A novel biodegradable systembased on gelat<strong>in</strong> nanoparticles <strong>and</strong> poly(lactic-co-glycolic acid)microspheres for prote<strong>in</strong> <strong>and</strong> peptide drug delivery. J. Pharm.Sci. 86:891–895 (1997).20. B. H. Woo, G. Jiang, Y. W. Jo, <strong>and</strong> P. P. DeLuca. <strong>Preparation</strong><strong>and</strong> characterization <strong>of</strong> a composite PLGA <strong>and</strong> poly(acryloyl hydroxyethylstarch) microsphere system for prote<strong>in</strong> delivery.Pharm. Res. 18:1600–1606 (2001).21. T. Uchida, A. Yagi, Y. Oda, Y. Nakada, <strong>and</strong> S. Goto. Instability<strong>of</strong> bov<strong>in</strong>e <strong>in</strong>sul<strong>in</strong> <strong>in</strong> poly(lactide-co-glycolide) (PLGA) microspheres.Chem. Pharm. Bull. 44:235–236 (1996).22. P. G. Shao <strong>and</strong> L. C. Bailey. Porc<strong>in</strong>e <strong>in</strong>sul<strong>in</strong> biodegradable polyestermicrospheres: stability <strong>and</strong> <strong>in</strong> vitro release characteristics.Pharm. Dev. Technol. 5:1–9 (2000).23. M. L. Shively, B. A. Coonts, W. D. Renner, J. L. Southard, <strong>and</strong>A. T. Bennett. Physico-chemical characterization <strong>of</strong> a polymeric<strong>in</strong>jectable implant delivery system. J. Control. Release 33:237–243(1995).24. L. K. Huang, R. C. Mehta, <strong>and</strong> P. P. DeLuca. <strong>Evaluation</strong> <strong>of</strong> astatistical model for the formation <strong>of</strong> poly [acryloyl hydroxyethylstarch] microspheres. Pharm. Res. 14:475–482 (1997).25. T. Heya, H. Okada, Y. Tanigawara, Y. Ogawa, <strong>and</strong> H. Toguchi.Effects <strong>of</strong> counteranion <strong>of</strong> TRH <strong>and</strong> load<strong>in</strong>g amount on control<strong>of</strong> TRH release from copoly(DL-lactic/glycolic acid) microspheresprepared by an <strong>in</strong>-water dry<strong>in</strong>g method. Int. J. Pharm.69:69–75 (1991).26. M. Igartua, R. M. Hern<strong>and</strong>ez, A. Esquisabel, A. R. Gascon, M. B.Calvo, <strong>and</strong> J. L. Pedraz. Influence <strong>of</strong> formulation variables on the<strong>in</strong>-vitro release <strong>of</strong> album<strong>in</strong> from biodegradable microparticulatesystems. J. Microencapsul. 14:349–356 (1997).27. I. Soriano, C. Evora, <strong>and</strong> M. Llabrés. <strong>Preparation</strong> <strong>and</strong> evaluation<strong>of</strong> <strong>in</strong>sul<strong>in</strong>-loaded poly(DL-lactide) microspheres us<strong>in</strong>g an experimentaldesign. Int. J. Pharm. 142:135–142 (1996).28. Y. Ogawa, M. Yamamoto, H. Okada, T. Yashiki, <strong>and</strong> T. Shimamoto.A new technique to efficiently entrap leuprolide acetate<strong>in</strong>to microcapsules <strong>of</strong> polylactic acid or copoly(lactic/glycolic)acid. Chem. Pharm. Bull. 36:1095–1103 (1988).29. H. Jeffery. The preparation <strong>and</strong> characterisation <strong>of</strong> biodegradablemicroparticles for use <strong>in</strong> antigen delivery, Ph.D. thesis. Department<strong>of</strong> Pharmaceutical Sciences, University <strong>of</strong> Nott<strong>in</strong>gham,1992.30. H. Jeffery, S. S. Davis, <strong>and</strong> D. T. O’Hagan. The preparation <strong>and</strong>characterization <strong>of</strong> poly(lactide-co-glycolide) microparticles. II.The entrapment <strong>of</strong> a model prote<strong>in</strong> us<strong>in</strong>g a (water-<strong>in</strong>-oil)-<strong>in</strong>wateremulsion solvent evaporation technique. Pharm. Res. 10:362–368 (1993).31. G. D. Rosa, R. Iommelli, M. I. La Rotonda, A. Miro, <strong>and</strong> F.Quaglia. Influence <strong>of</strong> the co-encapsulation <strong>of</strong> different non-ionicsurfactants on the properties <strong>of</strong> PLGA <strong>in</strong>sul<strong>in</strong>-loaded microspheres.J. Control. Release 69:283–295 (2000).32. Y. Yamaguchi, M. Takenaga, A. Kitagawa, Y. Ogawa, Y. Mizushima,<strong>and</strong> R. Igarashi. Insul<strong>in</strong>-loaded biodegradable PLGAmicrocapsules: <strong>in</strong>itial burst release controlled by hydrophilic additives.J. Control. Release 81:235–249 (2002).33. J. Brange, L. Andersen, E. D. Laursen, G. Meyn, <strong>and</strong> E. Rasmussen.Toward underst<strong>and</strong><strong>in</strong>g <strong>in</strong>sul<strong>in</strong> fibrillation. J. Pharm. Sci.86:517–525 (1997).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!